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1 INTRODUCTION

Dave Bowman: Open the pod bay doors, HAL.
HAL: I’m sorry Dave, I’m afraid I can’t do that.

Stanley Kubrick and Arthur C. Clarke,
screenplay of2001: A Space Odyssey

This book is about a new interdisciplinary field variously called computer speech
and language processingor human language technologyor natural language pro-
cessingor computational linguistics. The goal of this new field is to get computers
to perform useful tasks involving human language, tasks like enabling human-machine
communication, improving human-human communication, or simply doing useful pro-
cessing of text or speech.

One example of a useful such task is aconversational agent. The HAL 9000 com-CONVERSATIONAL
AGENT

puter in Stanley Kubrick’s film2001: A Space Odysseyis one of the most recognizable
characters in twentieth-century cinema. HAL is an artificial agent capable of such ad-
vanced language-processing behavior as speaking and understanding English, and at a
crucial moment in the plot, even reading lips. It is now clearthat HAL’s creator Arthur
C. Clarke was a little optimistic in predicting when an artificial agent such as HAL
would be available. But just how far off was he? What would it take to create at least
the language-related parts of HAL? We call programs like HALthat converse with hu-
mans via natural languageconversational agentsor dialogue systems. In this text weCONVERSATIONAL

AGENTS

DIALOGUE SYSTEMS study the various components that make up modern conversational agents, including
language input (automatic speech recognitionandnatural language understand-
ing) and language output (natural language generationandspeech synthesis).

Let’s turn to another useful language-related task, that ofmaking available to non-
English-speaking readers the vast amount of scientific information on the Web in En-
glish. Or translating for English speakers the hundreds of millions of Web pages written
in other languages like Chinese. The goal ofmachine translation is to automaticallyMACHINE

TRANSLATION

translate a document from one language to another. Machine translation is far from
a solved problem; we will cover the algorithms currently used in the field, as well as
important component tasks.

Many other language processing tasks are also related to theWeb. Another such
task isWeb-based question answering. This is a generalization of simple web search,QUESTION

ANSWERING

where instead of just typing keywords a user might ask complete questions, ranging
from easy to hard, like the following:



DRAFT

2 Chapter 1. Introduction

• What does “divergent” mean?
• What year was Abraham Lincoln born?
• How many states were in the United States that year?
• How much Chinese silk was exported to England by the end of the18th century?
• What do scientists think about the ethics of human cloning?

Some of these, such asdefinition questions, or simplefactoid questions like dates
and locations, can already be answered by search engines. But answering more com-
plicated questions might require extracting information that is embedded in other text
on a Web page, or doinginference (drawing conclusions based on known facts), or
synthesizing and summarizing information from multiple sources or web pages. In this
text we study the various components that make up modern understanding systems of
this kind, includinginformation extraction , word sense disambiguation, and so on.

Although the subfields and problems we’ve described above are all very far from
completely solved, these are all very active research areasand many technologies are
already available commercially. In the rest of this chapterwe briefly summarize the
kinds of knowledge that is necessary for these tasks (and others likespell correction,
grammar checking, and so on), as well as the mathematical models that will be intro-
duced throughout the book.

1.1 KNOWLEDGE IN SPEECH ANDLANGUAGE PROCESSING

What distinguishes language processing applications fromother data processing sys-
tems is their use ofknowledge of language. Consider the Unixwc program, which is
used to count the total number of bytes, words, and lines in a text file. When used to
count bytes and lines,wc is an ordinary data processing application. However, when it
is used to count the words in a file it requiresknowledge about what it means to be a
word, and thus becomes a language processing system.

Of course,wc is an extremely simple system with an extremely limited and im-
poverished knowledge of language. Sophisticated conversational agents like HAL,
or machine translation systems, or robust question-answering systems, require much
broader and deeper knowledge of language. To get a feeling for the scope and kind of
required knowledge, consider some of what HAL would need to know to engage in the
dialogue that begins this chapter, or for a question answering system to answer one of
the questions above.

HAL must be able to recognize words from an audio signal and togenerate an
audio signal from a sequence of words. These tasks ofspeech recognitionandspeech
synthesistasks require knowledge aboutphonetics and phonology; how words are
pronounced in terms of sequences of sounds, and how each of these sounds is realized
acoustically.

Note also that unlike Star Trek’s Commander Data, HAL is capable of producing
contractions likeI’m andcan’t. Producing and recognizing these and other variations
of individual words (e.g., recognizing thatdoors is plural) requires knowledge about
morphology, the way words break down into component parts that carry meanings like
singularversusplural.
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Moving beyond individual words, HAL must use structural knowledge to properly
string together the words that constitute its response. Forexample, HAL must know
that the following sequence of words will not make sense to Dave, despite the fact that
it contains precisely the same set of words as the original.

I’m I do, sorry that afraid Dave I’m can’t.

The knowledge needed to order and group words together comesunder the heading of
syntax.

Now consider a question answering system dealing with the following question:

• How much Chinese silk was exported to Western Europe by the end of the 18th
century?

In order to answer this question we need to know something about lexical seman-
tics, the meaning of all the words (export, or silk) as well ascompositional semantics
(what exactly constitutesWestern Europeas opposed to Eastern or Southern Europe,
what doesendmean when combined withthe 18th century. We also need to know
something about the relationship of the words to the syntactic structure. For example
we need to know thatby the end of the 18th centuryis a temporal end-point, and not a
description of the agent, as the by-phrase is in the following sentence:

• How much Chinese silk was exported to Western Europe by southern merchants?

We also need the kind of knowledge that lets HAL determine that Dave’s utterance
is a request for action, as opposed to a simple statement about the world or a question
about the door, as in the following variations of his original statement.

REQUEST: HAL, open the pod bay door.
STATEMENT: HAL, the pod bay door is open.
INFORMATION QUESTION: HAL, is the pod bay door open?

Next, despite its bad behavior, HAL knows enough to be politeto Dave. It could,
for example, have simply repliedNo or No, I won’t open the door. Instead, it first
embellishes its response with the phrasesI’m sorry andI’m afraid, and then only indi-
rectly signals its refusal by sayingI can’t, rather than the more direct (and truthful)I
won’t.1 This knowledge about the kind of actions that speakers intend by their use of
sentences ispragmatic or dialogueknowledge.

Another kind of pragmatic ordiscourseknowledge is required to answer the ques-
tion

• How many states were in the United Statesthat year?

What year isthat year? In order to interpret words likethat yeara question answer-
ing system need to examine the the earlier questions that were asked; in this case the
previous question talked about the year that Lincoln was born. Thus this task ofcoref-
erence resolutionmakes use of knowledge about how words likethator pronouns like
it or sherefer to previous parts of thediscourse.

To summarize, engaging in complex language behavior requires various kinds of
knowledge of language:

1 For those unfamiliar with HAL, it is neither sorry nor afraid, nor is it incapable of opening the door. It
has simply decided in a fit of paranoia to kill its crew.
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• Phonetics and Phonology — knowledge about linguistic sounds

• Morphology — knowledge of the meaningful components of words

• Syntax — knowledge of the structural relationships betweenwords

• Semantics — knowledge of meaning

• Pragmatics — knowledge of the relationship of meaning to thegoals and inten-
tions of the speaker.

• Discourse — knowledge about linguistic units larger than a single utterance

1.2 AMBIGUITY

A perhaps surprising fact about these categories of linguistic knowledge is that most
tasks in speech and language processing can be viewed as resolving ambiguity at oneAMBIGUITY

of these levels. We say some input isambiguousif there are multiple alternative lin-AMBIGUOUS

guistic structures that can be built for it. Consider the spoken sentenceI made her duck.
Here’s five different meanings this sentence could have (seeif you can think of some
more), each of which exemplifies an ambiguity at some level:

(1.1) I cooked waterfowl for her.

(1.2) I cooked waterfowl belonging to her.

(1.3) I created the (plaster?) duck she owns.

(1.4) I caused her to quickly lower her head or body.

(1.5) I waved my magic wand and turned her into undifferentiated waterfowl.

These different meanings are caused by a number of ambiguities. First, the wordsduck
andher are morphologically or syntactically ambiguous in their part-of-speech.Duck
can be a verb or a noun, whileher can be a dative pronoun or a possessive pronoun.
Second, the wordmakeis semantically ambiguous; it can meancreateor cook. Finally,
the verbmakeis syntactically ambiguous in a different way.Makecan be transitive,
that is, taking a single direct object (1.2), or it can be ditransitive, that is, taking two
objects (1.5), meaning that the first object (her) got made into the second object (duck).
Finally,makecan take a direct object and a verb (1.4), meaning that the object (her) got
caused to perform the verbal action (duck). Furthermore, in a spoken sentence, there
is an even deeper kind of ambiguity; the first word could have beeneyeor the second
wordmaid.

We will often introduce the models and algorithms we presentthroughout the book
as ways toresolveor disambiguatethese ambiguities. For example deciding whether
duckis a verb or a noun can be solved bypart-of-speech tagging. Deciding whether
makemeans “create” or “cook” can be solved byword sense disambiguation. Reso-
lution of part-of-speech and word sense ambiguities are twoimportant kinds oflexical
disambiguation. A wide variety of tasks can be framed as lexical disambiguation
problems. For example, a text-to-speech synthesis system reading the wordleadneeds
to decide whether it should be pronounced as inlead pipeor as inlead me on. By
contrast, deciding whetherherandduckare part of the same entity (as in (1.1) or (1.4))
or are different entity (as in (1.2)) is an example ofsyntactic disambiguationand can
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be addressed byprobabilistic parsing. Ambiguities that don’t arise in this particu-
lar example (like whether a given sentence is a statement or aquestion) will also be
resolved, for example byspeech act interpretation.

1.3 MODELS AND ALGORITHMS

One of the key insights of the last 50 years of research in language processing is that
the various kinds of knowledge described in the last sections can be captured through
the use of a small number of formal models, or theories. Fortunately, these models and
theories are all drawn from the standard toolkits of computer science, mathematics, and
linguistics and should be generally familiar to those trained in those fields. Among the
most important models arestate machines, rule systems, logic, probabilistic models,
andvector-space models. These models, in turn, lend themselves to a small number
of algorithms, among the most important of which arestate space searchalgorithms
such asdynamic programming, and machine learning algorithms such asclassifiers
andEM and other learning algorithms.

In their simplest formulation, state machines are formal models that consist of
states, transitions among states, and an input representation. Some of the variations
of this basic model that we will consider aredeterministic and non-deterministic
finite-state automataandfinite-state transducers.

Closely related to these models are their declarative counterparts: formal rule sys-
tems. Among the more important ones we will consider areregular grammars and
regular relations, context-free grammars, feature-augmented grammars, as well
as probabilistic variants of them all. State machines and formal rule systems are the
main tools used when dealing with knowledge of phonology, morphology, and syntax.

The third model that plays a critical role in capturing knowledge of language is
logic. We will discussfirst order logic , also known as thepredicate calculus, as well
as such related formalisms as lambda-calculus, feature-structures, and semantic primi-
tives. These logical representations have traditionally been used for modeling seman-
tics and pragmatics, although more recent work has focused on more robust techniques
drawn from non-logical lexical semantics.

Probabilistic models are crucial for capturing every kind of linguistic knowledge.
Each of the other models (state machines, formal rule systems, and logic) can be aug-
mented with probabilities. For example the state machine can be augmented with
probabilities to become theweighted automatonor Markov model. We will spend
a significant amount of time onhidden Markov models or HMMs , which are used
everywhere in the field, in part-of-speech tagging, speech recognition, dialogue under-
standing, text-to-speech, and machine translation. The key advantage of probabilistic
models is their ability to to solve the many kinds of ambiguity problems that we dis-
cussed earlier; almost any speech and language processing problem can be recast as:
“given N choices for some ambiguous input, choose the most probable one”.

Finally, vector-space models, based on linear algebra, underlie information retrieval
and many treatments of word meanings.

Processing language using any of these models typically involves a search through
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a space of states representing hypotheses about an input. Inspeech recognition, we
search through a space of phone sequences for the correct word. In parsing, we search
through a space of trees for the syntactic parse of an input sentence. In machine trans-
lation, we search through a space of translation hypothesesfor the correct translation of
a sentence into another language. For non-probabilistic tasks, such as state machines,
we use well-known graph algorithms such asdepth-first search. For probabilistic
tasks, we use heuristic variants such asbest-first andA* search, and rely on dynamic
programming algorithms for computational tractability.

For many language tasks, we rely on machine learning tools like classifiersand
sequence models. Classifiers likedecision trees, support vector machines, Gaussian
Mixture Models andlogistic regressionare very commonly used. A hidden Markov
model is one kind of sequence model; other areMaximum Entropy Markov Models
or Conditional Random Fields.

Another tool that is related to machine learning is methodological; the use of dis-
tinct training and test sets, statistical techniques likecross-validation, and careful eval-
uation of our trained systems.

1.4 LANGUAGE, THOUGHT, AND UNDERSTANDING

To many, the ability of computers to process language as skillfully as we humans do
will signal the arrival of truly intelligent machines. The basis of this belief is the fact
that the effective use of language is intertwined with our general cognitive abilities.
Among the first to consider the computational implications of this intimate connection
was Alan Turing (1950). In this famous paper, Turing introduced what has come to be
known as theTuring Test. Turing began with the thesis that the question of what itTURING TEST

would mean for a machine to think was essentially unanswerable due to the inherent
imprecision in the termsmachineandthink. Instead, he suggested an empirical test, a
game, in which a computer’s use of language would form the basis for determining if
it could think. If the machine could win the game it would be judged intelligent.

In Turing’s game, there are three participants: two people and a computer. One of
the people is a contestant and plays the role of an interrogator. To win, the interrogator
must determine which of the other two participants is the machine by asking a series
of questions via a teletype. The task of the machine is to foolthe interrogator into
believing it is a person by responding as a person would to theinterrogator’s questions.
The task of the second human participant is to convince the interrogator that the other
participant is the machine, and that they are human.

The following interaction from Turing’s paper illustratesthe kind of interactions
he had in mind. Clearly a convincing simulation of humanity doesn’t require being an
expert in all domains:

Q: Please write me a sonnet on the topic of the Forth Bridge.
A: Count me out on this one. I never could write poetry.
Q: Add 34957 to 70764.
A: (Pause about 30 seconds and then give answer as) 105621.

Turing predicted that roughly by the end of the twentieth century a machine with 10
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gigabytes of memory would have around a 30% chance of foolinga human interrogator
after 5 minutes of questioning. Given the fact that you can fool some of the people all
the time, it is not clear how rigorous this particular standard is. Nevertheless, the
critical issue for Turing was that using language as humans do is sufficient, by itself,
as an operational test for intelligence.

Surprisingly, many of the issues raised by Turing became relevant as early as 1966
in the context of the ELIZA program (Weizenbaum, 1966). ELIZA was an early natu-
ral language processing system capable of carrying on a limited form of conversation
with a user. Consider the following session with a version ofELIZA that imitated the
responses of a Rogerian psychotherapist.

User1: You are like my father in some ways.
ELIZA1: WHAT RESEMBLANCE DO YOU SEE
User2: You are not very aggressive but I think you don’t want me to notice that.
ELIZA2: WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
User3: You don’t argue with me.
ELIZA3: WHY DO YOU THINK I DON’T ARGUE WITH YOU
User4: You are afraid of me.
ELIZA4: DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

As we will discuss in more detail in Ch. 2, ELIZA is a remarkably simple program
that makes use of pattern-matching to process the input and translate it into suitable
outputs. The success of this simple technique in this domainis due to the fact that
ELIZA doesn’t actually need toknowanything to mimic a Rogerian psychotherapist.
As Weizenbaum notes, this is one of the few dialogue genres where the listener can act
as if they know nothing of the world.

ELIZA’s deep relevance to Turing’s ideas is that many peoplewho interacted with
ELIZA came to believe that it reallyunderstoodthem and their problems. Indeed,
Weizenbaum (1976) notes that many of these people continuedto believe in ELIZA’s
abilities even after the program’s operation was explainedto them. In more recent
years, Weizenbaum’s informal reports have been repeated ina somewhat more con-
trolled setting. Since 1991, an event known as the Loebner Prize competition has
attempted to put various computer programs to the Turing test. Although these con-
tests seem to have little scientific interest, a consistent result over the years has been
that even the crudest programs can fool some of the judges some of the time (Shieber,
1994). Not surprisingly, these results have done nothing toquell the ongoing debate
over the suitability of the Turing test as a test for intelligence among philosophers and
AI researchers (Searle, 1980).

Fortunately, for the purposes of this book, the relevance ofthese results does not
hinge on whether or not computers will ever be intelligent, or understand natural lan-
guage. Far more important is recent related research in the social sciences that has
confirmed another of Turing’s predictions from the same paper.

Nevertheless I believe that at the end of the century the use of words and
educated opinion will have altered so much that we will be able to speak
of machines thinking without expecting to be contradicted.

It is now clear that regardless of what people believe or knowabout the inner workings
of computers, they talk about them and interact with them as social entities. People act
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toward computers as if they were people; they are polite to them, treat them as team
members, and expect among other things that computers should be able to understand
their needs, and be capable of interacting with them naturally. For example, Reeves
and Nass (1996) found that when a computer asked a human to evaluate how well the
computer had been doing, the human gives more positive responses than when a differ-
ent computer asks the same questions. People seemed to be afraid of being impolite. In
a different experiment, Reeves and Nass found that people also give computers higher
performance ratings if the computer has recently said something flattering to the hu-
man. Given these predispositions, speech and language-based systems may provide
many users with the most natural interface for many applications. This fact has led to
a long-term focus in the field on the design ofconversational agents, artificial entities
that communicate conversationally.

1.5 THE STATE OF THE ART

We can only see a short distance ahead, but we can see plenty there that needs to
be done.

Alan Turing.

This is an exciting time for the field of speech and language processing. The
startling increase in computing resources available to theaverage computer user, the
rise of the Web as a massive source of information and the increasing availability of
wireless mobile access have all placed speech and language processing applications
in the technology spotlight. The following are examples of some currently deployed
systems that reflect this trend:

• Travelers calling Amtrak, United Airlines and other travel-providers interact
with conversational agents that guide them through the process of making reser-
vations and getting arrival and departure information.

• Luxury car makers such as Mercedes-Benz models provide automatic speech
recognition and text-to-speech systems that allow driversto control their envi-
ronmental, entertainment and navigational systems by voice. A similar spoken
dialogue system has been deployed by astronauts on the International Space Sta-
tion .

• Blinkx, and other video search companies, provide search services for million of
hours of video on the Web by using speech recognition technology to capture the
words in the sound track.

• Google provides cross-language information retrieval andtranslation services
where a user can supply queries in their native language to search collections in
another language. Google translates the query, finds the most relevant pages and
then automatically translates them back to the user’s native language.

• Large educational publishers such as Pearson, as well as testing services like
ETS, use automated systems to analyze thousands of student essays, grading and
assessing them in a manner that is indistinguishable from human graders.
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• Interactive tutors, based on lifelike animated characters, serve as tutors for chil-
dren learning to read, and as therapists for people dealing with aphasia and
Parkinsons disease. (?, ?)

• Text analysis companies such as Nielsen Buzzmetrics, Umbria, and Collective
Intellect, provide marketing intelligence based on automated measurements of
user opinions, preferences, attitudes as expressed in weblogs, discussion forums
and and user groups.

1.6 SOME BRIEF HISTORY

Historically, speech and language processing has been treated very differently in com-
puter science, electrical engineering, linguistics, and psychology/cognitive science.
Because of this diversity, speech and language processing encompasses a number of
different but overlapping fields in these different departments:computational linguis-
tics in linguistics,natural language processingin computer science,speech recogni-
tion in electrical engineering,computational psycholinguisticsin psychology. This
section summarizes the different historical threads whichhave given rise to the field
of speech and language processing. This section will provide only a sketch; see the
individual chapters for more detail on each area and its terminology.

1.6.1 Foundational Insights: 1940s and 1950s

The earliest roots of the field date to the intellectually fertile period just after World
War II that gave rise to the computer itself. This period fromthe 1940s through the end
of the 1950s saw intense work on two foundational paradigms:the automaton and
probabilistic or information-theoretic models.

The automaton arose in the 1950s out of Turing’s (1936) modelof algorithmic
computation, considered by many to be the foundation of modern computer science.
Turing’s work led first to theMcCulloch-Pitts neuron (McCulloch and Pitts, 1943), a
simplified model of the neuron as a kind of computing element that could be described
in terms of propositional logic, and then to the work of Kleene (1951) and (1956) on
finite automata and regular expressions. Shannon (1948) applied probabilistic models
of discrete Markov processes to automata for language. Drawing the idea of a finite-
state Markov process from Shannon’s work, Chomsky (1956) first considered finite-
state machines as a way to characterize a grammar, and defineda finite-state language
as a language generated by a finite-state grammar. These early models led to the field of
formal language theory, which used algebra and set theory to define formal languages
as sequences of symbols. This includes the context-free grammar, first defined by
Chomsky (1956) for natural languages but independently discovered by Backus (1959)
and Naur et al. (1960) in their descriptions of the ALGOL programming language.

The second foundational insight of this period was the development of probabilistic
algorithms for speech and language processing, which datesto Shannon’s other con-
tribution: the metaphor of thenoisy channeland decoding for the transmission of
language through media like communication channels and speech acoustics. Shannon
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also borrowed the concept ofentropy from thermodynamics as a way of measuring
the information capacity of a channel, or the information content of a language, and
performed the first measure of the entropy of English using probabilistic techniques.

It was also during this early period that the sound spectrograph was developed
(Koenig et al., 1946), and foundational research was done ininstrumental phonetics
that laid the groundwork for later work in speech recognition. This led to the first
machine speech recognizers in the early 1950s. In 1952, researchers at Bell Labs built
a statistical system that could recognize any of the 10 digits from a single speaker
(Davis et al., 1952). The system had 10 speaker-dependent stored patterns roughly
representing the first two vowel formants in the digits. Theyachieved 97–99% accuracy
by choosing the pattern which had the highest relative correlation coefficient with the
input.

1.6.2 The Two Camps: 1957–1970

By the end of the 1950s and the early 1960s, speech and language processing had split
very cleanly into two paradigms: symbolic and stochastic.

The symbolic paradigm took off from two lines of research. The first was the work
of Chomsky and others on formal language theory and generative syntax throughout the
late 1950s and early to mid 1960s, and the work of many linguistics and computer sci-
entists on parsing algorithms, initially top-down and bottom-up and then via dynamic
programming. One of the earliest complete parsing systems was Zelig Harris’s Trans-
formations and Discourse Analysis Project (TDAP), which was implemented between
June 1958 and July 1959 at the University of Pennsylvania (Harris, 1962).2 The sec-
ond line of research was the new field of artificial intelligence. In the summer of 1956
John McCarthy, Marvin Minsky, Claude Shannon, and Nathaniel Rochester brought
together a group of researchers for a two-month workshop on what they decided to call
artificial intelligence (AI). Although AI always included aminority of researchers fo-
cusing on stochastic and statistical algorithms (include probabilistic models and neural
nets), the major focus of the new field was the work on reasoning and logic typified by
Newell and Simon’s work on the Logic Theorist and the GeneralProblem Solver. At
this point early natural language understanding systems were built, These were simple
systems that worked in single domains mainly by a combination of pattern matching
and keyword search with simple heuristics for reasoning andquestion-answering. By
the late 1960s more formal logical systems were developed.

The stochastic paradigm took hold mainly in departments of statistics and of elec-
trical engineering. By the late 1950s the Bayesian method was beginning to be applied
to the problem of optical character recognition. Bledsoe and Browning (1959) built
a Bayesian system for text-recognition that used a large dictionary and computed the
likelihood of each observed letter sequence given each wordin the dictionary by mul-
tiplying the likelihoods for each letter. Mosteller and Wallace (1964) applied Bayesian
methods to the problem of authorship attribution onThe Federalistpapers.

The 1960s also saw the rise of the first serious testable psychological models of

2 This system was reimplemented recently and is described by Joshi and Hopely (1999) and Karttunen
(1999), who note that the parser was essentially implemented as a cascade of finite-state transducers.
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human language processing based on transformational grammar, as well as the first
on-line corpora: the Brown corpus of American English, a 1 million word collection of
samples from 500 written texts from different genres (newspaper, novels, non-fiction,
academic, etc.), which was assembled at Brown University in1963–64 (Kučera and
Francis, 1967; Francis, 1979; Francis and Kučera, 1982), and William S. Y. Wang’s
1967 DOC (Dictionary on Computer), an on-line Chinese dialect dictionary.

1.6.3 Four Paradigms: 1970–1983

The next period saw an explosion in research in speech and language processing and
the development of a number of research paradigms that stilldominate the field.

Thestochasticparadigm played a huge role in the development of speech recog-
nition algorithms in this period, particularly the use of the Hidden Markov Model and
the metaphors of the noisy channel and decoding, developed independently by Jelinek,
Bahl, Mercer, and colleagues at IBM’s Thomas J. Watson Research Center, and by
Baker at Carnegie Mellon University, who was influenced by the work of Baum and
colleagues at the Institute for Defense Analyses in Princeton. AT&T’s Bell Laborato-
ries was also a center for work on speech recognition and synthesis; see Rabiner and
Juang (1993) for descriptions of the wide range of this work.

The logic-basedparadigm was begun by the work of Colmerauer and his col-
leagues on Q-systems and metamorphosis grammars (Colmerauer, 1970, 1975), the
forerunners of Prolog, and Definite Clause Grammars (Pereira and Warren, 1980). In-
dependently, Kay’s (1979) work on functional grammar, and shortly later, Bresnan and
Kaplan’s (1982) work on LFG, established the importance of feature structure unifica-
tion.

Thenatural language understandingfield took off during this period, beginning
with Terry Winograd’s SHRDLU system, which simulated a robot embedded in a world
of toy blocks (Winograd, 1972). The program was able to accept natural language text
commands(Move the red block on top of the smaller green one)of a hitherto unseen
complexity and sophistication. His system was also the firstto attempt to build an
extensive (for the time) grammar of English, based on Halliday’s systemic grammar.
Winograd’s model made it clear that the problem of parsing was well-enough under-
stood to begin to focus on semantics and discourse models. Roger Schank and his
colleagues and students (in what was often referred to as theYale School) built a se-
ries of language understanding programs that focused on human conceptual knowledge
such as scripts, plans and goals, and human memory organization (Schank and Albel-
son, 1977; Schank and Riesbeck, 1981; Cullingford, 1981; Wilensky, 1983; Lehnert,
1977). This work often used network-based semantics (Quillian, 1968; Norman and
Rumelhart, 1975; Schank, 1972; Wilks, 1975b, 1975a; Kintsch, 1974) and began to
incorporate Fillmore’s notion of case roles (Fillmore, 1968) into their representations
(Simmons, 1973).

The logic-based and natural-language understanding paradigms were unified on
systems that used predicate logic as a semantic representation, such as the LUNAR
question-answering system (Woods, 1967, 1973).

Thediscourse modelingparadigm focused on four key areas in discourse. Grosz
and her colleagues introduced the study of substructure in discourse, and of discourse
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focus (Grosz, 1977; Sidner, 1983), a number of researchers began to work on automatic
reference resolution (Hobbs, 1978), and theBDI (Belief-Desire-Intention) framework
for logic-based work on speech acts was developed (Perraultand Allen, 1980; Cohen
and Perrault, 1979).

1.6.4 Empiricism and Finite State Models Redux: 1983–1993

This next decade saw the return of two classes of models whichhad lost popularity in
the late 1950s and early 1960s, partially due to theoreticalarguments against them such
as Chomsky’s influential review of Skinner’sVerbal Behavior(Chomsky, 1959). The
first class was finite-state models, which began to receive attention again after work
on finite-state phonology and morphology by Kaplan and Kay (1981) and finite-state
models of syntax by Church (1980). A large body of work on finite-state models will
be described throughout the book.

The second trend in this period was what has been called the “return of empiri-
cism”; most notably here was the rise of probabilistic models throughout speech and
language processing, influenced strongly by the work at the IBM Thomas J. Watson
Research Center on probabilistic models of speech recognition. These probabilistic
methods and other such data-driven approaches spread from speech into part-of-speech
tagging, parsing and attachment ambiguities, and semantics. This empirical direction
was also accompanied by a new focus on model evaluation, based on using held-out
data, developing quantitative metrics for evaluation, andemphasizing the comparison
of performance on these metrics with previous published research.

This period also saw considerable work on natural language generation.

1.6.5 The Field Comes Together: 1994–1999

By the last five years of the millennium it was clear that the field was vastly chang-
ing. First, probabilistic and data-driven models had become quite standard throughout
natural language processing. Algorithms for parsing, part-of-speech tagging, reference
resolution, and discourse processing all began to incorporate probabilities, and employ
evaluation methodologies borrowed from speech recognition and information retrieval.
Second, the increases in the speed and memory of computers had allowed commercial
exploitation of a number of subareas of speech and language processing, in particular
speech recognition and spelling and grammar checking. Speech and language process-
ing algorithms began to be applied to Augmentative and Alternative Communication
(AAC). Finally, the rise of the Web emphasized the need for language-based informa-
tion retrieval and information extraction.

’

1.6.6 The Rise of Machine Learning: 2000–2007

The empiricist trends begun in the latter part of the 1990s accelerated at an astound-
ing pace in the new century. This acceleration was largely driven by three synergistic
trends. First, large amounts of spoken and written materialbecame widely available
through the auspices of the Linguistic Data Consortium (LDC), and other similar or-
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ganizations. Importantly, included among these materialswere annotated collections
such as the Penn Treebank(Marcus et al., 1993), Prague Dependency Treebank(Hajič,
1998), PropBank(Palmer et al., 2005), Penn Discourse Treebank(Miltsakaki et al.,
2004), RSTBank(Carlson et al., 2001) and TimeBank(?), all of which layered standard
text sources with various forms of syntactic, semantic and pragmatic annotations. The
existence of these resources promoted the trend of casting more complex traditional
problems, such as parsing and semantic analysis, as problems in supervised machine
learning. These resources also promoted the establishmentof additional competitive
evaluations for parsing (Dejean and Tjong Kim Sang, 2001), information extraction(?,
?), word sense disambiguation(Palmer et al., 2001; Kilgarriff and Palmer, 2000) and
question answering(Voorhees and Tice, 1999).

Second, this increased focus on learning led to a more serious interplay with the
statistical machine learning community. Techniques such as support vector machines
(?; Vapnik, 1995), multinomial logistic regression (MaxEnt) (Berger et al., 1996), and
graphical Bayesian models (Pearl, 1988) became standard practice in computational
linguistics. Third, the widespread availability of high-performance computing systems
facilitated the training and deployment of systems that could not have been imagined a
decade earlier.

Finally, near the end of this period, largely unsupervised statistical approaches be-
gan to receive renewed attention. Progress on statistical approaches to machine trans-
lation(Brown et al., 1990; Och and Ney, 2003) and topic modeling (?) demonstrated
that effective applications could be constructed from systems trained on unannotated
data alone. In addition, the widespread cost and difficulty of producing reliably anno-
tated corpora became a limiting factor in the use of supervised approaches for many
problems. This trend towards the use unsupervised techniques will likely increase.

1.6.7 On Multiple Discoveries

Even in this brief historical overview, we have mentioned a number of cases of multiple
independent discoveries of the same idea. Just a few of the “multiples” to be discussed
in this book include the application of dynamic programmingto sequence comparison
by Viterbi, Vintsyuk, Needleman and Wunsch, Sakoe and Chiba, Sankoff, Reichert
et al., and Wagner and Fischer (Chapters 3, 5 and 6) the HMM/noisy channel model
of speech recognition by Baker and by Jelinek, Bahl, and Mercer (Chapters 6, 9, and
10); the development of context-free grammars by Chomsky and by Backus and Naur
(Chapter 12); the proof that Swiss-German has a non-context-free syntax by Huybregts
and by Shieber (Chapter 15); the application of unification to language processing by
Colmeraueret al. and by Kay in (Chapter 16).

Are these multiples to be considered astonishing coincidences? A well-known hy-
pothesis by sociologist of science Robert K. Merton (1961) argues, quite the contrary,
that

all scientific discoveries are in principle multiples, including those that on
the surface appear to be singletons.

Of course there are many well-known cases of multiple discovery or invention; just a
few examples from an extensive list in Ogburn and Thomas (1922) include the multiple
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invention of the calculus by Leibnitz and by Newton, the multiple development of the
theory of natural selection by Wallace and by Darwin, and themultiple invention of
the telephone by Gray and Bell.3 But Merton gives a further array of evidence for the
hypothesis that multiple discovery is the rule rather than the exception, including many
cases of putative singletons that turn out be a rediscovery of previously unpublished or
perhaps inaccessible work. An even stronger piece of evidence is his ethnomethodolog-
ical point that scientists themselves act under the assumption that multiple invention is
the norm. Thus many aspects of scientific life are designed tohelp scientists avoid be-
ing “scooped”; submission dates on journal articles; careful dates in research records;
circulation of preliminary or technical reports.

1.6.8 A Final Brief Note on Psychology

Many of the chapters in this book include short summaries of psychological research
on human processing. Of course, understanding human language processing is an im-
portant scientific goal in its own right and is part of the general field of cognitive sci-
ence. However, an understanding of human language processing can often be helpful
in building better machine models of language. This seems contrary to the popular
wisdom, which holds that direct mimicry of nature’s algorithms is rarely useful in en-
gineering applications. For example, the argument is oftenmade that if we copied
nature exactly, airplanes would flap their wings; yet airplanes with fixed wings are a
more successful engineering solution. But language is not aeronautics. Cribbing from
nature is sometimes useful for aeronautics (after all, airplanes do have wings), but it is
particularly useful when we are trying to solve human-centered tasks. Airplane flight
has different goals than bird flight; but the goal of speech recognition systems, for ex-
ample, is to perform exactly the task that human court reporters perform every day:
transcribe spoken dialog. Since people already do this well, we can learn from nature’s
previous solution. Since an important application of speech and language processing
systems is for human-computer interaction, it makes sense to copy a solution that be-
haves the way people are accustomed to.

1.7 SUMMARY

This chapter introduces the field of speech and language processing. The following are
some of the highlights of this chapter.

• A good way to understand the concerns of speech and language processing re-
search is to consider what it would take to create an intelligent agent like HAL
from 2001: A Space Odyssey, or build a web-based question answerer, or a ma-
chine translation engine.

• Speech and language technology relies on formal models, or representations, of

3 Ogburn and Thomas are generally credited with noticing thatthe prevalence of multiple inventions sug-
gests that the cultural milieu and not individual genius is the deciding causal factor in scientific discovery. In
an amusing bit of recursion, however, Merton notes that eventhis idea has been multiply discovered, citing
sources from the 19th century and earlier!
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knowledge of language at the levels of phonology and phonetics, morphology,
syntax, semantics, pragmatics and discourse. A small number of formal models
including state machines, formal rule systems, logic, and probabilistic models
are used to capture this knowledge.

• The foundations of speech and language technology lie in computer science, lin-
guistics, mathematics, electrical engineering and psychology. A small number of
algorithms from standard frameworks are used throughout speech and language
processing,

• The critical connection between language and thought has placed speech and
language processing technology at the center of debate overintelligent machines.
Furthermore, research on how people interact with complex media indicates that
speech and language processing technology will be criticalin the development
of future technologies.

• Revolutionary applications of speech and language processing are currently in
use around the world. The creation of the web, as well as significant recent
improvements in speech recognition and synthesis, will lead to many more ap-
plications.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Research in the various subareas of speech and language processing is spread across
a wide number of conference proceedings and journals. The conferences and journals
most centrally concerned with natural language processingand computational linguis-
tics are associated with the Association for ComputationalLinguistics (ACL), its Eu-
ropean counterpart (EACL), and the International Conference on Computational Lin-
guistics (COLING). The annual proceedings of ACL, NAACL, and EACL, and the
biennial COLING conference are the primary forums for work in this area. Related
conferences include various proceedings of ACL Special Interest Groups (SIGs) such
as the Conference on Natural Language Learning (CoNLL), as well as the conference
on Empirical Methods in Natural Language Processing (EMNLP).

Research on speech recognition, understanding, and synthesis is presented at the
annual INTERSPEECH conference, which is called the International Conference on
Spoken Language Processing (ICSLP) and the European Conference on Speech Com-
munication and Technology (EUROSPEECH) in alternating years, or the annual IEEE
International Conference on Acoustics, Speech, and SignalProcessing (IEEE ICASSP).
Spoken language dialogue research is presented at these or at workshops like SIGDial.

Journals includeComputational Linguistics, Natural Language Engineering, Speech
Communication, Computer Speech and Language, the IEEE Transactions on Audio,
Speech & Language Processingand theACM Transactions on Speech and Language
Processing.

Work on language processing from an Artificial Intelligenceperspective can be
found in the annual meetings of the American Association forArtificial Intelligence
(AAAI), as well as the biennial International Joint Conference on Artificial Intelli-
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gence (IJCAI) meetings. Artificial intelligence journals that periodically feature work
on speech and language processing includeMachine Learning, Journal of Machine
Learning Research, and theJournal of Artificial Intelligence Research.

There are a fair number of textbooks available covering various aspects of speech
and language processing. Manning and Schütze (1999) (Foundations of Statistical Lan-
guage Processing) focuses on statistical models of tagging, parsing, disambiguation,
collocations, and other areas. Charniak (1993) (Statistical Language Learning) is an
accessible, though older and less-extensive, introduction to similar material. Manning
et al. (2008) focuses on information retrieval, text classification, and clustering. NLTK,
the Natural Language Toolkit (Bird and Loper, 2004), is a suite of Python modules
and data for natural language processing, together with a Natural Language Process-
ing book based on the NLTK suite. Allen (1995) (Natural Language Understanding)
provides extensive coverage of language processing from the AI perspective. Gazdar
and Mellish (1989) (Natural Language Processing in Lisp/Prolog) covers especially
automata, parsing, features, and unification and is available free online. Pereira and
Shieber (1987) gives a Prolog-based introduction to parsing and interpretation. Russell
and Norvig (2002) is an introduction to artificial intelligence that includes chapters on
natural language processing. Partee et al. (1990) has a verybroad coverage of mathe-
matical linguistics. A historically significant collection of foundational papers can be
found in Grosz et al. (1986) (Readings in Natural Language Processing).

Of course, a wide-variety of speech and language processingresources are now
available on the Web. Pointers to these resources are maintained on the home-page for
this book at:

http://www.cs.colorado.edu/˜martin/slp.html .
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analyser et synthétiser des phrase sur ordinateur. Internal pub-
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Hajič, J. (1998). Building a Syntactically Annotated Corpus:
The Prague Dependency Treebank, pp. 106–132. Karolinum,
Prague/Praha.

Harris, Z. S. (1962). String Analysis of Sentence Structure.
Mouton, The Hague.

Hobbs, J. R. (1978). Resolving pronoun references.Lingua,
44, 311–338. Reprinted in Grosz et al. (1986).

Joshi, A. K. and Hopely, P. (1999). A parser from antiquity. In
Kornai, A. (Ed.),Extended Finite State Models of Language,
pp. 6–15. Cambridge University Press, Cambridge.

Kaplan, R. M. and Kay, M. (1981). Phonological rules and
finite-state transducers. Paper presented at the Annual meet-
ing of the Linguistics Society of America. New York.

Karttunen, L. (1999). Comments on Joshi. In Kornai, A. (Ed.),
Extended Finite State Models of Language, pp. 16–18. Cam-
bridge University Press, Cambridge.

Kay, M. (1979). Functional grammar. InBLS-79, Berkeley, CA,
pp. 142–158.

Kilgarriff, A. and Palmer, M. (Eds.). (2000).Computing and the
Humanities: Special Issue on SENSEVAL, Vol. 34. Kluwer.

Kintsch, W. (1974).The Representation of Meaning in Memory.
Wiley, New York.

Kleene, S. C. (1951). Representation of events in nerve nets
and finite automata. Tech. rep. RM-704, RAND Corporation.
RAND Research Memorandum†.



DRAFT

18 Chapter 1. Introduction

Kleene, S. C. (1956). Representation of events in nerve netsand
finite automata. In Shannon, C. and McCarthy, J. (Eds.),Au-
tomata Studies, pp. 3–41. Princeton University Press, Prince-
ton, NJ.

Koenig, W., Dunn, H. K., Y., L., and Lacy (1946). The sound
spectrograph.Journal of the Acoustical Society of America,
18, 19–49.
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2
REGULAR EXPRESSIONS
AND AUTOMATA

User1: Men are all alike.
ELIZA1: IN WHAT WAY
User2: They’re always bugging us about something or other.
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE
User3: Well, my boyfriend made me come here.
ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
User4: He says I’m depressed much of the time.
ELIZA4: I AM SORRY TO HEAR YOU ARE DEPRESSED.

Weizenbaum (1966)

Imagine that you have become a passionate fan of woodchucks.Desiring more in-
formation on this celebrated woodland creature, you turn toyour favorite Web browser
and type inwoodchuck. Your browser returns a few sites. You have a flash of inspira-
tion and type inwoodchucks. This time you discover “interesting links to woodchucks
and lemurs” and “all about Vermont’s unique, endangered species”. Instead of having
to do this search twice, you would have rather typed one search command specify-
ing something likewoodchuck with an optional final s. Or perhaps you might want
to search for all the prices in some document; you might want to see all strings that
look like $199or $25or $24.99. In this chapter we introduce theregular expression,
the standard notation for characterizing text sequences. The regular expression is used
for specifying text strings in situations like this Web-search example, and in other in-
formation retrieval applications, but also plays an important role in word-processing,
computation of frequencies from corpora, and other such tasks.

After we have defined regular expressions, we show how they can be implemented
via thefinite-state automaton. The finite-state automaton is not only the mathemati-
cal device used to implement regular expressions, but also one of the most significant
tools of computational linguistics. Variations of automata such as finite-state trans-
ducers, Hidden Markov Models, andN-gram grammars are important components of
applications that we will introduce in later chapters, including speech recognition and
synthesis, machine translation, spell-checking, and information-extraction.
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2.1 REGULAR EXPRESSIONS

SIR ANDREW: Her C’s, her U’s and her T’s: why that?
Shakespeare,Twelfth Night

One of the unsung successes in standardization in computer science has been the
regular expression(RE), a language for specifying text search strings. The regularREGULAR

EXPRESSION

expression languages used for searching texts in UNIX (vi, Perl, Emacs, grep), Mi-
crosoft Word (version 6 and beyond), and WordPerfect are almost identical, and many
RE features exist in the various Web search engines. Besidesthis practical use, the
regular expression is an important theoretical tool throughout computer science and
linguistics.

A regular expression (first developed by Kleene (1956) but see the History section
for more details) is a formula in a special language that is used for specifying simple
classes ofstrings. A string is a sequence of symbols; for the purpose of most text-STRINGS

based search techniques, a string is any sequence of alphanumeric characters (letters,
numbers, spaces, tabs, and punctuation). For these purposes a space is just a character
like any other, and we represent it with the symbol.

Formally, a regular expression is an algebraic notation forcharacterizing a set of
strings. Thus they can be used to specify search strings as well as to define a language in
a formal way. We will begin by talking about regular expressions as a way of specifying
searches in texts, and proceed to other uses. Section 2.3 shows that the use of just
three regular expression operators is sufficient to characterize strings, but we use the
more convenient and commonly-used regular expression syntax of the Perl language
throughout this section. Since common text-processing programs agree on most of the
syntax of regular expressions, most of what we say extends toall UNIX, Microsoft
Word, and WordPerfect regular expressions. Appendix A shows the few areas where
these programs differ from the Perl syntax.

Regular expression search requires apattern that we want to search for, and acor-
pusof texts to search through. A regular expression search function will search throughCORPUS

the corpus returning all texts that contain the pattern. In an information retrieval (IR)
system such as a Web search engine, the texts might be entire documents or Web pages.
In a word-processor, the texts might be individual words, orlines of a document. In the
rest of this chapter, we will use this last paradigm. Thus when we give a search pattern,
we will assume that the search engine returns theline of the documentreturned. This is
what the UNIXgrep command does. We will underline the exact part of the pattern
that matches the regular expression. A search can be designed to return all matches to
a regular expression or only the first match. We will show onlythe first match.

2.1.1 Basic Regular Expression Patterns

The simplest kind of regular expression is a sequence of simple characters. For ex-
ample, to search forwoodchuck, we type/woodchuck/ . So the regular expression
/Buttercup/ matches any string containing the substringButtercup, for example
the line I’m called little Buttercup) (recall that we are assuming a search application
that returns entire lines). From here on we will put slashes around each regular expres-



DRAFT

Section 2.1. Regular Expressions 3

sion to make it clear what is a regular expression and what is apattern. We use the
slash since this is the notation used by Perl, but the slashesarenot part of the regular
expressions.

The search string can consist of a single character (like/!/ ) or a sequence of
characters (like/urgl/ ); Thefirst instance of each match to the regular expression is
underlined below (although a given application might choose to return more than just
the first instance):

RE Example Patterns Matched
/woodchucks/ “interesting links to woodchucksand lemurs”
/a/ “Mary Ann stopped by Mona’s”
/Claire says,/ “Dagmar, my gift please,” Claire says,”
/DOROTHY/ “SURRENDER DOROTHY”
/!/ “You’ve left the burglar behind again!” said Nori

Regular expressions arecase sensitive; lowercase/s/ is distinct from uppercase
/S/ (/s/ matches a lower casesbut not an uppercaseS). This means that the pattern
/woodchucks/ will not match the stringWoodchucks. We can solve this problem
with the use of the square braces[ and] . The string of characters inside the braces
specify adisjunction of characters to match. For example Fig. 2.1 shows that the
pattern/[wW]/ matches patterns containing eitherw or W.

RE Match Example Patterns
/[wW]oodchuck/ Woodchuck or woodchuck “Woodchuck”
/[abc]/ ‘a’, ‘b’, or ‘c’ “In uomini, in soldati”
/[1234567890]/ any digit “plenty of 7 to 5”

Figure 2.1 The use of the brackets[] to specify a disjunction of characters.

The regular expression/[1234567890]/ specified any single digit. While classes
of characters like digits or letters are important buildingblocks in expressions, they can
get awkward (e.g., it’s inconvenient to specify

/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]/

to mean “any capital letter”). In these cases the brackets can be used with the dash (- )
to specify any one character in arange. The pattern/[2-5]/ specifies any one of theRANGE

characters2, 3, 4, or 5. The pattern/[b-g]/ specifies one of the charactersb, c, d, e,
f, or g. Some other examples:

RE Match Example Patterns Matched
/[A-Z]/ an uppercase letter “we should call it ‘Drenched Blossoms’”
/[a-z]/ a lowercase letter “my beans were impatient to be hoed!”
/[0-9]/ a single digit “Chapter 1: Down the Rabbit Hole”

Figure 2.2 The use of the brackets[] plus the dash- to specify a range.

The square braces can also be used to specify what a single charactercannotbe,
by use of the caret̂ . If the caret̂ is the first symbol after the open square brace[ ,
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the resulting pattern is negated. For example, the pattern/[ˆa]/ matches any single
character (including special characters) excepta. This is only true when the caret is the
first symbol after the open square brace. If it occurs anywhere else, it usually stands
for a caret; Fig. 2.3 shows some examples.

RE Match (single characters) Example Patterns Matched
[ˆA-Z] not an uppercase letter “Oyfn pripetchik”
[ˆSs] neither ‘S’ nor ‘s’ “I have no exquisite reason for’t”
[ˆ\.] not a period “our resident Djinn”
[eˆ] either ‘e’ or ‘̂ ’ “look up ˆ now”
aˆb the pattern ‘aˆb ’ “look up aˆ bnow”

Figure 2.3 Uses of the caret̂ for negation or just to mean̂ .

The use of square braces solves our capitalization problem for woodchucks. But
we still haven’t answered our original question; how do we specify bothwoodchuck
andwoodchucks? We can’t use the square brackets, because while they allow us to say
“s or S”, they don’t allow us to say “s or nothing”. For this we use the question-mark
/?/ , which means “the preceding character or nothing”, as shownin Fig. 2.4.

RE Match Example Patterns Matched
woodchucks? woodchuck or woodchucks “woodchuck”
colou?r color or colour “colour”

Figure 2.4 The question-mark? marks optionality of the previous expression.

We can think of the question-mark as meaning “zero or one instances of the previ-
ous character”. That is, it’s a way of specifying how many of something that we want.
So far we haven’t needed to specify that we want more than one of something. But
sometimes we need regular expressions that allow repetitions of things. For example,
consider the language of (certain) sheep, which consists ofstrings that look like the
following:

baa!
baaa!
baaaa!
baaaaa!
baaaaaa!
. . .

This language consists of strings with ab, followed by at least twoas, followed by
an exclamation point. The set of operators that allow us to say things like “some num-
ber ofas” are based on the asterisk or* , commonly called theKleene * (pronouncedKLEENE *

“cleany star”). The Kleene star means “zero or more occurrences of the immediately
previous character or regular expression”. So/a * / means “any string of zero or more
as”. This will matcha or aaaaaabut it will also matchOff Minor, since the stringOff
Minor has zeroas. So the regular expression for matching one or morea is /aa * / ,
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meaning onea followed by zero or moreas. More complex patterns can also be re-
peated. So/[ab] * / means “zero or moreas orbs” (not “zero or more right square
braces”). This will match strings likeaaaaor abababor bbbb.

We now know enough to specify part of our regular expression for prices: multiple
digits. Recall that the regular expression for an individual digit was/[0-9]/ . So the
regular expression for an integer (a string of digits) is/[0-9][0-9] * / . (Why isn’t
it just /[0-9] * / ?)

Sometimes it’s annoying to have to write the regular expression for digits twice, so
there is a shorter way to specify “at least one” of some character. This is theKleene +,KLEENE +

which means “one or more of the previous character”. Thus theexpression/[0-9]+/
is the normal way to specify “a sequence of digits”. There arethus two ways to specify
the sheep language:/baaa * !/ or /baa+!/ .

One very important special character is the period (/./ ), a wildcard expression
that matches any single character (excepta carriage return):

RE Match Example Patterns
/beg.n/ any character betweenbegandn begin, beg’n, begun

Figure 2.5 The use of the period. to specify any character.

The wildcard is often used together with the Kleene star to mean “any string of
characters”. For example suppose we want to find any line in which a particular word,
for exampleaardvark, appears twice. We can specify this with the regular expression
/aardvark. * aardvark/ .

Anchors are special characters that anchor regular expressions to particular placesANCHORS

in a string. The most common anchors are the caretˆ and the dollar-sign$. The caret
ˆ matches the start of a line. The pattern/ˆThe/ matches the wordTheonly at the
start of a line. Thus there are three uses of the caretˆ : to match the start of a line, as
a negation inside of square brackets, and just to mean a caret. (What are the contexts
that allow Perl to know which function a given caret is supposed to have?) The dollar
sign $ matches the end of a line. So the pattern$ is a useful pattern for matching
a space at the end of a line, and/ˆThe dog\.$/ matches a line that contains only
the phraseThe dog.(We have to use the backslash here since we want the. to mean
“period” and not the wildcard.)

There are also two other anchors:\b matches a word boundary, while\B matches
a non-boundary. Thus/\bthe\b/ matches the wordthe but not the wordother.
More technically, Perl defines a word as any sequence of digits, underscores or letters;
this is based on the definition of “words” in programming languages like Perl or C. For
example,/\b99\b/ will match the string99 in There are 99 bottles of beer on the
wall (because 99 follows a space) but not99 in There are 299 bottles of beer on the
wall (since 99 follows a number). But it will match99 in $99(since99 follows a dollar
sign ($), which is not a digit, underscore, or letter).
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2.1.2 Disjunction, Grouping, and Precedence

Suppose we need to search for texts about pets; perhaps we areparticularly interested
in cats and dogs. In such a case we might want to search for either the stringcat or
the stringdog. Since we can’t use the square-brackets to search for “cat ordog” (why
not?) we need a new operator, thedisjunction operator, also called thepipe symbol| .DISJUNCTION

The pattern/cat|dog/ matches either the stringcat or the stringdog .
Sometimes we need to use this disjunction operator in the midst of a larger se-

quence. For example, suppose I want to search for information about pet fish for my
cousin David. How can I specify bothguppyand guppies? We cannot simply say
/guppy|ies/ , because that would match only the stringsguppyand ies. This is
because sequences likeguppy takeprecedenceover the disjunction operator| . InPRECEDENCE

order to make the disjunction operator apply only to a specific pattern, we need to use
the parenthesis operators( and) . Enclosing a pattern in parentheses makes it act like
a single character for the purposes of neighboring operators like the pipe| and the
Kleene* . So the pattern/gupp(y|ies)/ would specify that we meant the disjunc-
tion only to apply to the suffixesy andies .

The parenthesis operator( is also useful when we are using counters like the
Kleene* . Unlike the | operator, the Kleene* operator applies by default only to a
single character, not a whole sequence. Suppose we want to match repeated instances
of a string. Perhaps we have a line that has column labels of the formColumn 1 Col-
umn 2 Column 3. The expression/Column [0-9]+ * / will not match any col-
umn; instead, it will match a column followed by any number ofspaces! The star here
applies only to the space that precedes it, not the whole sequence. With the paren-
theses, we could write the expression/(Column [0-9]+ * ) * / to match the word
Column, followed by a number and optional spaces, the whole patternrepeated any
number of times.

This idea that one operator may take precedence over another, requiring us to some-
times use parentheses to specify what we mean, is formalizedby theoperator prece-
dence hierarchy for regular expressions. The following table gives the order of REOPERATOR

PRECEDENCE

operator precedence, from highest precedence to lowest precedence:

Parenthesis ()
Counters * + ? {}
Sequences and anchorsthe ˆmy end$
Disjunction |

Thus, because counters have a higher precedence than sequences,
/the * / matchestheeeeebut notthethe. Because sequences have a higher precedence
than disjunction,/the|any/ matchestheor anybut nottheny.

Patterns can be ambiguous in another way. Consider the expression/[a-z] * /
when matching against the textonce upon a time. Since/[a-z] * / matches zero or
more letters, this expression could match nothing, or just the first lettero, oron, oronc,
or once. In these cases regular expressions always match thelargeststring they can;
we say that patterns aregreedy, expanding to cover as much of a string as they can.GREEDY
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2.1.3 A Simple Example

Suppose we wanted to write a RE to find cases of the English article the. A simple (but
incorrect) pattern might be:

/the/

One problem is that this pattern will miss the word when it begins a sentence and
hence is capitalized (i.e.,The). This might lead us to the following pattern:

/[tT]he/

But we will still incorrectly return texts withthe embedded in other words (e.g.,
otheror theology). So we need to specify that we want instances with a word boundary
on both sides:

/\b[tT]he\b/

Suppose we wanted to do this without the use of/\b/ ? We might want this since
/\b/ won’t treat underscores and numbers as word boundaries; butwe might want to
find the in some context where it might also have underlines or numbers nearby (the
or the25). We need to specify that we want instances in which there areno alphabetic
letters on either side of thethe:

/[ˆa-zA-Z][tT]he[ˆa-zA-Z]/

But there is still one more problem with this pattern: it won’t find the wordthe
when it begins a line. This is because the regular expression[ˆa-zA-Z] , which we
used to avoid embeddedthes, implies that there must be some single (although non-
alphabetic) character before thethe . We can avoid this by specifying that before the
thewe requireeitherthe beginning-of-line or a non-alphabetic character, and the same
at the end of the line:

/(ˆ|[ˆa-zA-Z])[tT]he([ˆa-zA-Z]|$)/

The process we just went through was based on fixing two kinds of errors: false
positives, strings that we incorrectly matched likeotheror there, andfalse negatives,FALSE POSITIVES

FALSE NEGATIVES strings that we incorrectly missed, likeThe. Addressing these two kinds of errors
comes up again and again in building and improving speech andlanguage processing
systems. Reducing the error rate for an application thus involves two antagonistic
efforts:

• Increasingaccuracy(minimizing false positives)
• Increasingcoverage(minimizing false negatives).

2.1.4 A More Complex Example

Let’s try out a more significant example of the power of REs. Suppose we want to build
an application to help a user buy a computer on the Web. The user might want “any PC
with more than 500 MHz and 32 Gb of disk space for less than $1000”. In order to do
this kind of retrieval we will first need to be able to look for expressions like500 MHz
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or 32 Gbor Compaqor Macor $999.99. In the rest of this section we’ll work out some
simple regular expressions for this task.

First, let’s complete our regular expression for prices. Here’s a regular expression
for a dollar sign followed by a string of digits. Note that Perl is smart enough to realize
that$ here doesn’t mean end-of-line; how might it know that?

/$[0-9]+/

Now we just need to deal with fractions of dollars. We’ll add adecimal point and
two digits afterwards:

/$[0-9]+\.[0-9][0-9]/

This pattern only allows$199.99but not$199. We need to make the cents optional,
and make sure we’re at a word boundary:

/\b$[0-9]+(\.[0-9][0-9])?\b/

How about specifications for processor speed (in megahertz =MHz or gigahertz =
GHz)? Here’s a pattern for that:

/\b[0-9]+ * (MHz|[Mm]egahertz|GHz|[Gg]igahertz)\b/

Note that we use/ * / to mean “zero or more spaces”, since there might always
be extra spaces lying around. Dealing with disk space (in Gb =gigabytes), or memory
size (in Mb = megabytes or Gb = gigabytes), we need to allow foroptional gigabyte
fractions again (5.5 Gb). Note the use of? for making the finals optional:

/\b[0-9]+ * (Mb|[Mm]egabytes?)\b/
/\b[0-9](\.[0-9]+)? * (Gb|[Gg]igabytes?)\b/

Finally, we might want some simple patterns to specify operating systems and ven-
dors:

/\b(Win95|Win98|WinNT|Windows * (NT|95|98|2000)?)\b/
/\b(Mac|Macintosh|Apple)\b/

2.1.5 Advanced Operators

RE Expansion Match Example Patterns
\d [0-9] any digit Party of 5
\D [ˆ0-9] any non-digit Blue moon
\w [a-zA-Z0-9_] any alphanumeric or underscore Daiyu
\W [ˆ\w] a non-alphanumeric !!!!
\s [ \r\t\n\f] whitespace (space, tab)
\S [ˆ\s] Non-whitespace in Concord

Figure 2.6 Aliases for common sets of characters.
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There are also some useful advanced regular expression operators. Fig. 2.6 shows
some useful aliases for common ranges, which can be used mainly to save typing.
Besides the Kleene * and Kleene +, we can also use explicit numbers as counters, by
enclosing them in curly brackets. The regular expression/{3}/ means “exactly 3
occurrences of the previous character or expression”. So/a\.{24}z/ will match a
followed by 24 dots followed byz (but nota followed by 23 or 25 dots followed by a
z).

A range of numbers can also be specified; so/{n,m}/ specifies from n to m occur-
rences of the previous char or expression, while/{n,}/ means at least n occurrences
of the previous expression. REs for counting are summarizedin Figure 2.7.

RE Match

* zero or more occurrences of the previous char or expression
+ one or more occurrences of the previous char or expression
? exactly zero or one occurrence of the previous char or expression
{n} n occurrences of the previous char or expression
{n,m} from n to m occurrences of the previous char or expression
{n,} at leastn occurrences of the previous char or expression

Figure 2.7 Regular expression operators for counting.

Finally, certain special characters are referred to by special notation based on the
backslash (\ ). The most common of these are thenewline character\n and thetabNEWLINE

character\t . To refer to characters that are special themselves (like. , * , [ , and\ ),
precede them with a backslash, (i.e.,/\./ , /\ * / , /\[/ , and/\\/ ).

RE Match Example Patterns Matched
\ * an asterisk “*” “K* A*P*L*A*N”
\. a period “.” “Dr. Livingston, I presume”
\? a question mark “Why don’t they come and lend a hand?”
\n a newline
\t a tab

Figure 2.8 Some characters that need to be backslashed.

The reader should consult Appendix A for further details of regular expressions,
and especially for the differences between regular expressions in Perl, UNIX, and Mi-
crosoft Word.

2.1.6 Regular Expression Substitution, Memory, and ELIZA

An important use of regular expressions is insubstitutions. For example, the Perl sub-SUBSTITUTION

stitution operators/regexp1/pattern/ allows a string characterized by a regular
expression to be replaced by another string:

s/colour/color/



DRAFT

10 Chapter 2. Regular Expressions and Automata

It is often useful to be able to refer to a particular subpart of the string matching the
first pattern. For example, suppose we wanted to put angle brackets around all integers
in a text, changing e.g.,the 35 boxesto the<35> boxes. We’d like a way to refer back
to the integer we’ve found so that we can easily add the brackets. To do this, we put
parentheses( and) around the first pattern, and use thenumber operator\1 in the
second pattern to refer back. Here’s how it looks:

s/([0-9]+)/<\1>/

The parenthesis and number operators can also be used to specify that a certain
string or expression must occur twice in the text. For example, suppose we are looking
for the pattern “the Xer they were, the Xer they will be”, where we want to constrain the
two X’s to be the same string. We do this by surrounding the first X with the parenthesis
operator, and replacing the second X with the number operator \1 , as follows:

/the (. * )er they were, the \1er they will be/

Here the\1 will be replaced by whatever string matched the first item in parentheses.
So this will matchThe bigger they were, the bigger they will bebut notThe bigger they
were, the faster they will be.

The number operator can be used with other numbers: if you match two different
sets of parenthesis,\2 means whatever matched thesecondset. For example

/the (. * )er they (. * ), the \1er they \2/

will match The bigger they were, the bigger they werebut notThe bigger they were,
the bigger they will be. These numbered memories are calledregisters(e.g. register 1,REGISTERS

register 2, register 3, etc). This memory feature is not partof every regular expression
language and is often considered an “extended” feature of regular expressions.

Substitutions using memory are very useful in implementinga simple natural-
language understanding program like ELIZA (Weizenbaum, 1966). Recall that ELIZA
simulated a Rogerian psychologist and could carry on conversations with the user like
the following:

User1: Men are all alike.
ELIZA1: IN WHAT WAY
User2: They’re always bugging us about something or other.
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE
User3: Well, my boyfriend made me come here.
ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
User4: He says I’m depressed much of the time.
ELIZA4: I AM SORRY TO HEAR YOU ARE DEPRESSED.

Eliza worked by having a cascade of regular expression substitutions that each
matched some part of the input lines and changed them. The first substitutions changed
all instances ofmy to YOUR, andI’m to YOU ARE, and so on. The next set of substi-
tutions looked for relevant patterns in the input and created an appropriate output; here
are some examples:

s/. * YOU ARE (depressed|sad) . * /I AM SORRY TO HEAR YOU ARE \1/

s/. * YOU ARE (depressed|sad) . * /WHY DO YOU THINK YOU ARE \1/



DRAFT
Section 2.2. Finite-State Automata 11

s/. * all . * /IN WHAT WAY/

s/. * always . * /CAN YOU THINK OF A SPECIFIC EXAMPLE/

Since multiple substitutions could apply to a given input, substitutions were as-
signed a rank and were applied in order. Creation of such patterns is addressed in
Exercise 2.2.

2.2 FINITE-STATE AUTOMATA

The regular expression is more than just a convenient metalanguage for text searching.
First, a regular expression is one way of describing afinite-state automaton(FSA).FINITESTATE

AUTOMATON

FSA Finite-state automata are the theoretical foundation of a good deal of the computational
work we will describe in this book. Any regular expression can be implemented as a
finite-state automaton (except regular expressions that use the memory feature; more
on this later). Symmetrically, any finite-state automaton can be described with a regular
expression. Second, a regular expression is one way of characterizing a particular kind
of formal language called aregular language. Both regular expressions and finite-REGULAR LANGUAGE

state automata can be used to describe regular languages. A third equivalent method
of characterizing the regular languages, theregular grammar , will be introduced in
Ch. 15. The relation among these four theoretical constructions is sketched out in
Fig. 2.9.

regular 
grammars

finite
automata

regular
expressionsregular

languages

Figure 2.9 Finite automata, regular expressions, and regular grammars are all equiva-
lent ways of describing regular languages.

This section will begin by introducing finite-state automata for some of the regu-
lar expressions from the last section, and then suggest how the mapping from regular
expressions to automata proceeds in general. Although we begin with their use for
implementing regular expressions, FSAs have a wide varietyof other uses that we will
explore in this chapter and the next.

2.2.1 Using an FSA to Recognize Sheeptalk

After a while, with the parrot’s help, the Doctor got to learnthe language of the
animals so well that he could talk to them himself and understand everything
they said.
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Hugh Lofting,The Story of Doctor Dolittle

Let’s begin with the “sheep language” we discussed previously. Recall that we
defined the sheep language as any string from the following (infinite) set:

baa!
baaa!
baaaa!
baaaaa!
baaaaaa!
. . .

q3

a

q0 q4q1 q2

b a a !

Figure 2.10 A finite-state automaton for talking sheep.

The regular expression for this kind of “sheeptalk” is/baa+!/ . Fig. 2.10 shows
an automaton for modeling this regular expression. The automaton (i.e.,machine,AUTOMATON

also calledfinite automaton, finite-state automaton, or FSA) recognizes a set of
strings, in this case the strings characterizing sheep talk, in the same way that a regular
expression does. We represent the automaton as a directed graph: a finite set of vertices
(also called nodes), together with a set of directed links between pairs of vertices called
arcs. We’ll represent vertices with circles and arcs with arrows. The automaton has five
statess, which are represented by nodes in the graph. State 0 is thestart state. In ourSTATES

START STATE examples state 0 will generally be the start state; to mark another state as the start state
we can add an incoming arrow to the start state. State 4 is thefinal state or accepting
state, which we represent by the double circle. It also has fourtransitions, which we
represent by arcs in the graph.

The FSA can be used for recognizing (we also sayaccepting) strings in the follow-
ing way. First, think of the input as being written on a long tape broken up into cells,
with one symbol written in each cell of the tape, as in Fig. 2.11.

a b a ! b

q0

Figure 2.11 A tape with cells.

The machine starts in the start state (q0), and iterates the following process: Check
the next letter of the input. If it matches the symbol on an arcleaving the current
state, then cross that arc, move to the next state, and also advance one symbol in the
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input. If we are in the accepting state (q4) when we run out of input, the machine has
successfully recognized an instance of sheeptalk. If the machine never gets to the final
state, either because it runs out of input, or it gets some input that doesn’t match an arc
(as in Fig. 2.11), or if it just happens to get stuck in some non-final state, we say the
machinerejectsor fails to accept an input.REJECTS

We can also represent an automaton with astate-transition table. As in the graphSTATETRANSITION
TABLE

notation, the state-transition table represents the startstate, the accepting states, and
what transitions leave each state with which symbols. Here’s the state-transition table
for the FSA of Figure 2.10.

Input
State b a !
0 1 /0 /0
1 /0 2 /0
2 /0 3 /0
3 /0 3 4
4: /0 /0 /0

Figure 2.12 The state-transition table for the FSA of Figure 2.10.

We’ve marked state 4 with a colon to indicate that it’s a final state (you can have as
many final states as you want), and the/0 indicates an illegal or missing transition. We
can read the first row as “if we’re in state 0 and we see the inputb we must go to state
1. If we’re in state 0 and we see the inputa or !, we fail”.

More formally, a finite automaton is defined by the following five parameters:

Q = q0q1q2 . . .qN−1 a finite set ofN states

Σ a finite input alphabet of symbols

q0 thestart state

F the set offinal states, F ⊆Q

δ(q, i) the transition function or transition matrix be-
tween states. Given a stateq ∈ Q and an input
symboli ∈ Σ, δ(q, i) returns a new stateq′ ∈Q. δ
is thus a relation fromQ×Σ to Q;

For the sheeptalk automaton in Fig. 2.10,Q = {q0,q1,q2,q3,q4}, Σ = {a,b, !},
F = {q4}, andδ(q, i) is defined by the transition table in Fig. 2.12.

Figure 2.13 presents an algorithm for recognizing a string using a state-transition
table. The algorithm is calledD-RECOGNIZEfor “deterministic recognizer”. Adeter-
ministic algorithm is one that has no choice points; the algorithm always knows whatDETERMINISTIC

to do for any input. The next section will introduce non-deterministic automata that
must make decisions about which states to move to.

D-RECOGNIZEtakes as input a tape and an automaton. It returnsacceptif the string
it is pointing to on the tape is accepted by the automaton, andrejectotherwise. Note
that sinceD-RECOGNIZEassumes it is already pointing at the string to be checked, its
task is only a subpart of the general problem that we often useregular expressions for,
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finding a string in a corpus. (The general problem is left as anexercise to the reader in
Exercise 2.9.)

D-RECOGNIZEbegins by setting the variableindexto the beginning of the tape, and
current-stateto the machine’s initial state.D-RECOGNIZEthen enters a loop that drives
the rest of the algorithm. It first checks whether it has reached the end of its input. If
so, it either accepts the input (if the current state is an accept state) or rejects the input
(if not).

If there is input left on the tape,D-RECOGNIZElooks at the transition table to decide
which state to move to. The variablecurrent-stateindicates which row of the table to
consult, while the current symbol on the tape indicates which column of the table to
consult. The resulting transition-table cell is used to update the variablecurrent-state
and index is incremented to move forward on the tape. If the transition-table cell is
empty then the machine has nowhere to go and must reject the input.

function D-RECOGNIZE(tape, machine) returns accept or reject

index←Beginning of tape
current-state← Initial state of machine
loop
if End of input has been reachedthen
if current-state is an accept statethen

return accept
else

return reject
elsif transition-table[current-state,tape[index]]is emptythen

return reject
else

current-state← transition-table[current-state,tape[index]]
index← index+ 1

end

Figure 2.13 An algorithm for deterministic recognition of FSAs. This algorithm returns
acceptif the entire string it is pointing at is in the language defined by the FSA, andreject
if the string is not in the language.

Figure 2.14 traces the execution of this algorithm on the sheep language FSA given
the sample input stringbaaa!.

b a a a !

q0 q1 q2 q3 q3 q4

Figure 2.14 Tracing the execution of FSA #1 on some sheeptalk.
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Before examining the beginning of the tape, the machine is instateq0. Finding ab
on input tape, it changes to stateq1 as indicated by the contents oftransition-table[q0,b]
in Fig. 2.12 on page 13. It then finds ana and switches to stateq2, anothera puts it in
stateq3, a thirda leaves it in stateq3, where it reads the “!”, and switches to stateq4.
Since there is no more input, theEnd of input condition at the beginning of the
loop is satisfied for the first time and the machine halts inq4. Stateq4 is an accepting
state, and so the machine has accepted the stringbaaa! as a sentence in the sheep
language.

The algorithm will fail whenever there is no legal transition for a given combination
of state and input. The inputabc will fail to be recognized since there is no legal
transition out of stateq0 on the inputa, (i.e., this entry of the transition table in Fig. 2.12
on page 13 has a/0). Even if the automaton had allowed an initiala it would have
certainly failed onc, sincec isn’t even in the sheeptalk alphabet! We can think of these
“empty” elements in the table as if they all pointed at one “empty” state, which we
might call thefail state or sink state. In a sense then, we could view any machine withFAIL STATE

empty transitionsas if we had augmented it with a fail state, and drawn in all the extra
arcs, so we always had somewhere to go from any state on any possible input. Just for
completeness, Fig. 2.15 shows the FSA from Figure 2.10 with the fail stateqF filled in.

q3

a

q0 q4q1 q2

b a a !

qfail

b! ! ! !b
b

a
a

b

Figure 2.15 Adding a fail state to Fig. 2.10.

2.2.2 Formal Languages

We can use the same graph in Fig. 2.10 as an automaton forGENERATING sheeptalk.
If we do, we would say that the automaton starts at stateq0, and crosses arcs to new
states, printing out the symbols that label each arc it follows. When the automaton gets
to the final state it stops. Notice that at state 3, the automaton has to chose between
printing out a! and going to state 4, or printing out ana and returning to state 3. Let’s
say for now that we don’t care how the machine makes this decision; maybe it flips a
coin. For now, we don’t care which exact string of sheeptalk we generate, as long as
it’s a string captured by the regular expression for sheeptalk above.

Formal Language: A model which can both generate and recognize all
and only the strings of a formal language acts as adefinitionof the formal
language.
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A formal language is a set of strings, each string composed of symbols from aFORMAL LANGUAGE

finite symbol-set called analphabet (the same alphabet used above for defining anALPHABET

automaton!). The alphabet for the sheep language is the setΣ = {a,b, !}. Given a
modelm (such as a particular FSA), we can useL(m) to mean “the formal language
characterized bym”. So the formal language defined by our sheeptalk automatonm in
Fig. 2.10 (and Fig. 2.12) is the infinite set:

L(m) = {baa!,baaa!,baaaa!,baaaaa!,baaaaaa!, . . .}(2.1)

The usefulness of an automaton for defining a language is thatit can express an
infinite set (such as this one above) in a closed form. Formal languages are not the
same asnatural languages, which are the kind of languages that real people speak.NATURAL

LANGUAGES

In fact, a formal language may bear no resemblance at all to a real language (e.g., a
formal language can be used to model the different states of asoda machine). But we
often use a formal language to model part of a natural language, such as parts of the
phonology, morphology, or syntax. The termgenerative grammar is sometimes used
in linguistics to mean a grammar of a formal language; the origin of the term is this use
of an automaton to define a language by generating all possible strings.

2.2.3 Another Example

In the previous examples our formal alphabet consisted of letters; but we can also
have a higher level alphabet consisting of words. In this waywe can write finite-state
automata that model facts about word combinations. For example, suppose we wanted
to build an FSA that modeled the subpart of English dealing with amounts of money.
Such a formal language would model the subset of English consisting of phrases like
ten cents, three dollars, one dollar thirty-five centsand so on.

We might break this down by first building just the automaton to account for the
numbers from 1 to 99, since we’ll need them to deal with cents.Fig. 2.16 shows this.

q q1 q2twenty
thirty
forty
fifty

sixty
seventy
eighty
ninety

one
two
three
four
five

six
seven
eight
nine

one
two
three
four
five

six
seven
eight
nine
ten

eleven
twelve
thirteen
fourteen

fifteen
sixteen
seventeen
eighteen
nineteen

Figure 2.16 An FSA for the words for English numbers 1–99.

We could now addcentsanddollars to our automaton. Fig. 2.17 shows a simple
version of this, where we just made two copies of the automaton in Fig. 2.16 and
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appended the wordscentsanddollars.

q� q1 q2twenty
thirty
forty
fifty

sixty
seventy
eighty
ninety

one
two
three
four
five

six
seven
eight
nine

q3

q4 q5 q�
twenty
thirty
forty
fifty

sixty
seventy
eighty
ninety

one
two
three
four
five

six
seven
eight
nine

one
two
three
four
five

six
seven
eight
nine

sixteen
seventeen
eighteen
nineteen

ten
twenty
thirty
forty
fifty

sixty
seventy
eighty
ninety

q������ �����
dollars

one
two
three
four
five

six
seven
eight
nine

eleven
twelve
thirteen
fourteen
fifteen

sixteen
seventeen
eighteen
nineteen

ten
twenty
thirty
forty
fifty

sixty
seventy
eighty
ninety

eleven
twelve
thirteen
fourteen
fifteen

Figure 2.17 FSA for the simple dollars and cents.

We would now need to add in the grammar for different amounts of dollars; in-
cluding higher numbers likehundred, thousand. We’d also need to make sure that the
nouns likecentsanddollars are singular when appropriate (one cent, one dollar), and
plural when appropriate (ten cents, two dollars). This is left as an exercise for the
reader (Exercise 2.3). We can think of the FSAs in Fig. 2.16 and Fig. 2.17 as simple
grammars of parts of English. We will return to grammar-building in Part II of this
book, particularly in Ch. 12.

2.2.4 Non-Deterministic FSAs

Let’s extend our discussion now to another class of FSAs:non-deterministic FSAs
(or NFSAs). Consider the sheeptalk automaton in Figure 2.18, which is much like our
first automaton in Figure 2.10:

q�a

q0 q	q1 q2

b a a !

Figure 2.18 A non-deterministic finite-state automaton for talking sheep (NFSA #1).
Compare with the deterministic automaton in Fig. 2.10.

The only difference between this automaton and the previousone is that here in
Figure 2.18 the self-loop is on state 2 instead of state 3. Consider using this network
as an automaton for recognizing sheeptalk. When we get to state 2, if we see ana we
don’t know whether to remain in state 2 or go on to state 3. Automata with decision
points like this are callednon-deterministic FSAs (or NFSAs). Recall by contrastNONDETERMINISTIC

NFSA that Figure 2.10 specified adeterministic automaton, i.e., one whose behavior during
recognition is fullydeterminedby the state it is in and the symbol it is looking at. A
deterministic automaton can be referred to as aDFSA. That is not true for the machineDFSA

in Figure 2.18 (NFSA #1).
There is another common type of non-determinism, caused by arcs that have no

symbols on them (calledε-transitions). The automaton in Fig. 2.19 defines the exactεTRANSITION
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same language as the last one, or our first one, but it does it with anε-transition.

q
q0 �4�1 q2

b a a !

∋

Figure 2.19 Another NFSA for the sheep language (NFSA #2). It differs from NFSA
#1 in Fig. 2.18 in having anε-transition.

We interpret this new arc as follows: If we are in state 3, we are allowed to move
to state 2without looking at the input, or advancing our input pointer. So thisintro-
duces another kind of non-determinism — we might not know whether to follow the
ε-transition or the! arc.

2.2.5 Using an NFSA to Accept Strings

If we want to know whether a string is an instance of sheeptalkor not, and if we use a
non-deterministic machine to recognize it, we might followthe wrong arc and reject it
when we should have accepted it. That is, since there is more than one choice at some
point, we might take the wrong choice. This problem of choicein non-deterministic
models will come up again and again as we build computationalmodels, particularly
for parsing. There are three standardsolutions to the problem of non-determinism:

• Backup: Whenever we come to a choice point, we could put amarkerto markBACKUP

where we were in the input, and what state the automaton was in. Then if it turns
out that we took the wrong choice, we could back up and try another path.

• Look-ahead: We could look ahead in the input to help us decide which path toLOOKAHEAD

take.

• Parallelism: Whenever we come to a choice point, we could look at everyPARALLELISM

alternative path in parallel.

We will focus here on the backup approach and defer discussion of the look-ahead
and parallelism approaches to later chapters.

The backup approach suggests that we should blithely make choices that might
lead to deadends, knowing that we can always return to unexplored alternative choices.
There are two keys to this approach: we need to remember all the alternatives for each
choice point, and we need to store sufficient information about each alternative so that
we can return to it when necessary. When a backup algorithm reaches a point in its
processing where no progress can be made (because it runs outof input, or has no
legal transitions), it returns to a previous choice point, selects one of the unexplored
alternatives, and continues from there. Applying this notion to our non-deterministic
recognizer, we need only remember two things for each choicepoint: the state, or node,
of the machine that we can go to and the corresponding position on the tape. We will
call the combination of the node and position thesearch-stateof the recognition algo-SEARCHSTATE
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Input
State b a ! ε
0 1 /0 /0 /0
1 /0 2 /0 /0
2 /0 2,3 /0 /0
3 /0 /0 4 /0
4: /0 /0 /0 /0

Figure 2.20 The transition table from NFSA #1 in Fig. 2.18.

rithm. To avoid confusion, we will refer to the state of the automaton (as opposed to the
state of the search) as anodeor amachine-state. Figure 2.21 presents a recognition
algorithm based on this approach.

Before going on to describe the main part of this algorithm, we should note two
changes to the transition table that drives it. First, in order to represent nodes that have
outgoingε-transitions, we add a newε-column to the transition table. If a node has
an ε-transition, we list the destination node in theε-column for that node’s row. The
second addition is needed to account for multiple transitions to different nodes from
the same input symbol. We let each cell entry consist of a listof destination nodes
rather than a single node. Fig. 2.20 shows the transition table for the machine in Figure
2.18 (NFSA #1). While it has noε-transitions, it does show that in machine-stateq2

the inputa can lead back toq2 or on toq3.
Fig. 2.21 shows the algorithm for using a non-deterministicFSA to recognize an

input string. The functionND-RECOGNIZEuses the variableagendato keep track of
all the currently unexplored choices generated during the course of processing. Each
choice (search state) is a tuple consisting of a node (state)of the machine and a posi-
tion on the tape. The variablecurrent-search-staterepresents the branch choice being
currently explored.

ND-RECOGNIZE begins by creating an initial search-state and placing it onthe
agenda. For now we don’t specify what order the search-states are placed on the
agenda. This search-state consists of the initial machine-state of the machine and a
pointer to the beginning of the tape. The functionNEXT is then called to retrieve an
item from the agenda and assign it to the variablecurrent-search-state.

As with D-RECOGNIZE, the first task of the main loop is to determine if the en-
tire contents of the tape have been successfully recognized. This is done via a call
to ACCEPT-STATE?, which returnsacceptif the current search-state contains both an
accepting machine-state and a pointer to the end of the tape.If we’re not done, the
machine generates a set of possible next steps by callingGENERATE-NEW-STATES,
which creates search-states for anyε-transitions and any normal input-symbol transi-
tions from the transition table. All of these search-state tuples are then added to the
current agenda.

Finally, we attempt to get a new search-state to process fromthe agenda. If the
agenda is empty we’ve run out of options and have to reject theinput. Otherwise, an
unexplored option is selected and the loop continues.

It is important to understand whyND-RECOGNIZE returns a value of reject only
when the agenda is found to be empty. UnlikeD-RECOGNIZE, it does not return reject
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when it reaches the end of the tape in a non-accept machine-state or when it finds
itself unable to advance the tape from some machine-state. This is because, in the non-
deterministic case, such roadblocks only indicate failuredown a given path, not overall
failure. We can only be sure we can reject a string when all possible choices have been
examined and found lacking.

function ND-RECOGNIZE(tape, machine) returns accept or reject

agenda←{(Initial state of machine, beginning of tape)}
current-search-state←NEXT(agenda)
loop

if ACCEPT-STATE?(current-search-state) returns truethen
return accept

else
agenda←agenda∪ GENERATE-NEW-STATES(current-search-state)

if agendais emptythen
return reject

else
current-search-state←NEXT(agenda)

end

function GENERATE-NEW-STATES(current-state) returns a set of search-states

current-node← the node the current search-state is in
index← the point on the tape the current search-state is looking at
return a list of search states from transition table as follows:

(transition-table[current-node,ε], index)
∪
(transition-table[current-node, tape[index]], index + 1)

function ACCEPT-STATE?(search-state) returns true or false

current-node← the node search-state is in
index← the point on the tape search-state is looking at
if indexis at the end of the tapeand current-nodeis an accept state of machine
then

return true
else

return false

Figure 2.21 An algorithm for NFSA recognition. The wordnodemeans a state of the
FSA, whilestateor search-statemeans “the state of the search process”, i.e., a combination
of nodeandtape-position.

Figure 2.22 illustrates the progress ofND-RECOGNIZEas it attempts to handle the
input baaa! . Each strip illustrates the state of the algorithm at a givenpoint in its
processing. Thecurrent-search-statevariable is captured by the solid bubbles repre-
senting the machine-state along with the arrow representing progress on the tape. Each
strip lower down in the figure represents progress from onecurrent-search-stateto the



DRAFT
Section 2.2. Finite-State Automata 21

b a a a !

q0

b a a a !

q0 q1

b a a a !

q1 q2

b a a a !

q4

b a a a !

q3

b a a a !

q2 q3

b a a a !

q2

b a a a !
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Figure 2.22 Tracing the execution of NFSA #1 (Fig. 2.18) on some sheeptalk.

next.
Little of interest happens until the algorithm finds itself in stateq2 while looking at

the second a on the tape. An examination of the entry for transition-table[q2,a] returns
bothq2 andq3. Search states are created for each of these choices and placed on the
agenda. Unfortunately, our algorithm chooses to move to state q3, a move that results
in neither an accept state nor any new states since the entry for transition-table[q3, a]
is empty. At this point, the algorithm simply asks the agendafor a new state to pursue.
Since the choice of returning toq2 fromq2 is the only unexamined choice on the agenda
it is returned with the tape pointer advanced to the next a. Somewhat diabolically,ND-
RECOGNIZEfinds itself faced with the same choice. The entry for transition-table[q2,a]
still indicates that looping back toq2 or advancing toq3 are valid choices. As before,
states representing both are placed on the agenda. These search states are not the same
as the previous ones since their tape index values have advanced. This time the agenda
provides the move toq3 as the next move. The move toq4, and success, is then uniquely
determined by the tape and the transition-table.
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2.2.6 Recognition as Search

ND-RECOGNIZEaccomplishes the task of recognizing strings in a regular language by
providing a way to systematically explore all the possible paths through a machine. If
this exploration yields a path ending in an accept state, it accepts the string, otherwise
it rejects it. This systematic exploration is made possibleby the agenda mechanism,
which on each iteration selects a partial path to explore andkeeps track of any remain-
ing, as yet unexplored, partial paths.

Algorithms such asND-RECOGNIZE, which operate by systematically searching
for solutions, are known asstate-space searchalgorithms. In such algorithms, theSTATESPACE

SEARCH

problem definition creates a space of possible solutions; the goal is to explore this
space, returning an answer when one is found or rejecting theinput when the space
has been exhaustively explored. InND-RECOGNIZE, search states consist of pairings
of machine-states with positions on the input tape. The state-space consists of all the
pairings of machine-state and tape positions that are possible given the machine in
question. The goal of the search is to navigate through this space from one state to
another looking for a pairing of an accept state with an end oftape position.

The key to the effectiveness of such programs is often theorder in which the states
in the space are considered. A poor ordering of states may lead to the examination of
a large number of unfruitful states before a successful solution is discovered. Unfortu-
nately, it is typically not possible to tell a good choice from a bad one, and often the
best we can do is to insure that each possible solution is eventually considered.

Careful readers may have noticed that the ordering of statesin ND-RECOGNIZEhas
been left unspecified. We know only that unexplored states are added to the agenda
as they are created and that the (undefined) function NEXT returns an unexplored state
from the agenda when asked. How should the function NEXT be defined? Consider
an ordering strategy where the states that are considered next are the most recently
created ones. Such a policy can be implemented by placing newly created states at the
front of the agenda and having NEXT return the state at the front of the agenda when
called. Thus the agenda is implemented by astack. This is commonly referred to as a
depth-first searchor Last In First Out (LIFO ) strategy.DEPTHFIRST

Such a strategy dives into the search space following newly developed leads as
they are generated. It will only return to consider earlier options when progress along
a current lead has been blocked. The trace of the execution ofND-RECOGNIZEon the
stringbaaa! as shown in Fig. 2.22 illustrates a depth-first search. The algorithm hits
the first choice point after seeingba when it has to decide whether to stay inq2 or
advance to stateq3. At this point, it chooses one alternative and follows it until it is
sure it’s wrong. The algorithm then backs up and tries another older alternative.

Depth first strategies have one major pitfall: under certaincircumstances they can
enter an infinite loop. This is possible either if the search space happens to be set
up in such a way that a search-state can be accidentally re-visited, or if there are an
infinite number of search states. We will revisit this question when we turn to more
complicated search problems in parsing in Ch. 13.

The second way to order the states in the search space is to consider states in the
order in which they are created. Such a policy can be implemented by placing newly
created states at the back of the agenda and still have NEXT return the state at the
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front of the agenda. Thus the agenda is implemented via aqueue. This is commonly
referred to as abreadth-first searchor First In First Out (FIFO ) strategy. ConsiderBREADTHFIRST

a different trace of the execution ofND-RECOGNIZEon the stringbaaa! as shown in
Fig. 2.23. Again, the algorithm hits its first choice point after seeingba when it had to
decide whether to stay inq2 or advance to stateq3. But now rather than picking one
choice and following it up, we imagine examining all possible choices, expanding one
ply of the search tree at a time.

b a a a !
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b a a a !

q0 q1
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q1 q2
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Figure 2.23 A breadth-first trace of FSA #1 on some sheeptalk.

Like depth-first search, breadth-first search has its pitfalls. As with depth-first if
the state-space is infinite, the search may never terminate.More importantly, due to
growth in the size of the agenda if the state-space is even moderately large, the search
may require an impractically large amount of memory. For small problems, either
depth-first or breadth-first search strategies may be adequate, although depth-first is
normally preferred for its more efficient use of memory. For larger problems, more
complex search techniques such asdynamic programming or A∗ must be used, as we
will see in Chapters 7 and 10.

2.2.7 Relating Deterministic and Non-Deterministic Automata

It may seem that allowing NFSAs to have non-deterministic features likeε-transitions
would make them more powerful than DFSAs. In fact this is not the case; for any
NFSA, there is an exactly equivalent DFSA. In fact there is a simple algorithm for
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converting an NFSA to an equivalent DFSA, although the number of states in this
equivalent deterministic automaton may be much larger. SeeLewis and Papadimitriou
(1988) or Hopcroft and Ullman (1979) for the proof of the correspondence. The basic
intuition of the proof is worth mentioning, however, and builds on the way NFSAs parse
their input. Recall that the difference between NFSAs and DFSAs is that in an NFSA
a stateqi may have more than one possible next state given an inputi (for example
qa andqb). The algorithm in Figure 2.21 dealt with this problem by choosing either
qa or qb and thenbacktrackingif the choice turned out to be wrong. We mentioned
that a parallel version of the algorithm would follow both paths (towardqa andqb)
simultaneously.

The algorithm for converting a NFSA to a DFSA is like this parallel algorithm; we
build an automaton that has a deterministic path for every path our parallel recognizer
might have followed in the search space. We imagine following both paths simultane-
ously, and group together into an equivalence class all the states we reach on the same
input symbol (i.e.,qa andqb). We now give a new state label to this new equivalence
class state (for exampleqab). We continue doing this for every possible input for every
possible group of states. The resulting DFSA can have as manystates as there are dis-
tinct sets of states in the original NFSA. The number of different subsets of a set with
N elements is 2N, hence the new DFSA can have as many as 2N states.

2.3 REGULAR LANGUAGES AND FSAS

As we suggested above, the class of languages that are definable by regular expressions
is exactly the same as the class of languages that are characterizable by finite-state
automata (whether deterministic or non-deterministic). Because of this, we call these
languages theregular languages. In order to give a formal definition of the class ofREGULAR

LANGUAGES

regular languages, we need to refer back to two earlier concepts: the alphabetΣ, which
is the set of all symbols in the language, and theempty stringε, which is conventionally
not included inΣ. In addition, we make reference to theempty set/0 (which is distinct
fromε). The class of regular languages (orregular sets) overΣ is then formally defined
as follows:1

1. /0 is a regular language
2. ∀a∈ Σ∪ ε, {a} is a regular language
3. If L1 andL2 are regular languages, then so are:

(a) L1 · L2 = {xy|x∈ L1,y∈ L2}, theconcatenationof L1 andL2

(b) L1∪L2, theunion or disjunction of L1andL2

(c) L∗1, theKleene closureof L1

Only languages which meet the above properties are regular languages. Since the
regular languages are the languages characterizable by regular expressions, all the reg-
ular expression operators introduced in this chapter (except memory) can be imple-
mented by the three operations which define regular languages: concatenation, dis-
junction/union (also called “|”), and Kleene closure. For example all the counters (* ,+,

1 Following van Santen and Sproat (1998), Kaplan and Kay (1994), and Lewis and Papadimitriou (1988).
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{n,m} ) are just a special case of repetition plus Kleene *. All the anchors can be
thought of as individual special symbols. The square braces[] are a kind of disjunc-
tion (i.e.,[ab] means “a or b”, or the disjunction ofa andb). Thus it is true that any
regular expression can be turned into a (perhaps larger) expression which only makes
use of the three primitive operations.

Regular languages are also closed under the following operations (Σ∗ means the
infinite set of all possible strings formed from the alphabetΣ):

• intersection: if L1 andL2 are regular languages, then so isL1∩L2, the language
consisting of the set of strings that are in bothL1 andL2.
• difference: if L1 andL2 are regular languages, then so isL1−L2, the language

consisting of the set of strings that are inL1 but notL2.
• complementation: If L1 is a regular language, then so isΣ∗−L1, the set of all

possible strings that aren’t inL1.
• reversal: If L1 is a regular language, then so isLR

1 , the language consisting of
the set of reversals of all the strings inL1.

The proof that regular expressions are equivalent to finite-state automata can be
found in Hopcroft and Ullman (1979), and has two parts: showing that an automaton
can be built for each regular language, and conversely that aregular language can be
built for each automaton.

We won’t give the proof, but we give the intuition by showing how to do the first
part: take any regular expression and build an automaton from it. The intuition is
inductive on the number of operators: for the base case we build an automaton to
correspond to the regular expressions with no operators, i.e. the regular expressions/0,
ε, or any single symbola∈ Σ. Fig. 2.24 shows the automata for these three base cases.

(a) r=ε

q0 qf q0 qf q0 qf

(b) r=∅ (c) r=a

a

Figure 2.24 Automata for the base case (no operators) for the induction showing that
any regular expression can be turned into an equivalent automaton.

Now for the inductive step, we show that each of the primitiveoperations of a
regular expression (concatenation, union, closure) can beimitated by an automaton:

• concatenation: We just string two FSAs next to each other by connecting all the
final states of FSA1 to the initial state of FSA2 by anε-transition.
• closure: We create a new final and initial state, connect the originalfinal states

of the FSA back to the initial states byε-transitions (this implements the rep-
etition part of the Kleene *), and then put direct links between the new initial
and final states byε-transitions (this implements the possibility of havingzero
occurrences). We’d leave out this last part to implement Kleene-plus instead.
• union: We add a single new initial stateq′0, and add newε-transitions from it to

the former initial states of the two machines to be joined.
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q0

qf q0 qf

ε

FSA1
FSA2

Figure 2.25 The concatenation of two FSAs.

q0 qfq0 qf

ε

FSA1

ε ε

Figure 2.26 The closure (Kleene *) of an FSA.

q0

qf

q0 qf

ε

FSA1

FSA2

q0 qf

ε

ε ε

Figure 2.27 The union (|) of two FSAs.

We will return to regular languages and their relationship to regular grammars in Ch. 15.
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2.4 SUMMARY

This chapter introduced the most important fundamental concept in language process-
ing, thefinite automaton, and the practical tool based on automaton, theregular ex-
pression. Here’s a summary of the main points we covered about these ideas:

• Theregular expressionlanguage is a powerful tool for pattern-matching.

• Basic operations in regular expressions includeconcatenationof symbols,dis-
junction of symbols ([] , | , and. ), counters(* , +, and{n,m} ), anchors (ˆ ,
$) and precedence operators (( ,) ).

• Any regular expression can be realized as afinite state automaton(FSA).

• Memory (\1 together with() ) is an advanced operation that is often considered
part of regular expressions, but which cannot be realized asa finite automaton.

• An automaton implicitly defines aformal language as the set of strings the
automatonaccepts.
• An automaton can use any set of symbols for its vocabulary, including letters,

words, or even graphic images.

• The behavior of adeterministic automaton (DFSA) is fully determined by the
state it is in.

• A non-deterministic automaton (NFSA) sometimes has to make a choice be-
tween multiple paths to take given the same current state andnext input.

• Any NFSA can be converted to aDFSA.

• The order in which aNFSA chooses the next state to explore on the agenda de-
fines itssearch strategy. Thedepth-first searchor LIFO strategy corresponds
to the agenda-as-stack; thebreadth-first search or FIFO strategy corresponds
to the agenda-as-queue.

• Any regular expression can be automatically compiled into aNFSA and hence
into aFSA.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Finite automata arose in the 1950s out of Turing’s (1936) model of algorithmic com-
putation, considered by many to be the foundation of modern computer science. The
Turing machine was an abstract machine with a finite control and an input/output tape.
In one move, the Turing machine could read a symbol on the tape, write a different
symbol on the tape, change state, and move left or right. Thusthe Turing machine
differs from a finite-state automaton mainly in its ability to change the symbols on its
tape.

Inspired by Turing’s work, McCulloch and Pitts built an automata-like model of
the neuron (see von Neumann, 1963, p. 319). Their model, which is now usually
called theMcCulloch-Pitts neuron (McCulloch and Pitts, 1943), was a simplifiedMCCULLOCHPITTS

NEURON

model of the neuron as a kind of “computing element” that could be described in terms
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of propositional logic. The model was a binary device, at anypoint either active or
not, which took excitatory and inhibitatory input from other neurons and fired if its
activation passed some fixed threshold. Based on the McCulloch-Pitts neuron, Kleene
(1951) and (1956) defined the finite automaton and regular expressions, and proved
their equivalence. Non-deterministic automata were introduced by Rabin and Scott
(1959), who also proved them equivalent to deterministic ones.

Ken Thompson was one of the first to build regular expressionscompilers into edi-
tors for text searching (Thompson, 1968). His editoredincluded a command “g/regular
expression/p”, or Global Regular Expression Print, which later became the UNIX
grep utility.

There are many general-purpose introductions to the mathematics underlying au-
tomata theory, such as Hopcroft and Ullman (1979) and Lewis and Papadimitriou
(1988). These cover the mathematical foundations of the simple automata of this chap-
ter, as well as the finite-state transducers of Ch. 3, the context-free grammars of Ch. 12,
and the Chomsky hierarchy of Ch. 15. Friedl (1997) is a very useful comprehensive
guide to the advanced use of regular expressions.

The metaphor of problem-solving as search is basic to Artificial Intelligence (AI);
more details on search can be found in any AI textbook such as Russell and Norvig
(2002).

EXERCISES

2.1 Write regular expressions for the following languages: Youmay use either Perl
notation or the minimal “algebraic” notation of Sec. 2.3, but make sure to say which
one you are using. By “word”, we mean an alphabetic string separated from other
words by white space, any relevant punctuation, line breaks, and so forth.

a. the set of all alphabetic strings.

b. the set of all lowercase alphabetic strings ending in ab.

c. the set of all strings with two consecutive repeated words (e.g., “Humbert Hum-
bert” and “the the” but not “the bug” or “the big bug”).

d. the set of all strings from the alphabeta,b such that eacha is immediately pre-
ceded and immediately followed by ab.

e. all strings which start at the beginning of the line with an integer (i.e., 1,2,3,...,10,...,10000,...)
and which end at the end of the line with a word.

f. all strings which have both the wordgrottoand the wordravenin them. (but not,
for example, words likegrottosthat merelycontainthe wordgrotto).

g. write a pattern which places the first word of an English sentence in a register.
Deal with punctuation.
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2.2 Implement an ELIZA-like program, using substitutions suchas those described
on page 10. You may choose a different domain than a Rogerian psychologist, if you
wish, although keep in mind that you would need a domain in which your program can
legitimately do a lot of simple repeating-back.

2.3 Complete the FSA for English money expressions in Fig. 2.16 as suggested in the
text following the figure. You should handle amounts up to $100,000, and make sure
that “cent” and “dollar” have the proper plural endings whenappropriate.

2.4 Design an FSA that recognizes simple date expressions likeMarch 15, the 22nd
of November, Christmas. You should try to include all such “absolute” dates, (e.g. not
“deictic” ones relative to the current day likethe day before yesterday). Each edge of
the graph should have a word or a set of words on it. You should use some sort of
shorthand for classes of words to avoid drawing too many arcs(e.g., furniture→ desk,
chair, table).

2.5 Now extend your date FSA to handle deictic expressions likeyesterday, tomor-
row, a week from tomorrow, the day before yesterday, Sunday, next Monday, three
weeks from Saturday.

2.6 Write an FSA for time-of-day expressions likeeleven o’clock, twelve-thirty, mid-
night, or a quarter to tenand others.

2.7 (Due to Pauline Welby; this problem probably requires the ability to knit.) Write
a regular expression (or draw an FSA) which matches all knitting patterns for scarves
with the following specification:32 stitches wide, K1P1 ribbing on both ends, stock-
inette stitch body, exactly two raised stripes. All knitting patterns must include a cast-
on row (to put the correct number of stitches on the needle) and a bind-off row (to
end the pattern and prevent unraveling). Here’s a sample pattern for one possible scarf
matching the above description:2

1. Cast on 32 stitches. cast on; puts stitches on needle
2. K1 P1 across row (i.e. do (K1 P1) 16 times).K1P1 ribbing
3. Repeat instruction 2 seven more times. adds length
4. K32, P32. stockinette stitch
5. Repeat instruction 4 an additional 13 times.adds length
6. P32, P32. raised stripe stitch
7. K32, P32. stockinette stitch
8. Repeat instruction 7 an additional 251 times.adds length
9. P32, P32. raised stripe stitch

10. K32, P32. stockinette stitch
11. Repeat instruction 10 an additional 13 times.adds length
12. K1 P1 across row. K1P1 ribbing
13. Repeat instruction 12 an additional 7 times.adds length
14. Bind off 32 stitches. binds off row: ends pattern

2 Knit andpurl are two different types of stitches. The notation Kn means don knit stitches. Similarly for
purl stitches. Ribbing has a striped texture—most sweatershave ribbing at the sleeves, bottom, and neck.
Stockinette stitch is a series of knit and purl rows that produces a plain pattern— socks or stockings are knit
with this basic pattern, hence the name.
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2.8 Write a regular expression for the language accepted by the NFSA in Fig. 2.28.

q3q0 q1 q2

a b a

b
a

Figure 2.28 A mystery language

2.9 Currently the functionD-RECOGNIZE in Fig. 2.13 only solves a subpart of the
important problem of finding a string in some text. Extend thealgorithm to solve
the following two deficiencies: (1)D-RECOGNIZEcurrently assumes that it is already
pointing at the string to be checked, and (2)D-RECOGNIZEfails if the string it is point-
ing includes as a proper substring a legal string for the FSA.That is,D-RECOGNIZE

fails if there is an extra character at the end of the string.

2.10 Give an algorithm for negating a deterministic FSA. The negation of an FSA
accepts exactly the set of strings that the original FSA rejects (over the same alphabet),
and rejects all the strings that the original FSA accepts.

2.11 Why doesn’t your previous algorithm work with NFSAs? Now extend your
algorithm to negate an NFSA.
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3
WORDS &
TRANSDUCERS

How can there be any sin in sincere?
Where is the good in goodbye?

Meredith Willson,The Music Man

Ch. 2 introduced the regular expression, showing for example how a single search
string could help us find bothwoodchuckandwoodchucks. Hunting for singular or
plural woodchucks was easy; the plural just tacks ans on to the end. But suppose we
were looking for another fascinating woodland creatures; let’s say afox, and afish,
that surlypeccaryand perhaps a Canadianwild goose. Hunting for the plurals of these
animals takes more than just tacking on ans. The plural offox is foxes; of peccary,
peccaries; and ofgoose, geese. To confuse matters further, fish don’t usually change
their form when they are plural1.

It takes two kinds of knowledge to correctly search for singulars and plurals of
these forms.Orthographic rules tell us that English words ending in-y are pluralized
by changing the-y to -i- and adding an-es. Morphological rules tell us thatfishhas a
null plural, and that the plural ofgooseis formed by changing the vowel.

The problem of recognizing that a word (likefoxes) breaks down into component
morphemes (fox and-es) and building a structured representation of this fact is called
morphological parsing.MORPHOLOGICAL

PARSING

Parsingmeans taking an input and producing some sort of linguistic structure for it.PARSING

We will use the term parsing very broadly throughout this book, including many kinds
of structures that might be produced; morphological, syntactic, semantic, discourse; in
the form of a string, or a tree, or a network. Morphological parsing or stemming applies
to many affixes other than plurals; for example we might need to take any English verb
form ending in-ing (going, talking, congratulating) and parse it into its verbal stem
plus the-ing morpheme. So given thesurfaceor input form going, we might want toSURFACE

produce the parsed formVERB-go + GERUND-ing.
Morphological parsing is important throughout speech and language processing. It

plays a crucial role in Web search for morphologically complex languages like Rus-
sian or German; in Russian the wordMoscowhas different endings in the phrases
Moscow, of Moscow, from Moscow, and so on. We want to be able to automatically

1 (see e.g., Seuss (1960))
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search for the inflected forms of the word even if the user onlytyped in the base form.
Morphological parsing also plays a crucial role in part-of-speech tagging for these mor-
phologically complex languages, as we will see in Ch. 5. It isimportant for producing
the large dictionaries that are necessary for robust spell-checking. We will need it in
machine translation to realize for example that the French wordsva andaller should
both translate to forms of the English verbgo.

To solve the morphological parsing problem, why couldn’t wejust store all the
plural forms of English nouns and-ing forms of English verbs in a dictionary and do
parsing by lookup? Sometimes we can do this, and for example for English speech
recognition this is exactly what we do. But for many NLP applications this isn’t pos-
sible because-ing is aproductive suffix; by this we mean that it applies to every verb.PRODUCTIVE

Similarly -sapplies to almost every noun. Productive suffixes even applyto new words;
thus the new wordfax can automatically be used in the-ing form: faxing. Since new
words (particularly acronyms and proper nouns) are createdevery day, the class of
nouns in English increases constantly, and we need to be ableto add the plural mor-
pheme-s to each of these. Additionally, the plural form of these new nouns depends
on the spelling/pronunciation of the singular form; for example if the noun ends in-z
then the plural form is-esrather than-s. We’ll need to encode these rules somewhere.

Finally, we certainly cannot list all the morphological variants of every word in
morphologically complex languages like Turkish, which haswords like:

(3.1) uygarlaştıramadıklarımızdanmışsınızcasına
uygar
civilized

+laş
+BEC

+tır
+CAUS

+ama
+NABL

+dık
+PART

+lar
+PL

+ımız
+P1PL

+dan
+ABL

+mış
+PAST

+sınız
+2PL

+casına
+AsIf

“(behaving) as if you are among those whom we could not civilize”

The various pieces of this word (themorphemes) have these meanings:

+BEC “become”
+CAUS the causative verb marker (‘cause to X’)
+NABL “not able”
+PART past participle form
+P1PL 1st person pl possessive agreement
+2PL 2nd person pl
+ABL ablative (from/among) case marker
+AsIf derivationally forms an adverb from a finite verb

Not all Turkish words look like this; the average Turkish word has about three mor-
phemes. But such long words do exist; indeed Kemal Oflazer, who came up with this
example, notes (p.c.) that verbs in Turkish have 40,000 possible forms not counting
derivational suffixes. Adding derivational suffixes, such as causatives, allows a the-
oretically infinite number of words, since causativizationcan be repeated in a single
word (You cause X to cause Y to . . . do W). Thus we cannot store all possible Turkish
words in advance, and must do morphological parsing dynamically.

In the next section we survey morphological knowledge for English and some other
languages. We then introduce the key algorithm for morphological parsing, thefinite-
state transducer. Finite-state transducers are a crucial technology throughout speech
and language processing, so we will return to them again in later chapters.
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After describing morphological parsing, we will introducesome related algorithms
in this chapter. In some applications we don’t need to parse aword, but we do need to
map from the word to its root or stem. For example in information retrieval and web
search (IR), we might want to map fromfoxesto fox; but might not need to also know
that foxesis plural. Just stripping off such word endings is calledstemming in IR. WeSTEMMING

will describe a simple stemming algorithm called thePorter stemmer.
For other speech and language processing tasks, we need to know that two words

have a similar root, despite their surface differences. Forexample the wordssang, sung,
andsingsare all forms of the verbsing. The wordsingis sometimes called the common
lemmaof these words, and mapping from all of these tosing is calledlemmatization.2LEMMATIZATION

Next, we will introduce another task related to morphological parsing.Tokeniza-
tion or word segmentationis the task of separating out (tokenizing) words from run-TOKENIZATION

ning text. In English, words are often separated from each other by blanks (whites-
pace), but whitespace is not always sufficient; we’ll need tonotice thatNew Yorkand
rock ’n’ roll are individual words despite the fact that they contain spaces, but for many
applications we’ll need to separateI’m into the two wordsI andam.

Finally, for many applications we need to know how similar two words are ortho-
graphically. Morphological parsing is one method for computing this similarity, but
another is to just compare the strings of letters to see how similar they are. A common
way of doing this is with theminimum edit distance algorithm, which is important
throughout NLP. We’ll introduce this algorithm and also show how it can be used in
spell-checking.

3.1 SURVEY OF (MOSTLY) ENGLISH MORPHOLOGY

Morphology is the study of the way words are built up from smaller meaning-bearing
units,morphemes. A morpheme is often defined as the minimal meaning-bearing unitMORPHEMES

in a language. So for example the wordfox consists of a single morpheme (the mor-
phemefox) while the wordcatsconsists of two: the morphemecat and the morpheme
-s.

As this example suggests, it is often useful to distinguish two broad classes of
morphemes:stemsandaffixes. The exact details of the distinction vary from languageSTEMS

AFFIXES to language, but intuitively, the stem is the “main” morpheme of the word, supplying
the main meaning, while the affixes add “additional” meanings of various kinds.

Affixes are further divided intoprefixes, suffixes, infixes, andcircumfixes. Pre-
fixes precede the stem, suffixes follow the stem, circumfixes do both, and infixes are
inserted inside the stem. For example, the wordeatsis composed of a stemeat and
the suffix-s. The wordunbuckleis composed of a stembuckleand the prefixun-. En-
glish doesn’t have any good examples of circumfixes, but manyother languages do.
In German, for example, the past participle of some verbs is formed by addingge- to
the beginning of the stem and-t to the end; so the past participle of the verbsagen(to
say) isgesagt(said). Infixes, in which a morpheme is inserted in the middleof a word,

2 Lemmatization is actually more complex, since it sometimesinvolves deciding on which sense of a word
is present. We return to this issue in Ch. 20.
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occur very commonly for example in the Philipine language Tagalog. For example the
affix um, which marks the agent of an action, is infixed to the Tagalog stemhingi “bor-
row” to producehumingi. There is one infix that occurs in some dialects of English in
which the taboo morphemes “f**king” or “bl**dy” or others like them are inserted in
the middle of other words (“Man-f**king-hattan”, “abso-bl**dy-lutely” 3) (McCawley,
1978).

A word can have more than one affix. For example, the wordrewriteshas the prefix
re-, the stemwrite, and the suffix-s. The wordunbelievablyhas a stem (believe) plus
three affixes (un-, -able, and-ly). While English doesn’t tend to stack more than four
or five affixes, languages like Turkish can have words with nine or ten affixes, as we
saw above. Languages that tend to string affixes together like Turkish does are called
agglutinative languages.

There are many ways to combine morphemes to create words. Four of these meth-
ods are common and play important roles in speech and language processing:inflec-
tion, derivation, compounding, andcliticization .INFLECTION

DERIVATION

COMPOUNDING

CLITICIZATION

Inflection is the combination of a word stem with a grammatical morpheme, usu-
ally resulting in a word of the same class as the original stem, and usually filling some
syntactic function like agreement. For example, English has the inflectional morpheme
-s for marking theplural on nouns, and the inflectional morpheme-edfor marking the
past tense on verbs.Derivation is the combination of a word stem with a grammatical
morpheme, usually resulting in a word of adifferentclass, often with a meaning hard
to predict exactly. For example the verbcomputerizecan take the derivational suffix
-ation to produce the nouncomputerization. Compounding is the combination of mul-
tiple word stems together. For example the noundoghouseis the concatenation of the
morphemedogwith the morphemehouse. Finally, cliticization is the combination of
a word stem with aclitic . A clitic is a morpheme that acts syntactically like a word,CLITIC

but is reduced in form and attached (phonologically and sometimes orthographically)
to another word. For example the English morpheme’ve in the wordI’ve is a clitic, as
is the French definite articlel’ in the wordl’opera. In the following sections we give
more details on these processes.

3.1.1 Inflectional Morphology

English has a relatively simple inflectional system; only nouns, verbs, and sometimes
adjectives can be inflected, and the number of possible inflectional affixes is quite
small.

English nouns have only two kinds of inflection: an affix that marksplural and anPLURAL

affix that markspossessive. For example, many (but not all) English nouns can either
appear in the bare stem orsingular form, or take a plural suffix. Here are examples ofSINGULAR

the regular plural suffix-s (also spelled-es), and irregular plurals:

Regular Nouns Irregular Nouns

Singular cat thrush mouse ox
Plural cats thrushes mice oxen

3 Alan Jay Lerner, the lyricist of My Fair Lady, bowdlerized the latter toabso-bloomin’lutelyin the lyric to
“Wouldn’t It Be Loverly?” (Lerner, 1978, p. 60).
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While the regular plural is spelled-s after most nouns, it is spelled-esafter words
ending in-s (ibis/ibises), -z (waltz/waltzes), -sh (thrush/thrushes), -ch (finch/finches),
and sometimes-x (box/boxes). Nouns ending in-y preceded by a consonant change the
-y to -i (butterfly/butterflies).

The possessive suffix is realized by apostrophe +-s for regular singular nouns
(llama’s) and plural nouns not ending in-s (children’s) and often by a lone apostro-
phe after regular plural nouns (llamas’) and some names ending in-s or -z (Euripides’
comedies).

English verbal inflection is more complicated than nominal inflection. First, En-
glish has three kinds of verbs;main verbs, (eat, sleep, impeach), modal verbs (can,
will, should), andprimary verbs (be, have, do) (using the terms of Quirk et al., 1985).
In this chapter we will mostly be concerned with the main and primary verbs, because
it is these that have inflectional endings. Of these verbs a large class areregular, that isREGULAR

to say all verbs of this class have the same endings marking the same functions. These
regular verbs (e.g.walk, or inspect) have four morphological forms, as follow:

Morphological Form Classes Regularly Inflected Verbs
stem walk merge try map
-s form walks merges tries maps
-ing participle walking merging trying mapping
Past form or-edparticiple walked merged tried mapped

These verbs are called regular because just by knowing the stem we can predict
the other forms by adding one of three predictable endings and making some regular
spelling changes (and as we will see in Ch. 7, regular pronunciation changes). These
regular verbs and forms are significant in the morphology of English first because they
cover a majority of the verbs, and second because the regularclass isproductive. As
discussed earlier, a productive class is one that automatically includes any new words
that enter the language. For example the recently-created verb fax (My mom faxedme
the note from cousin Everett) takes the regular endings-ed, -ing, -es. (Note that the-s
form is spelledfaxesrather thanfaxs; we will discuss spelling rules below).

The irregular verbs are those that have some more or less idiosyncratic forms ofIRREGULAR VERBS

inflection. Irregular verbs in English often have five different forms, but can have as
many as eight (e.g., the verbbe) or as few as three (e.g.cut or hit). While constituting
a much smaller class of verbs (Quirk et al. (1985) estimate there are only about 250
irregular verbs, not counting auxiliaries), this class includes most of the very frequent
verbs of the language.4 The table below shows some sample irregular forms. Note that
an irregular verb can inflect in the past form (also called thepreterite) by changing itsPRETERITE

vowel (eat/ate), or its vowel and some consonants (catch/caught), or with no change at
all (cut/cut).

4 In general, the more frequent a word form, the more likely it is to have idiosyncratic properties; this is due
to a fact about language change; very frequent words tend to preserve their form even if other words around
them are changing so as to become more regular.
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Morphological Form ClassesIrregularly Inflected Verbs
stem eat catch cut
-s form eats catches cuts
-ing participle eating catching cutting
Past form ate caught cut
-ed/-enparticiple eaten caught cut

The way these forms are used in a sentence will be discussed inthe syntax and se-
mantics chapters but is worth a brief mention here. The-s form is used in the “habitual
present” form to distinguish the third-person singular ending (She jogs every Tuesday)
from the other choices of person and number (I/you/we/they jog every Tuesday). The
stem form is used in the infinitive form, and also after certain other verbs (I’d rather
walk home, I want to walk home). The-ing participle is used in theprogressivecon-PROGRESSIVE

struction to mark present or ongoing activity (It is raining), or when the verb is treated
as a noun; this particular kind of nominal use of a verb is called agerund use:FishingGERUND

is fine if you live near water.The-ed/-enparticiple is used in theperfect constructionPERFECT

(He’s eaten lunch already) or the passive construction (The verdict was overturned
yesterday).

In addition to noting which suffixes can be attached to which stems, we need to
capture the fact that a number of regular spelling changes occur at these morpheme
boundaries. For example, a single consonant letter is doubled before adding the-ing
and-edsuffixes (beg/begging/begged). If the final letter is “c”, the doubling is spelled
“ck” ( picnic/picnicking/picnicked). If the base ends in a silent-e, it is deleted before
adding-ing and-ed(merge/merging/merged). Just as for nouns, the-sending is spelled
-esafter verb stems ending in-s (toss/tosses) , -z, (waltz/waltzes) -sh, (wash/washes)
-ch, (catch/catches) and sometimes-x (tax/taxes). Also like nouns, verbs ending in-y
preceded by a consonant change the-y to -i (try/tries).

The English verbal system is much simpler than for example the European Spanish
system, which has as many as fifty distinct verb forms for eachregular verb. Fig. 3.1
shows just a few of the examples for the verbamar, ‘to love’. Other languages can
have even more forms than this Spanish example.

Present Imperfect Future Preterite Present Conditional Imperfect Future
Indicative Indicative Subjnct. Subjnct. Subjnct.

1SG amo amaba amaré amé ame amarı́a amara amare
2SG amas amabas amarás amaste ames amarı́as amaras amares
3SG ama amaba amará amó ame amarı́a amara amáreme
1PL amamos amábamos amaremos amamos amemos amarı́amos amáramos amáremos
2PL amáis amabais amaréis amasteis améis amarı́ais amarais amareis
3PL aman amaban amarán amaron amen amarı́an amaran amaren

Figure 3.1 To love in Spanish. Some of the inflected forms of the verbamar in Euro-
pean Spanish.1SGstands for “first person singular”, 3PL for “third person plural”, and so
on.
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3.1.2 Derivational Morphology

While English inflection is relatively simple compared to other languages, derivation
in English is quite complex. Recall that derivation is the combination of a word stem
with a grammatical morpheme, usually resulting in a word of adifferentclass, often
with a meaning hard to predict exactly.

A very common kind of derivation in English is the formation of new nouns, of-
ten from verbs or adjectives. This process is callednominalization. For example,NOMINALIZATION

the suffix-ation produces nouns from verbs ending often in the suffix-ize (computer-
ize→ computerization). Here are examples of some particularly productive English
nominalizing suffixes.

Suffix Base Verb/AdjectiveDerived Noun

-ation computerize (V) computerization
-ee appoint (V) appointee
-er kill (V) killer
-ness fuzzy (A) fuzziness

Adjectives can also be derived from nouns and verbs. Here areexamples of a few
suffixes deriving adjectives from nouns or verbs.

Suffix Base Noun/VerbDerived Adjective

-al computation (N) computational
-able embrace (V) embraceable
-less clue (N) clueless

Derivation in English is more complex than inflection for a number of reasons.
One is that it is generally less productive; even a nominalizing suffix like -ation, which
can be added to almost any verb ending in-ize, cannot be added to absolutely ev-
ery verb. Thus we can’t say *eatationor *spellation(we use an asterisk (*) to mark
“non-examples” of English). Another is that there are subtle and complex meaning
differences among nominalizing suffixes. For examplesincerityhas a subtle difference
in meaning fromsincereness.

3.1.3 Cliticization

Recall that a clitic is a unit whose status lies in between that of an affix and a word. The
phonological behavior of clitics is like affixes; they tend to be short and unaccented (we
will talk more about phonology in Ch. 8). Their syntactic behavior is more like words,
often acting as pronouns, articles, conjunctions, or verbs. Clitics preceding a word are
calledproclitics, while those following areenclitics.PROCLITICS

ENCLITICS English clitics include these auxiliary verbal forms:

Full Form Clitic Full Form Clitic

am ’m have ’ve
are ’re has ’s
is ’s had ’d
will ’ll would ’d
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Note that the clitics in English are ambiguous; Thusshe’scan meanshe isor she
has. Except for a few such ambiguities, however, correctly segmenting off clitics in
English is simplified by the presence of the apostrophe. Clitics can be harder to parse
in other languages. In Arabic and Hebrew, for example, the definite article (the; Al in
Arabic,ha in Hebrew) is cliticized on to the front of nouns. It must be segmented off
in order to do part-of-speech tagging, parsing, or other tasks. Other Arabic proclitics
include prepositions likeb ‘by/with’, and conjunctions likew ‘and’. Arabic also has
encliticsmarking certain pronouns. For example the wordand by their virtueshas
clitics meaningand, by, andtheir, a stemvirtue, and a plural affix. Note that since
Arabic is read right to left, these would actually appear ordered from right to left in an
Arabic word.

proclitic proclitic stem affix enclitic
Arabic w b Hsn At hm
Gloss and by virtue s their

3.1.4 Non-concatenative Morphology

The kind of morphology we have discussed so far, in which a word is composed of a
string of morphemes concatenated together is often calledconcatenative morphology.CONCATENATIVE

A number of languages have extensivenon-concatenative morphology, in which mor-
phemes are combined in more complex ways. The Tagalog infixation example above is
one example of non-concatenative morphology, since two morphemes (hingi andum)
are intermingled.

Another kind of non-concatenative morphology is calledtemplatic morphology
or root-and-pattern morphology. This is very common in Arabic, Hebrew, and other
Semitic languages. In Hebrew, for example, a verb (as well asother parts-of-speech)
is constructed using two components: a root, consisting usually of three consonants
(CCC) and carrying the basic meaning, and a template, which gives the ordering of
consonants and vowels and specifies more semantic information about the resulting
verb, such as the semantic voice (e.g., active, passive, middle). For example the He-
brew tri-consonantal rootlmd, meaning ‘learn’ or ‘study’, can be combined with the
active voice CaCaC template to produce the wordlamad, ‘he studied’, or the inten-
sive CiCeC template to produce the wordlimed, ‘he taught’, or the intensive passive
template CuCaC to produce the wordlumad, ‘he was taught’. Arabic and Hebrew com-
bine this templatic morphology with concatenative morphology (like the cliticization
example shown in the previous section).

3.1.5 Agreement

We introduced the plural morpheme above, and noted that plural is marked on both
nouns and verbs in English. We say that the subject noun and the main verb in English
have toagree in number, meaning that the two must either be both singular or bothAGREE

plural. There are other kinds of agreement processes. For example nouns, adjectives,
and sometimes verbs in many languages are marked forgender. A gender is a kindGENDER

of equivalence class that is used by the language to categorize the nouns; each noun
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falls into one class. Many languages (for example Romance languages like French,
Spanish, or Italian) have 2 genders, which are referred to asmasculine and feminine.
Other languages (like most Germanic and Slavic languages) have three (masculine,
feminine, neuter). Some languages, for example the Bantu languages of Africa, have
as many as 20 genders. When the number of classes is very large, we often refer to
them asnoun classesinstead of genders.NOUN CLASSES

Gender is sometimes marked explicitly on a noun; for exampleSpanish masculine
words often end in-o and feminine words in-a. But in many cases the gender is not
marked in the letters or phones of the noun itself. Instead, it is a property of the word
that must be stored in a lexicon. We will see an example of thisin Fig. 3.2.

3.2 FINITE-STATE MORPHOLOGICALPARSING

Let’s now proceed to the problem of parsing morphology. Our goal will be to take
input forms like those in the first and third columns of Fig. 3.2, produce output forms
like those in the second and fourth column.

English Spanish
Input Morphologically Input Morphologically Gloss

Parsed Output Parsed Output
cats cat +N +PL pavos pavo +N +Masc +Pl ‘ducks’
cat cat +N +SG pavo pavo +N +Masc +Sg ‘duck’
cities city +N +Pl bebo beber +V +PInd +1P +Sg ‘I drink’
geese goose +N +Pl canto cantar +V +PInd +1P +Sg ‘I sing’
goose goose +N +Sg canto canto +N +Masc +Sg ‘song’
goose goose +V puse poner +V +Perf +1P +Sg ‘I was able’
gooses goose +V +1P +Sg vino venir +V +Perf +3P +Sg ‘he/she came’
merging merge +V +PresPart vino vino +N +Masc +Sg ‘wine’
caught catch +V +PastPart lugar lugar +N +Masc +Sg ‘place’
caught catch +V +Past

Figure 3.2 Output of a morphological parse for some English and Spanishwords. Span-
ish output modified from the Xerox XRCE finite-state languagetools.

The second column contains the stem of each word as well as assorted morpho-
logical features. These features specify additional information about the stem. ForFEATURES

example the feature+N means that the word is a noun;+Sg means it is singular,+Pl
that it is plural. Morphological features will be referred to again in Ch. 5 and in more
detail in Ch. 16; for now, consider+Sg to be a primitive unit that means “singular”.
Spanish has some features that don’t occur in English; for example the nounslugarand
pavoare marked+Masc (masculine). Because Spanish nouns agree in gender with ad-
jectives, knowing the gender of a noun will be important for tagging and parsing.

Note that some of the input forms (likecaught, goose, canto, or vino) will be am-
biguous between different morphological parses. For now, we will consider the goal of
morphological parsing merely to list all possible parses. We will return to the task of
disambiguating among morphological parses in Ch. 5.
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In order to build a morphological parser, we’ll need at leastthe following:

1. lexicon: the list of stems and affixes, together with basic information about themLEXICON

(whether a stem is a Noun stem or a Verb stem, etc.).
2. morphotactics: the model of morpheme ordering that explains which classes ofMORPHOTACTICS

morphemes can follow other classes of morphemes inside a word. For example,
the fact that the English plural morpheme follows the noun rather than preceding
it is a morphotactic fact.

3. orthographic rules: thesespelling rules are used to model the changes that
occur in a word, usually when two morphemes combine (e.g., they→ ie spelling
rule discussed above that changescity + -s to citiesrather thancitys).

The next section will discuss how to represent a simple version of the lexicon just
for the sub-problem of morphological recognition, including how to use FSAs to model
morphotactic knowledge.

In following sections we will then introduce the finite-state transducer (FST) as a
way of modeling morphological features in the lexicon, and addressing morphological
parsing. Finally, we show how to use FSTs to model orthographic rules.

3.3 BUILDING A FINITE-STATE LEXICON

A lexicon is a repository for words. The simplest possible lexicon would consist of
an explicit list of every word of the language (everyword, i.e., including abbreviations
(“AAA”) and proper names (“Jane” or “Beijing”)) as follows:

a, AAA, AA, Aachen, aardvark, aardwolf, aba, abaca, aback, .. .

Since it will often be inconvenient or impossible, for the various reasons we dis-
cussed above, to list every word in the language, computational lexicons are usually
structured with a list of each of the stems and affixes of the language together with a
representation of the morphotactics that tells us how they can fit together. There are
many ways to model morphotactics; one of the most common is the finite-state au-
tomaton. A very simple finite-state model for English nominal inflection might look
like Fig. 3.3.

q0 q1 q2

reg-noun plural -s

irreg-sg-noun

irreg-pl-noun

Figure 3.3 A finite-state automaton for English nominal inflection.

The FSA in Fig. 3.3 assumes that the lexicon includes regularnouns (reg-noun)
that take the regular-splural (e.g.,cat, dog, fox, aardvark). These are the vast majority
of English nouns since for now we will ignore the fact that theplural of words likefox
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have an insertede: foxes. The lexicon also includes irregular noun forms that don’t
take-s, both singularirreg-sg-noun (goose, mouse) and pluralirreg-pl-noun (geese,
mice).

reg-noun irreg-pl-noun irreg-sg-noun plural

fox geese goose -s
cat sheep sheep
aardvark mice mouse

A similar model for English verbal inflection might look likeFig. 3.4.

q0
q1 q3

reg-verb-stem
past (-ed)

irreg-verb-stem

reg-verb-stem

q2

irreg-past-verb-form

past participle (-ed)

present participle (-ing)
3sg (-s)

Figure 3.4 A finite-state automaton for English verbal inflection

This lexicon has three stem classes (reg-verb-stem, irreg-verb-stem, and irreg-past-
verb-form), plus four more affix classes (-ed past,-ed participle,-ing participle, and
third singular-s):

reg-verb- irreg-verb- irreg-past- past past-part pres-part 3sg
stem stem verb

walk cut caught -ed -ed -ing -s
fry speak ate
talk sing eaten
impeach sang

English derivational morphology is significantly more complex than English inflec-
tional morphology, and so automata for modeling English derivation tend to be quite
complex. Some models of English derivation, in fact, are based on the more complex
context-free grammars of Ch. 12 (Sproat, 1993).

Consider a relatively simpler case of derivation: the morphotactics of English ad-
jectives. Here are some examples from Antworth (1990):

big, bigger, biggest, cool, cooler, coolest, coolly
happy, happier, happiest, happily red, redder, reddest
unhappy, unhappier, unhappiest, unhappily real, unreal, really
clear, clearer, clearest, clearly, unclear, unclearly
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An initial hypothesis might be that adjectives can have an optional prefix (un-), an
obligatory root (big, cool, etc.) and an optional suffix (-er, -est, or -ly). This might
suggest the the FSA in Fig. 3.5.

q0 q1 q2

un- adj-root

∋

q3

-er  -est  -ly

Figure 3.5 An FSA for a fragment of English adjective morphology: Antworth’s Pro-
posal #1.

Alas, while this FSA will recognize all the adjectives in thetable above, it will also
recognize ungrammatical forms likeunbig, unfast, oranger, or smally. We need to set
up classes of roots and specify their possible suffixes. Thusadj-root1 would include
adjectives that can occur withun-and-ly (clear, happy, andreal) while adj-root2 will
include adjectives that can’t (big, small), and so on.

This gives an idea of the complexity to be expected from English derivation. As a
further example, we give in Figure 3.6 another fragment of anFSA for English nominal
and verbal derivational morphology, based on Sproat (1993), Bauer (1983), and Porter
(1980). This FSA models a number of derivational facts, suchas the well known
generalization that any verb ending in-izecan be followed by the nominalizing suffix
-ation (Bauer, 1983; Sproat, 1993). Thus since there is a wordfossilize, we can predict
the wordfossilizationby following statesq0, q1, andq2. Similarly, adjectives ending
in -al or -ableat q5 (equal, formal, realizable) can take the suffix-ity, or sometimes
the suffix-nessto stateq6 (naturalness, casualness). We leave it as an exercise for the
reader (Exercise 3.1) to discover some of the individual exceptions to many of these
constraints, and also to give examples of some of the variousnoun and verb classes.

q0 q1 q2

nouni -ize/V
q3

-ation/N
q4

adj-al

q5
q6

-er/N-able/A

-ness/N

-ity/N

adj-al

q7
q8

q9verbj
-ive/A

adj-ous
-ly/Adv

-ness/N

q10 q11

-ly/Adv
-ful/A-ative/A

verbk

nounl

Figure 3.6 An FSA for another fragment of English derivational morphology.

We can now use these FSAs to solve the problem ofmorphological recognition;
that is, of determining whether an input string of letters makes up a legitimate English
word or not. We do this by taking the morphotactic FSAs, and plugging in each “sub-
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lexicon” into the FSA. That is, we expand each arc (e.g., thereg-noun-stemarc) with
all the morphemes that make up the set ofreg-noun-stem. The resulting FSA can then
be defined at the level of the individual letter.

f

o

∋c

g

s

o

x

ta

o s e

e e s e

Figure 3.7 Expanded FSA for a few English nouns with their inflection. Note that this
automaton will incorrectly accept the inputfoxs. We will see beginning on page 19 how to
correctly deal with the insertede in foxes.

Fig. 3.7 shows the noun-recognition FSA produced by expanding the Nominal In-
flection FSA of Fig. 3.3 with sample regular and irregular nouns for each class. We can
use Fig. 3.7 to recognize strings likeaardvarksby simply starting at the initial state,
and comparing the input letter by letter with each word on each outgoing arc, and so
on, just as we saw in Ch. 2.

3.4 FINITE-STATE TRANSDUCERS

We’ve now seen that FSAs can represent the morphotactic structure of a lexicon, and
can be used for word recognition. In this section we introduce the finite-state trans-
ducer. The next section will show how transducers can be applied to morphological
parsing.

A transducer maps between one representation and another; afinite-state trans-
ducer or FST is a type of finite automaton which maps between two sets of symbols.FST

We can visualize an FST as a two-tape automaton which recognizes or generatespairs
of strings. Intuitively, we can do this by labeling each arc in the finite-state machine
with two symbol strings, one from each tape. Fig. 3.8 shows anexample of an FST
where each arc is labeled by an input and output string, separated by a colon.

The FST thus has a more general function than an FSA; where an FSA defines a
formal language by defining a set of strings, an FST defines arelation between sets of
strings. Another way of looking at an FST is as a machine that reads one string and
generates another. Here’s a summary of this four-fold way ofthinking about transduc-
ers:

• FST as recognizer:a transducer that takes a pair of strings as input and outputs
acceptif the string-pair is in the string-pair language, andreject if it is not.
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q0

aa:b

q1

b:
b:a

b:b

a:ba

∋

Figure 3.8 A finite-state transducer, modified from Mohri (1997).

• FST as generator:a machine that outputs pairs of strings of the language. Thus
the output is a yes or no, and a pair of output strings.

• FST as translator: a machine that reads a string and outputs another string

• FST as set relater:a machine that computes relations between sets.

All of these have applications in speech and language processing. For morphologi-
cal parsing (and for many other NLP applications), we will apply the FST as translator
metaphor, taking as input a string of letters and producing as output a string of mor-
phemes.

Let’s begin with a formal definition. An FST can be formally defined with 7 pa-
rameters:

Q a finite set ofN statesq0,q1, . . . ,qN−1

Σ a finite set corresponding to the input alphabet

∆ a finite set corresponding to the output alphabet

q0 ∈Q the start state

F ⊆Q the set of final states

δ(q,w) the transition function or transition matrix between states; Given a
stateq∈ Q and a stringw∈ Σ∗, δ(q,w) returns a set of new states
Q′ ∈ Q. δ is thus a function fromQ×Σ∗ to 2Q (because there are
2Q possible subsets ofQ). δ returns a set of states rather than a
single state because a given input may be ambiguous in which state
it maps to.

σ(q,w) the output function giving the set of possible output strings for each
state and input. Given a stateq ∈ Q and a stringw ∈ Σ∗, σ(q,w)
gives a set of output strings, each a stringo∈ ∆∗. σ is thus a func-
tion fromQ×Σ∗ to 2∆∗

Where FSAs are isomorphic to regular languages, FSTs are isomorphic toregu-
lar relations. Regular relations are sets of pairs of strings, a natural extension of theREGULAR

RELATIONS

regular languages, which are sets of strings. Like FSAs and regular languages, FSTs
and regular relations are closed under union, although in general they are not closed
under difference, complementation and intersection (although some useful subclasses
of FSTsareclosed under these operations; in general FSTs that are not augmented with
the ǫ are more likely to have such closure properties). Besides union, FSTs have two
additional closure properties that turn out to be extremelyuseful:
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• inversion: The inversion of a transducerT (T−1) simply switches the input andINVERSION

output labels. Thus ifT maps from the input alphabetI to the output alphabetO,
T−1 maps fromO to I .
• composition: If T1 is a transducer fromI1 to O1 andT2 a transducer fromO1 toCOMPOSITION

O2, thenT1◦T2 maps fromI1 to O2.

Inversion is useful because it makes it easy to convert a FST-as-parser into an FST-
as-generator.

Composition is useful because it allows us to take two transducers that run in series
and replace them with one more complex transducer. Composition works as in algebra;
applyingT1 ◦T2 to an input sequenceS is identical to applyingT1 to S and thenT2 to
the result; thusT1◦T2(S) = T2(T1(S)).

Fig. 3.9, for example, shows the composition of[a:b]+ with [b:c]+ to produce
[a:c]+ .

q0 q1

a:c

a:c
q0 q1

b:c
b:c

q0 q1

a:b

a:b
=

Figure 3.9 The composition of[a:b]+ with [b:c]+ to produce[a:c]+ .

Theprojection of an FST is the FSA that is produced by extracting only one sidePROJECTION

of the relation. We can refer to the projection to the left or upper side of the relation as
theupper or first projection and the projection to the lower or right side of the relation
as thelower or secondprojection.

3.4.1 Sequential Transducers and Determinism

Transducers as we have described them may be nondeterministic, in that a given input
may translate to many possible output symbols. Thus using general FSTs requires the
kinds of search algorithms discussed in Ch. 2, making FSTs quite slow in the general
case. This suggests that it would nice to have an algorithm toconvert a nondeterministic
FST to a deterministic one. But while every non-deterministic FSA is equivalent to
some deterministic FSA, not all finite-state transducers can be determinized.

Sequential transducers, by contrast, are a subtype of transducers that are deter-SEQUENTIAL
TRANSDUCERS

ministic on their input. At any state of a sequential transducer, each given symbol of
the input alphabetΣ can label at most one transition out of that state. Fig. 3.10 gives
an example of a sequential transducer from Mohri (1997); note that here, unlike the
transducer in Fig. 3.8, the transitions out of each state aredeterministic based on the
state and the input symbol. Sequential transducers can haveepsilon symbols in the
output string, but not on the input.

Sequential transducers are not necessarily sequential on their output. Mohri’s trans-
ducer in Fig. 3.10 is not, for example, since two distinct transitions leaving state 0 have
the same output (b). Since the inverse of a sequential transducer may thus not be se-
quential, we always need to specify the direction of the transduction when discussing
sequentiality. Formally, the definition of sequential transducers modifies theδ andσ
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q0 q1

b:
a:b

b:b

a:ba

∋

Figure 3.10 A sequential finite-state transducer, from Mohri (1997).

functions slightly;δ becomes a function fromQ×Σ∗ to Q (rather than to 2Q), andσ
becomes a function fromQ×Σ∗ to ∆∗ (rather than to 2∆

∗
).

One generalization of sequential transducers is thesubsequential transducer(Schützenberger,SUBSEQUENTIAL
TRANSDUCER

1977), which generates an additional output string at the final states, concatenating it
onto the output produced so far.

What makes sequential and subsequential transducers important is their efficiency;
because they are deterministic on input, they can be processed in time proportional to
the number of symbols in the input (they are linear in their input length) rather than
proportional to some much larger number which is a function of the number of states.
Another advantage of subsequential transducers is that there exist efficient algorithms
for their determinization (Mohri, 1997) and minimization (Mohri, 2000), extending the
algorithms for determinization and minimization of finite-state automata that we saw
in Ch. 2. also an equivalence algorithm.

While both sequential and subsequential transducers are deterministic and efficient,
neither of them is able to handle ambiguity, since they transduce each input string
to exactly one possible output string. Since ambiguity is a crucial property of natu-
ral language, it will be useful to have an extension of subsequential transducers that
can deal with ambiguity, but still retain the efficiency and other useful properties of
sequential transducers. One such generalization of subsequential transducers is the
p-subsequentialtransducer. Ap-subsequentialtransducer allows forp(p≥ 1) final
output strings to be associated with each final state (Mohri,1996). They can thus han-
dle a finite amount of ambiguity, which is useful for many NLP tasks. Fig. 3.11 shows
an example of a 2-subsequential FST.

q0
q1

a:a

b:a q2

q3

a:a

b:b

a

b

Figure 3.11 A 2-subsequential finite-state transducer, from Mohri (1997).

Mohri (1996, 1997) show a number of tasks whose ambiguity canbe limited in this
way, including the representation of dictionaries, the compilation of morphological
and phonological rules, and local syntactic constraints. For each of these kinds of
problems, he and others have shown that they arep-subsequentializable, and thus can
be determinized and minimized. This class of transducers includes many, although not
necessarily all, morphological rules.
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3.5 FSTS FORMORPHOLOGICALPARSING

Let’s now turn to the task of morphological parsing. Given the inputcats, for instance,
we’d like to outputcat +N +Pl, telling us thatcat is a plural noun. Given the Spanish
input bebo(‘I drink’), we’d like to output beber +V +PInd +1P +Sgtelling us that
bebois the present indicative first person singular form of the Spanish verbbeber, ‘to
drink’.

In thefinite-state morphologyparadigm that we will use, we represent a word as
a correspondence between alexical level, which represents a concatenation of mor-
phemes making up a word, and thesurface level, which represents the concatenationSURFACE

of letters which make up the actual spelling of the word. Fig.3.12 shows these two
levels for (English)cats.

c +N +Pl

c a t s  

Lexical

Surface

Figure 3.12 Schematic examples of the lexical and surface tapes; the actual transducers
will involve intermediate tapes as well.

For finite-state morphology it’s convenient to view an FST ashaving two tapes. The
upper or lexical tape, is composed from characters from one alphabetΣ. The lowerLEXICAL TAPE

or surface tape, is composed of characters from another alphabet∆. In the two-level
morphology of Koskenniemi (1983), we allow each arc only to have a singlesymbol
from each alphabet. We can then combine the two symbol alphabetsΣ and∆ to create
a new alphabet,Σ′, which makes the relationship to FSAs quite clear.Σ′ is a finite
alphabet of complex symbols. Each complex symbol is composed of an input-output
pair i : o; one symboli from the input alphabetΣ, and one symbolo from an output
alphabet∆, thusΣ′ ⊆ Σ×∆. Σ and∆ may each also include the epsilon symbolǫ. Thus
where an FSA accepts a language stated over a finite alphabet of single symbols, such
as the alphabet of our sheep language:

Σ = {b,a, !}(3.2)

an FST defined this way accepts a language stated overpairsof symbols, as in:

Σ′ = {a : a, b : b, ! : ! , a : !, a : ǫ, ǫ : !}(3.3)

In two-level morphology, the pairs of symbols inΣ′ are also calledfeasible pairs. ThusFEASIBLE PAIRS

each feasible pair symbola : b in the transducer alphabetΣ′ expresses how the symbol
a from one tape is mapped to the symbolb on the other tape. For examplea : ǫ means
that ana on the upper tape will correspond tonothingon the lower tape. Just as for
an FSA, we can write regular expressions in the complex alphabetΣ′. Since it’s most
common for symbols to map to themselves, in two-level morphology we call pairs like
a : a default pairs, and just refer to them by the single lettera.DEFAULT PAIRS
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We are now ready to build an FST morphological parser out of our earlier morpho-
tactic FSAs and lexica by adding an extra “lexical” tape and the appropriate morpho-
logical features. Fig. 3.13 shows an augmentation of Fig. 3.3 with the nominal mor-
phological features (+Sg and+Pl ) that correspond to each morpheme. The symbol
ˆ indicates amorpheme boundary, while the symbol# indicates aword boundary.MORPHEME

BOUNDARY

#

WORD BOUNDARY

The morphological features map to the empty stringǫ or the boundary symbols since
there is no segment corresponding to them on the output tape.

q0

q1

q�reg-noun

irreg-pl-noun

irreg-sg-noun q2

q3

q4

q5

q6

+N

+N

+N

+Pl

+Pl
#

#

#

^s#+Sg

+Sg

∋

∋

∋

Figure 3.13 A schematic transducer for English nominal number inflection Tnum. The
symbols above each arc represent elements of the morphological parse in the lexical tape;
the symbols below each arc represent the surface tape (or theintermediate tape, to be
described later), using the morpheme-boundary symbol ˆ andword-boundary marker #.
The labels on the arcs leavingq0 are schematic, and need to be expanded by individual
words in the lexicon.

In order to use Fig. 3.13 as a morphological noun parser, it needs to be expanded
with all the individual regular and irregular noun stems, replacing the labelsreg-noun
etc. In order to do this we need to update the lexicon for this transducer, so that irreg-
ular plurals likegeesewill parse into the correct stemgoose +N +Pl . We do this
by allowing the lexicon to also have two levels. Since surface geesemaps to lexical
goose , the new lexical entry will be “g:g o:e o:e s:s e:e ”. Regular forms
are simpler; the two-level entry forfox will now be “f:f o:o x:x ”, but by relying
on the orthographic convention thatf stands forf:f and so on, we can simply refer to
it as fox and the form forgeeseas “g o:e o:e s e ”. Thus the lexicon will look
only slightly more complex:

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose
cat sheep sheep
aardvark m o:i u:ǫ s:c e mouse

The resulting transducer, shown in Fig. 3.14, will map plural nouns into the stem
plus the morphological marker+Pl , and singular nouns into the stem plus the mor-
phological marker+Sg. Thus a surfacecatswill map to cat +N +Pl . This can be
viewed in feasible-pair format as follows:
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Figure 3.14 A fleshed-out English nominal inflection FSTTlex, expanded fromTnum
by replacing the three arcs with individual word stems (onlya few sample word stems are
shown).

c:c a:a t:t +N: ǫ +Pl:ˆs#

Since the output symbols include the morpheme and word boundary markers ˆ and
#, the lower labels Fig. 3.14 do not correspond exactly to thesurface level. Hence we
refer to tapes with these morpheme boundary markers in Fig. 3.15 asintermediate
tapes; the next section will show how the boundary marker is removed.

f o +N +Pl

f o #

Lexical

Intermediate

Figure 3.15 A schematic view of the lexical and intermediate tapes.

3.6 TRANSDUCERS ANDORTHOGRAPHICRULES

The method described in the previous section will successfully recognize words like
aardvarksand mice. But just concatenating the morphemes won’t work for cases
where there is a spelling change; it would incorrectly reject an input likefoxesand
accept an input likefoxs. We need to deal with the fact that English often requires
spelling changes at morpheme boundaries by introducingspelling rules (or ortho-SPELLING RULES

graphic rules) This section introduces a number of notations for writing such rules
and shows how to implement the rules as transducers. In general, the ability to im-
plement rules as a transducer turns out to be useful throughout speech and language
processing. Here’s some spelling rules:



DRAFT

20 Chapter 3. Words & Transducers

Name Description of Rule Example

Consonant 1-letter consonant doubled before-ing/-ed beg/begging
doubling
E deletion Silent e dropped before-ing and-ed make/making
E insertion e added after-s,-z,-x,-ch, -shbefore-s watch/watches
Y replacement-y changes to-ie before-s, -i before-ed try/tries
K insertion verbs ending withvowel + -cadd-k panic/panicked

We can think of these spelling changes as taking as input a simple concatenation of
morphemes (the “intermediate output” of the lexical transducer in Fig. 3.14) and pro-
ducing as output a slightly-modified (correctly-spelled) concatenation of morphemes.
Fig. 3.16 shows in schematic form the three levels we are talking about: lexical, inter-
mediate, and surface. So for example we could write an E-insertion rule that performs
the mapping from the intermediate to surface levels shown inFig. 3.16. Such a rule

f o +N +Pl

f o #Intermediate

f oSurface

Lexical

Figure 3.16 An example of the lexical, intermediate, and surface tapes.Between each
pair of tapes is a two-level transducer; the lexical transducer of Fig. 3.14 between the
lexical and intermediate levels, and the E-insertion spelling rule between the intermediate
and surface levels. The E-insertion spelling rule inserts an e on the surface tape when the
intermediate tape has a morpheme boundary ˆ followed by the morpheme-s.

might say something like “insert aneon the surface tape just when the lexical tape has
a morpheme ending inx (or z, etc) and the next morpheme is-s”. Here’s a formalization
of the rule:

ǫ→ e /







x
s
z







ˆ s#(3.4)

This is the rule notation of Chomsky and Halle (1968); a rule of the form a→
b/c d means “rewritea asb when it occurs betweenc andd”. Since the symbol
ǫ means an empty transition, replacing it means inserting something. Recall that the
symbol ˆ indicates a morpheme boundary. These boundaries are deleted by including
the symbol ˆ:ǫ in the default pairs for the transducer; thus morpheme boundary markers
are deleted on the surface level by default. The # symbol is a special symbol that marks
a word boundary. Thus (3.4) means “insert ane after a morpheme-finalx, s, or z, and
before the morphemes”. Fig. 3.17 shows an automaton that corresponds to this rule.

The idea in building a transducer for a particular rule is to express only the con-
straints necessary for that rule, allowing any other stringof symbols to pass through
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qq qq1 q2

q5

other

^:   
other
#

s:e

^:s

^:

z, x

##, other

#,other

z,s,x

z,s,x

z,s,x

∋ ∋

∋

∋

Figure 3.17 The transducer for the E-insertion rule of (3.4), extended from a similar
transducer in Antworth (1990). We additionally need to delete the # symbol from the
surface string; this can be done either by interpreting the symbol # as the pair #:ǫ, or by
postprocessing the output to remove word boundaries.

unchanged. This rule is used to ensure that we can only see theǫ:e pair if we are in the
proper context. So stateq0, which models having seen only default pairs unrelated to
the rule, is an accepting state, as isq1, which models having seen az, s, orx. q2 models
having seen the morpheme boundary after thez, s, or x, and again is an accepting state.
Stateq3 models having just seen the E-insertion; it is not an accepting state, since the
insertion is only allowed if it is followed by thesmorpheme and then the end-of-word
symbol#.

Theothersymbol is used in Fig. 3.17 to safely pass through any parts ofwords that
don’t play a role in the E-insertion rule.othermeans “any feasible pair that is not in
this transducer”. So for example when leaving stateq0, we go toq1 on thez, s, or x
symbols, rather than following theotherarc and staying inq0. The semantics ofother
depends on what symbols are on other arcs; since# is mentioned on some arcs, it is (by
definition) not included inother, and thus, for example, is explicitly mentioned on the
arc fromq2 to q0.

A transducer needs to correctly reject a string that appliesthe rule when it shouldn’t.
One possible bad string would have the correct environment for the E-insertion, but
have no insertion. Stateq5 is used to ensure that thee is always inserted whenever the
environment is appropriate; the transducer reachesq5 only when it has seen ans after
an appropriate morpheme boundary. If the machine is in stateq5 and the next symbol
is #, the machine rejects the string (because there is no legal transition on# from q5).
Fig. 3.18 shows the transition table for the rule which makesthe illegal transitions
explicit with the “–” symbol.

The next section will show a trace of this E-insertion transducer running on a sam-
ple input string.
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State\ Input s:s x:x z:z ˆ:ǫ ǫ:e # other
q0: 1 1 1 0 - 0 0
q1: 1 1 1 2 - 0 0
q2: 5 1 1 0 3 0 0
q3 4 - - - - - -
q4 - - - - - 0 -
q5 1 1 1 2 - - 0

Figure 3.18 The state-transition table for E-insertion rule of Fig. 3.17, extended from a
similar transducer in Antworth (1990).

3.7 COMBINING FST LEXICON AND RULES

We are now ready to combine our lexicon and rule transducers for parsing and generat-
ing. Fig. 3.19 shows the architecture of a two-level morphology system, whether used
for parsing or generating. The lexicon transducer maps between the lexical level, with
its stems and morphological features, and an intermediate level that represents a simple
concatenation of morphemes. Then a host of transducers, each representing a single
spelling rule constraint, all run in parallel so as to map between this intermediate level
and the surface level. Putting all the spelling rules in parallel is a design choice; we
could also have chosen to run all the spelling rules in series(as a long cascade), if we
slightly changed each rule.

f o x +N +PL

f o x ^ s #

f o x e s

LEXICON-FST

FST
1

FST
n

orthographic rules

Figure 3.19 Generating or parsing with FST lexicon and rules

The architecture in Fig. 3.19 is a two-levelcascadeof transducers. Cascading twoCASCADE

automata means running them in series with the output of the first feeding the input to
the second. Cascades can be of arbitrary depth, and each level might be built out of
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many individual transducers. The cascade in Fig. 3.19 has two transducers in series:
the transducer mapping from the lexical to the intermediatelevels, and the collection
of parallel transducers mapping from the intermediate to the surface level. The cascade
can be run top-down to generate a string, or bottom-up to parse it; Fig. 3.20 shows a
trace of the systemacceptingthe mapping fromfox +N +PL to foxes.

f o +N +Pl

f o #Intermediate

f oSurface

Lexical

0 1 2 5 6 7T
lex

T
e-insert

0 0 0 1 2 4 03

Figure 3.20 Acceptingfoxes: The lexicon transducerTlex from Fig. 3.14 cascaded with
the E-insertion transducer in Fig. 3.17.

The power of finite-state transducers is that the exact same cascade with the same
state sequences is used when the machine is generating the surface tape from the lexical
tape, or when it is parsing the lexical tape from the surface tape. For example, for
generation, imagine leaving the Intermediate and Surface tapes blank. Now if we run
the lexicon transducer, givenfox +N +PL , it will producefoxˆs#on the Intermediate
tape via the same states that it accepted the Lexical and Intermediate tapes in our earlier
example. If we then allow all possible orthographic transducers to run in parallel, we
will produce the same surface tape.

Parsing can be slightly more complicated than generation, because of the problem
of ambiguity. For example,foxescan also be a verb (albeit a rare one, meaning “toAMBIGUITY

baffle or confuse”), and hence the lexical parse forfoxescould befox +V +3Sg as
well asfox +N +PL . How are we to know which one is the proper parse? In fact, for
ambiguous cases of this sort, the transducer is not capable of deciding.Disambiguat-
ing will require some external evidence such as the surroundingwords. ThusfoxesisDISAMBIGUATING

likely to be a noun in the sequenceI saw two foxes yesterday, but a verb in the sequence
That trickster foxes me every time!. We will discuss such disambiguation algorithms in
Ch. 5 and Ch. 20. Barring such external evidence, the best ourtransducer can do is just
enumerate the possible choices; so we can transducefoxˆs#into bothfox +V +3SG
andfox +N +PL .

There is a kind of ambiguity that we need to handle: local ambiguity that occurs
during the process of parsing. For example, imagine parsingthe input verbassess.
After seeingass, our E-insertion transducer may propose that thee that follows is
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inserted by the spelling rule (for example, as far as the transducer is concerned, we
might have been parsing the wordasses). It is not until we don’t see the# afterasses,
but rather run into anothers, that we realize we have gone down an incorrect path.

Because of this non-determinism, FST-parsing algorithms need to incorporate some
sort of search algorithm. Exercise 3.7 asks the reader to modify the algorithm for non-
deterministic FSA recognition in Fig.?? in Ch. 2 to do FST parsing.

Note that many possible spurious segmentations of the input, such as parsingassess
as ˆaˆsˆsesˆs will be ruled out since no entry in the lexicon will match this string.

Running a cascade, particularly one with many levels, can beunwieldy. Luckily,
we’ve already seen how to compose a cascade of transducers inseries into a single
more complex transducer. Transducers in parallel can be combined byautomaton
intersection. The automaton intersection algorithm just takes the Cartesian product ofINTERSECTION

the states, i.e., for each stateqi in machine 1 and stateq j in machine 2, we create a new
stateqi j . Then for any input symbola, if machine 1 would transition to stateqn and
machine 2 would transition to stateqm, we transition to stateqnm. Fig. 3.21 sketches
how this intersection (∧) and composition (◦) process might be carried out.

LEXICON-FST

FST1 FSTn

LEXICON-FST

FSTA   (=FST1 ^ FST2 ^ ... ^ FSTN)

LEXICON-FST

o

FSTA

}intersect
! compose

Figure 3.21 Intersection and composition of transducers.

Since there are a number of rule→FST compilers, it is almost never necessary in
practice to write an FST by hand. Kaplan and Kay (1994) give the mathematics that
define the mapping from rules to two-level relations, and Antworth (1990) gives details
of the algorithms for rule compilation. Mohri (1997) gives algorithms for transducer
minimization and determinization.

3.8 LEXICON-FREE FSTS: THE PORTER STEMMER

While building a transducer from a lexicon plus rules is the standard algorithm for
morphological parsing, there are simpler algorithms that don’t require the large on-line
lexicon demanded by this algorithm. These are used especially in Information Retrieval
(IR) tasks like web search (Ch. 23), in which a query such as a Boolean combination
of relevantkeywords or phrases, e.g., (marsupial OR kangaroo OR koala) returnsKEYWORDS

documents that have these words in them. Since a document with the wordmarsupials
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might not match the keywordmarsupial, some IR systems first run a stemmer on the
query and document words. Morphological information in IR is thus only used to
determine that two words have the same stem; the suffixes are thrown away.

One of the most widely used suchstemmingalgorithms is the simple and efficientSTEMMING

Porter (1980) algorithm, which is based on a series of simplecascaded rewrite rules.
Since cascaded rewrite rules are just the sort of thing that could be easily implemented
as an FST, we think of the Porter algorithm as a lexicon-free FST stemmer (this idea
will be developed further in the exercises (Exercise 3.6). The algorithm contains rules
like these:

ATIONAL → ATE (e.g., relational→ relate)
ING→ ǫ if stem contains vowel (e.g., motoring→ motor)

See Porter (1980) or Martin Porter’s official homepage for the Porter stemmer for more
details.

Krovetz (1993) showed that stemming tends to somewhat improve the performance
of information retrieval, especially with smaller documents (the larger the document,
the higher the chance the keyword will occur in the exact formused in the query).
Nonetheless, not all IR engines use stemming, partly because of stemmer errors such
as these noted by Krovetz:

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
generalization generic matrices matrix
numerical numerous noise noisy
policy police sparse sparsity

3.9 WORD AND SENTENCE TOKENIZATION

We have focused so far in this chapter on a problem of segmentation: how words
can be segmented into morphemes. We turn now to a brief discussion of the very
related problem of segmenting running text into words and sentences. This task is
calledtokenization.TOKENIZATION

Word tokenization may seem very simple in a language like English that separates
words via a special ‘space’ character. As we will see below, not every language does
this (Chinese, Japanese, and Thai, for example, do not). Buta closer examination
will make it clear that whitespace is not sufficient by itself. Consider the following
sentences from a Wall Street Journal and New York Times article, respectively:

Mr. Sherwood said reaction to Sea Containers’ proposal
has been "very positive." In New York Stock Exchange
composite trading yesterday, Sea Containers closed at
$62.625, up 62.5 cents.
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‘‘I said, ‘what’re you? Crazy?’ ’’ said Sadowsky. ‘‘I
can’t afford to do that.’’

Segmenting purely on white-space would produce words like these:

cents. said, positive." Crazy?

We could address these errors by treating punctuation, in addition to whitespace, as a
word boundary. But punctuation often occurs word internally, in examples likem.p.h,,
Ph.D., AT&T, cap’n, 01/02/06, andgoogle.com. Similarly, assuming that we want62.5
to be a word, we’ll need to avoid segmenting every period, since that will segment this
into 62 and 5. Number expressions introduce other complications as well; while com-
mas normally appear at word boundaries, commas are used inside numbers in English,
every three digits:555,500.50. Languages differ on punctuation styles for numbers;
many continental European languages like Spanish, French,and German, by contrast,
uses a comma to mark the decimal point, and spaces (or sometimes periods) where
English puts commas:555 500,50.

Another useful task a tokenizer can do for us is to expand clitic contractions that
are marked by apostrophes, for example convertingwhat’re above to the two tokens
what are, andwe’re to we are. This task is complicated by the fact that apostrophes
are quite ambiguous, since they are also used as genitive markers (as inthe book’s over
or in Containers’above) or as quotative markers (as in‘what’re you? Crazy?’above).
Such contractions occur in other alphabetic languages, including articles and pronouns
in French (j’ai , l’homme). While these contractions tend to be clitics, not all clitics are
marked this way with contraction. In general, then, segmenting and expanding clitics
can be done as part of the process of morphological parsing presented earlier in the
chapter.

Depending on the application, tokenization algorithms mayalso tokenize multi-
word expressions likeNew Yorkor rock ’n’ roll , which requires a multiword expression
dictionary of some sort. This makes tokenization intimately tied up with the task of
detecting names, dates, and organizations, which is callednamed entity detectionand
will be discussed in Ch. 22.

In addition to word segmentation,sentence segmentationis a crucial first step inSENTENCE
SEGMENTATION

text processing. Segmenting a text into sentences is generally based on punctuation.
This is because certain kinds of punctuation (periods, question marks, exclamation
points) tend to mark sentence boundaries. Question marks and exclamation points are
relatively unambiguous markers of sentence boundaries. Periods, on the other hand, are
more ambiguous. The period character ‘.’ is ambiguous between a sentence boundary
marker and a marker of abbreviations likeMr. or Inc. The previous sentence that you
just read showed an even more complex case of this ambiguity,in which the final period
of Inc. marked both an abbreviation and the sentence boundary marker. For this reason,
sentence tokenization and word tokenization tend to be addressed jointly.

In general, sentence tokenization methods work by buildinga binary classifier
(based on a sequence of rules, or on machine learning) which decides if a period is
part of the word or is a sentence boundary marker. In making this decision, it helps to
know if the period is attached to a commonly used abbreviation; thus an abbreviation
dictionary is useful.
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State-of-the-art methods for sentence tokenization are based on machine learning
and will be introduced in later chapters. But a useful first step can still be taken via a
sequence of regular expressions. We introduce here the firstpart; a word tokenization
algorithm. Fig. 3.22 gives a simple Perl word tokenization algorithm based on Grefen-
stette (1999). The algorithm is quite minimal, designed mainly to clarify many of the
segmentation issues we discussed in previous paragraphs.

The algorithm consists of a sequence of regular expression substitution rules. The
first rule separates unambiguous punctuation like questionmarks and parentheses. The
next rule segments commas unless they are inside numbers. Wethen disambiguate
apostrophes and pull off word-final clitics. Finally, we deal with periods, using a (toy)
abbreviation dictionary and some heuristics for detectingother abbreviations.

#!/usr/bin/perl

$letternumber = "[A-Za-z0-9]";
$notletter = "[ˆA-Za-z0-9]";
$alwayssep = "[\\?!()\";/\\|‘]";
$clitic = "(’|:|-|’S|’D|’M|’LL|’RE|’VE|N’T|’s|’d|’m|’ ll|’re|’ve|n’t)";

$abbr{"Co."} = 1; $abbr{"Dr."} = 1; $abbr{"Jan."} = 1; $abbr {"Feb."} = 1;

while ($line = <>){ # read the next line from standard input

# put whitespace around unambiguous separators
$line =˜ s/$alwayssep/ $& /g;

# put whitespace around commas that aren’t inside numbers
$line =˜ s/([ˆ0-9]),/$1 , /g;
$line =˜ s/,([ˆ0-9])/ , $1/g;

# distinguish singlequotes from apostrophes by
# segmenting off single quotes not preceded by letter
$line =˜ s/ˆ’/$& /g;
$line =˜ s/($notletter)’/$1 ’/g;

# segment off unambiguous word-final clitics and punctuati on
$line =˜ s/$clitic$/ $&/g;
$line =˜ s/$clitic($notletter)/ $1 $2/g;

# now deal with periods. For each possible word
@possiblewords=split(/\s+/,$line);
foreach $word (@possiblewords) {

# if it ends in a period,
if (($word =˜ /$letternumber\./)

&& !($abbr{$word}) # and isn’t on the abbreviation list
# and isn’t a sequence of letters and periods (U.S.)
# and doesn’t resemble an abbreviation (no vowels: Inc.)

&& !($word =˜
/ˆ([A-Za-z]\.([A-Za-z]\.)+|[A-Z][bcdfghj-nptvxz]+\. )$/)) {

# then segment off the period
$word =˜ s/\.$/ \./;

}
# expand clitics
$word =˜s/’ve/have/;
$word =˜s/’m/am/;
print $word," ";

}
print "\n";

}

Figure 3.22 A sample English tokenization script, adapted from Grefenstette (1999)
and Palmer (2000). A real script would have a longer abbreviation dictionary.
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The fact that a simple tokenizer can be build with such simpleregular expression
patterns suggest that tokenizers like the one in Fig. 3.22 can be easily implemented in
FSTs. This is indeed the case, and (Karttunen et al., 1996) and (Beesley and Karttunen,
2003) give descriptions of such FST-based tokenizers.

3.9.1 Segmentation in Chinese

We mentioned above that some languages, including Chinese,Japanese, and Thai, do
not use spaces to mark potential word-boundaries. Alternative segmentation methods
are used for these languages.

In Chinese, for example, words are composed of characters known ashanzi. Each
character generally represents a single morpheme and is pronounceable as a single
syllable. Words on average are about 2.4 characters long. A simple algorithm that does
remarkably well for segmenting Chinese, and is often used asa baseline comparison for
more advanced methods, is a version of greedy search calledmaximum matching orMAXIMUM MATCHING

sometimesmaxmatch. The algorithm requires a dictionary (wordlist) of the language.
The maximum matching algorithm starts by pointing at the beginning of a string. It

chooses the longest word in the dictionary that matches the input at the current position.
The pointer is then advanced past each character in that word. If no word matches, the
pointer is instead advanced one character (creating a one-character word). The algo-
rithm is then iteratively applied again starting from the new pointer position. To help
visualize this algorithm, Palmer (2000) gives an English analogy, which approximates
the Chinese situation by removing the spaces from the English sentencethe table down
thereto producethetabledownthere. The maximum match algorithm (given a long En-
glish dictionary) would first match the wordthetain the input, since that is the longest
sequence of letters that matches a dictionary word. Starting from the end oftheta, the
longest matching dictionary word isbled, followed byownand thenthere, producing
the incorrect sequencetheta bled own there.

The algorithm seems to work better in Chinese (with such short words) than in
languages like English with long words, as our failed example shows. Even in Chinese,
however, maxmatch has a number of weakness, particularly with unknown words
(words not in the dictionary) orunknown genres(genres which differ a lot from the
assumptions made by the dictionary builder).

There is an annual competition (technically called abakeoff) for Chinese segmen-
tation algorithms. These most successful modern algorithms for Chinese word seg-
mentation are based on machine learning from hand-segmented training sets. We will
return to these algorithms after we introduce probabilistic methods in Ch. 5.
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3.10 DETECTING AND CORRECTINGSPELLING ERRORS

ALGERNON: But my own sweet Cecily, I have never written you any letters.
CECILY: You need hardly remind me of that, Ernest. I remember only too well
that I was forced to write your letters for you. I wrote alwaysthree times a week,
and sometimes oftener.
ALGERNON: Oh, do let me read them, Cecily?
CECILY: Oh, I couldn’t possibly. They would make you far too conceited. The
three you wrote me after I had broken off the engagement are sobeautiful, and
so badly spelled, that even now I can hardly read them withoutcrying a little.

Oscar Wilde,The Importance of being Earnest

Like Oscar Wilde’s fabulous Cecily, a lot of people were thinking about spelling during
the last turn of the century. Gilbert and Sullivan provide many examples.The Gondo-
liers’ Giuseppe, for example, worries that his private secretaryis “shaky in his spelling”
while Iolanthe’s Phyllis can “spell every word that she uses”. Thorstein Veblen’s ex-
planation (in his 1899 classicThe Theory of the Leisure Class) was that a main purpose
of the “archaic, cumbrous, and ineffective” English spelling system was to be diffi-
cult enough to provide a test of membership in the leisure class. Whatever the social
role of spelling, we can certainly agree that many more of us are like Cecily than like
Phyllis. Estimates for the frequency of spelling errors in human typed text vary from
0.05% of the words in carefully edited newswire text to 38% indifficult applications
like telephone directory lookup (Kukich, 1992).

In this section we introduce the problem of detecting and correcting spelling errors.
Since the standard algorithm for spelling error correctionis probabilistic, we will con-
tinue our spell-checking discussion later in Ch. 5 after we define the probabilistic noisy
channel model.

The detection and correction of spelling errors is an integral part of modern word-
processors and search engines, and is also important in correcting errors inoptical
character recognition (OCR), the automatic recognition of machine or hand-printedOCR

characters, andon-line handwriting recognition, the recognition of human printed or
cursive handwriting as the user is writing.

Following Kukich (1992), we can distinguish three increasingly broader problems:

1. non-word error detection: detecting spelling errors that result in non-words
(like graffefor giraffe).

2. isolated-word error correction: correcting spelling errors that result in non-
words, for example correctinggraffe to giraffe, but looking only at the word in
isolation.

3. context-dependent error detection and correction:using the context to help
detect and correct spelling errors even if they accidentally result in an actual
word of English (real-word errors ). This can happen from typographical er-REALWORD

ERRORS

rors (insertion, deletion, transposition) which accidentally produce a real word
(e.g.,therefor three), or because the writer substituted the wrong spelling of a
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homophone or near-homophone (e.g.,dessertfor desert, or piecefor peace).

Detecting non-word errors is generally done by marking any word that is not found
in a dictionary. For example, the misspellinggraffeabove would not occur in a dictio-
nary. Some early research (Peterson, 1986) had suggested that such spelling dictionar-
ies would need to be kept small, because large dictionaries contain very rare words that
resemble misspellings of other words. For example the rare wordswontor veeryare
also common misspelling ofwon’t andvery. In practice, Damerau and Mays (1989)
found that while some misspellings were hidden by real wordsin a larger dictionary,
the larger dictionary proved more help than harm by avoidingmarking rare words as
errors. This is especially true with probabilistic spell-correction algorithms that can
use word frequency as a factor. Thus modern spell-checking systems tend to be based
on large dictionaries.

The finite-state morphological parsers described throughout this chapter provide a
technology for implementing such large dictionaries. By giving a morphological parser
for a word, an FST parser is inherently a word recognizer. Indeed, an FST morpho-
logical parser can be turned into an even more efficient FSA word recognizer by using
theprojection operation to extract the lower-side language graph. Such FST dictionar-
ies also have the advantage of representing productive morphology like the English-s
and-ed inflections. This is important for dealing with new legitimate combinations of
stems and inflection . For example, a new stem can be easily added to the dictionary,
and then all the inflected forms are easily recognized. This makes FST dictionaries es-
pecially powerful for spell-checking in morphologically rich languages where a single
stem can have tens or hundreds of possible surface forms.5

FST dictionaries can thus help with non-word error detection. But how about error
correction? Algorithms for isolated-word error correction operate by finding words
which are the likely source of the errorful form. For example, correcting the spelling
errorgrafferequires searching through all possible words likegiraffe, graf, craft, grail,
etc, to pick the most likely source. To choose among these potential sources we need a
distance metricbetween the source and the surface error. Intuitively,giraffe is a more
likely source thangrail for graffe, becausegiraffe is closer in spelling tograffe than
grail is to graffe. The most powerful way to capture this similarity intuitionrequires
the use of probability theory and will be discussed in Ch. 4. The algorithm underlying
this solution, however, is the non-probabilisticminimum edit distance algorithm that
we introduce in the next section.

3.11 MINIMUM EDIT DISTANCE

Deciding which of two words is closer to some third word in spelling is a special case of
the general problem ofstring distance. The distance between two strings is a measureDISTANCE

of how alike two strings are to each other.

5 Early spelling error detectors for English, by contrast, simply allowed any word to have any suffix – thus
Unix SPELLaccepts bizarre prefixed words likemisclamandantiundogginglyand suffixed words based on
the like thehoodandtheness.
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Many important algorithms for finding string distance rely on some version of the
minimum edit distancealgorithm, named by Wagner and Fischer (1974) but indepen-MINIMUM EDIT

DISTANCE

dently discovered by many people; see the History section ofCh. 6 for a discussion
of the history of these algorithms. The minimum edit distance between two strings is
the minimum number of editing operations (insertion, deletion, substitution) needed to
transform one string into another. For example the gap between the wordsintention
andexecutionis five operations, shown in Fig. 3.23 as analignment between the twoALIGNMENT

strings. Given two sequences, analignment is a correspondance between substrings of
the two sequences. Thus I aligns with the empty string, N withE, T with X, and so on.
Beneath the aligned strings is another representation; a series of symbols expressing an
operation list for converting the top string into the bottom string; d for deletion, s for
substitution, i for insertion.

I N T E * N T I O N
| | | | | | | | | |

* E X E C U T I O N
d s s i s

Figure 3.23 Representing the minimum edit distance between two stringsas analign-
ment. The final row gives the operation list for converting the topstring into the bottom
string; d for deletion, s for substitution, i for insertion.

We can also assign a particular cost or weight to each of theseoperations. The
Levenshteindistance between two sequences is the simplest weighting factor in which
each of the three operations has a cost of 1 (Levenshtein, 1966).6 Thus the Levenshtein
distance betweenintentionandexecutionis 5. Levenshtein also proposed an alternate
version of his metric in which each insertion or deletion hasa cost of one, and substitu-
tions are not allowed (equivalent to allowing substitution, but giving each substitution a
cost of 2, since any substitution can be represented by one insertion and one deletion).
Using this version, the Levenshtein distance betweenintentionandexecutionis 8.

The minimum edit distance is computed bydynamic programming. DynamicDYNAMIC
PROGRAMMING

programming is the name for a class of algorithms, first introduced by Bellman (1957),
that apply a table-driven method to solve problems by combining solutions to subprob-
lems. This class of algorithms includes the most commonly-used algorithms in speech
and language processing; besides minimum edit distance, these include theViterbi and
forward algorithms (Ch. 6), and theCYK andEarley algorithm (Ch. 13).

The intuition of a dynamic programming problem is that a large problem can be
solved by properly combining the solutions to various subproblems. For example,
consider the sequence or “path” of transformed words that comprise the minimum edit
distance between the stringsintentionandexecutionshown in Fig. 3.24.

Imagine some string (perhaps it isexention) that is in this optimal path (what-
ever it is). The intuition of dynamic programming is that ifexentionis in the optimal

6 We assume that the substitution of a letter for itself, e.g. substitutiont for t, has zero cost.
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Figure 3.24 Operation list transformingintentionto execution(after Kruskal 1983)

operation-list, then the optimal sequence must also include the optimal path fromin-
tentionto exention. Why? If there were a shorter path fromintentionto exentionthen
we could use it instead, resulting in a shorter overall path,and the optimal sequence
wouldn’t be optimal, thus leading to a contradiction.

Dynamic programming algorithms for sequence comparison work by creating a
distance matrix with one column for each symbol in the targetsequence and one row
for each symbol in the source sequence (i.e., target along the bottom, source along the
side). For minimum edit distance, this matrix is theedit-distancematrix. Each cell
edit-distance[i,j] contains the distance between the firsti characters of the target and
the first j characters of the source. Each cell can be computed as a simple function of
the surrounding cells; thus starting from the beginning of the matrix it is possible to fill
in every entry. The value in each cell is computed by taking the minimum of the three
possible paths through the matrix which arrive there:

distance[i, j] = min







distance[i−1, j]+ ins-cost(targeti−1)
distance[i−1, j−1]+subst-cost(sourcej−1, targeti−1)
distance[i, j−1]+del-cost(sourcej−1))

(3.5)

The algorithm itself is summarized in Fig. 3.25, while Fig. 3.26 shows the results
of applying the algorithm to the distance betweenintentionandexecutionassuming the
version of Levenshtein distance in which the insertions anddeletions each have a cost
of 1 (ins-cost(·) = del-cost(·) = 1), and substitutions have a cost of 2 (except substitution
of identical letters has zero cost).

Knowing the minimum edit distance is useful for algorithms like finding potential
spelling error corrections. But the edit distance algorithm is important in another way;
with a small change, it can also provide the minimum costalignment between two
strings. Aligning two strings is useful throughout speech and language processing. In
speech recognition, minimum edit distance alignment is used to compute word error
rate in speech recognition (Ch. 9). Alignment plays a role inmachine translation, in
which sentences in a parallel corpus (a corpus with a text in two languages) need to be
matched up to each other.

In order to extend the edit distance algorithm to produce an alignment, we can start
by visualizing an alignment as a path through the edit distance matrix. Fig. 3.27 shows
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function M IN-EDIT-DISTANCE(target, source) returns min-distance

n←LENGTH(target)
m←LENGTH(source)
Create a distance matrixdistance[n+1,m+1]
Initialize the zeroth row and column to be the distance from the empty string

distance[0,0] = 0
for each columni from 1 to n do

distance[i,0]←distance[i-1,0] + ins-cost(target[i])
for each rowj from 1 to mdo

distance[0,j]←distance[0,j-1] + del-cost(source[j])
for each columni from 1 to n do

for each rowj from 1 to mdo
distance[i, j]←M IN( distance[i−1, j] + ins-cost(targeti−1),

distance[i−1, j−1] + subst-cost(sourcej−1, targeti−1),
distance[i, j−1] + del-cost(sourcej−1))

return distance[n,m]

Figure 3.25 The minimum edit distance algorithm, an example of the classof dynamic
programming algorithms. The various costs can either be fixed (e.g.∀x, ins-cost(x) = 1),
or can be specific to the letter (to model the fact that some letters are more likely to be
inserted than others). We assume that there is no cost for substituting a letter for itself (i.e.
subst-cost(x,x) = 0).

n 9 8 9 10 11 12 11 10 9 8
o 8 7 8 9 10 11 10 9 8 9
i 7 6 7 8 9 10 9 8 9 10
t 6 5 6 7 8 9 8 9 10 11
n 5 4 5 6 7 8 9 10 11 10
e 4 3 4 5 6 7 8 9 10 9
t 3 4 5 6 7 8 7 8 9 8
n 2 3 4 5 6 7 8 7 8 7
i 1 2 3 4 5 6 7 6 7 8
# 0 1 2 3 4 5 6 7 8 9

# e x e c u t i o n

Figure 3.26 Computation of minimum edit distance betweenintentionandexecution
via algorithm of Fig. 3.25, using Levenshtein distance withcost of 1 for insertions or
deletions, 2 for substitutions. In italics are the initial values representing the distance from
the empty string.

this path with the boldfaced cell. Each boldfaced cell represents an alignment of a pair
of letters in the two strings. If two boldfaced cells occur inthe same row, there will
be an insertion in going from the source to the target; two boldfaced cells in the same
column indicates a deletion.

Fig. 3.27 also shows the intuition of how to compute this alignment path. The com-
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putation proceeds in two steps. In the first step, we augment the minimum edit distance
algorithm to store backpointers in each cell. The backpointer from a cell points to the
previous cell (or cells) that were extended from in enteringthe current cell. We’ve
shown a schematic of these backpointers in Fig. 3.27, after asimilar diagram in Gus-
field (1997). Some cells have multiple backpointers, because the minimum extension
could have come from multiple previous cells. In the second step, we perform aback-
trace. In a backtrace, we start from the last cell (at the final row and column), andBACKTRACE

follow the pointers back through the dynamic programming matrix. Each complete
path between the final cell and the initial cell is a minimum distance alignment. Exer-
cise 3.12 asks you to modify the minimum edit distance algorithm to store the pointers
and compute the backtrace to output an alignment.

n 9 ↓ 8 ւ←↓ 9 ւ←↓ 10 ւ←↓ 11 ւ←↓ 12 ↓ 11 ↓ 10 ↓ 9 ւ 8
o 8 ↓ 7 ւ←↓ 8 ւ←↓ 9 ւ←↓ 10 ւ←↓ 11 ↓ 10 ↓ 9 ւ 8 ← 9
i 7 ↓ 6 ւ←↓ 7 ւ←↓ 8 ւ←↓ 9 ւ←↓ 10 ↓ 9 ւ 8 ← 9 ← 10
t 6 ↓ 5 ւ←↓ 6 ւ←↓ 7 ւ←↓ 8 ւ←↓ 9 ւ 8 ← 9 ← 10 ←↓ 11
n 5 ↓ 4 ւ←↓ 5 ւ←↓ 6 ւ←↓ 7 ւ←↓ 8 ւ←↓ 9 ւ←↓ 10 ւ←↓ 11 ւ↓ 10
e 4 ւ 3 ← 4 ւ← 5 ← 6 ← 7 ←↓ 8 ւ←↓ 9 ւ←↓ 10 ↓ 9
t 3 ւ←↓ 4 ւ←↓ 5 ւ←↓ 6 ւ←↓ 7 ւ←↓ 8 ւ 7 ←↓ 8 ւ←↓ 9 ↓ 8
n 2 ւ←↓ 3 ւ←↓ 4 ւ←↓ 5 ւ←↓ 6 ւ←↓ 7 ւ←↓ 8 ↓ 7 ւ←↓ 8 ւ 7
i 1 ւ←↓ 2 ւ←↓ 3 ւ←↓ 4 ւ←↓ 5 ւ←↓ 6 ւ←↓ 7 ւ 6 ← 7 ← 8
# 0 1 2 3 4 5 6 7 8 9

# e x e c u t i o n

Figure 3.27 When entering a value in each cell, we mark which of the 3 neighboring
cells we came from with up to three arrows. After the table is full we compute analign-
ment (minimum edit path) via abacktrace, starting at the8 in the upper right corner
and following the arrows. The sequence of boldfaced distances represents one possible
minimum cost alignment between the two strings.

There are various publicly available packages to compute edit distance, including
UNIX diff , and the NISTsclite program (NIST, 2005); Minimum edit distance
can also be augmented in various ways. The Viterbi algorithm, for example, is an
extension of minimum edit distance which uses probabilistic definitions of the oper-
ations. In this case instead of computing the “minimum edit distance” between two
strings, we are interested in the “maximum probability alignment” of one string with
another. The Viterbi algorithm is crucial in probabilistictasks like speech recognition
and part-of-speech tagging.

3.12 HUMAN MORPHOLOGICALPROCESSING

In this section we briefly survey psycholinguistic studies on how multi-morphemic
words are represented in the minds of speakers of English. For example, consider the
word walk and its inflected formswalks, andwalked. Are all three in the human lexi-
con? Or merelywalkalong with-edand-s? How about the wordhappyand its derived
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formshappilyandhappiness? We can imagine two ends of a theoretical spectrum of
representations. Thefull listing hypothesis proposes that all words of a language areFULL LISTING

listed in the mental lexicon without any internal morphological structure. On this view,
morphological structure is simply an epiphenomenon, andwalk, walks, walked, happy,
andhappilyare all separately listed in the lexicon. This hypothesis iscertainly unten-
able for morphologically complex languages like Turkish. Theminimum redundancyMINIMUM

REDUNDANCY

hypothesis suggests that only the constituent morphemes are represented in the lexicon,
and when processingwalks, (whether for reading, listening, or talking) we must access
both morphemes (walkand-s) and combine them.

Some of the earliest evidence that the human lexicon represents at least some mor-
phological structure comes fromspeech errors, also calledslips of the tongue. In
conversational speech, speakers often mix up the order of the words or sounds:

if you breakit it’ll drop

In slips of the tongue collected by Fromkin and Ratner (1998)and Garrett (1975),
inflectional and derivational affixes can appear separatelyfrom their stems. The ability
of these affixes to be produced separately from their stem suggests that the mental
lexicon contains some representation of morphological structure.

it’s not only us who have screw looses(for “screws loose”)
wordsof rule formation (for “rules of word formation”)
easy enoughly(for “easily enough”)

More recent experimental evidence suggests that neither the full listing nor the
minimum redundancy hypotheses may be completely true. Instead, it’s possible that
some but not all morphological relationships are mentally represented. Stanners et al.
(1979), for example, found that some derived forms (happiness, happily) seem to be
stored separately from their stem (happy), but that regularly inflected forms (pouring)
are not distinct in the lexicon from their stems (pour). They did this by using a repe-
tition priming experiment. In short, repetition priming takes advantage of the fact that
a word is recognized faster if it has been seen before (if it isprimed). They foundPRIMED

that lifting primedlift , andburnedprimedburn, but for exampleselectivedidn’t prime
select. Marslen-Wilson et al. (1994) found thatspokenderived words can prime their
stems, but only if the meaning of the derived form is closely related to the stem. For
examplegovernmentprimesgovern, butdepartmentdoes not primedepart. Marslen-
Wilson et al. (1994) represent a model compatible with theirown findings as follows:

department depart govern

-al -ure -s

-ing

Figure 3.28 Marslen-Wilson et al. (1994) result: Derived words are linked to their
stems only if semantically related.

In summary, these early results suggest that (at least) productive morphology like
inflection does play an online role in the human lexicon. Morerecent studies have
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shown effects of non-inflectional morphological structureon word reading time as well,
such as themorphological family size. The morphological family size of a word is theMORPHOLOGICAL

FAMILY SIZE

number of other multimorphemic words and compounds in whichit appears; the family
for fear, for example, includesfearful, fearfully, fearfulness, fearless, fearlessly, fear-
lessness, fearsome,andgodfearing(according to the CELEX database), for a total size
of 9. Baayen and colleagues (Baayen et al., 1997; De Jong et al., 2002; Moscoso del
Prado Martı́n et al., 2004) have shown that words with a larger morphological family
size are recognized faster. Recent work has further shown that word recognition speed
is effected by the total amount ofinformation (or entropy) contained by the morpho-
logical paradigm (Moscoso del Prado Martı́n et al., 2004); entropy will be introduced
in the next chapter.

3.13 SUMMARY

This chapter introducedmorphology, the arena of language processing dealing with
the subparts of words, and thefinite-state transducer, the computational device that is
important for morphology but will also play a role in many other tasks in later chapters.
We also introducedstemming, word and sentence tokenization, andspelling error
detection.

Here’s a summary of the main points we covered about these ideas:

• Morphological parsing is the process of finding the constituentmorphemesin
a word (e.g.,cat +N +PL for cats).
• English mainly usesprefixes andsuffixes to expressinflectional andderiva-

tional morphology.
• English inflectional morphology is relatively simple and includes person and

number agreement (-s) and tense markings (-edand-ing).
• English derivational morphology is more complex and includes suffixes like

-ation, -ness, -ableas well as prefixes likeco-andre-.
• Many constraints on the Englishmorphotactics(allowable morpheme sequences)

can be represented by finite automata.
• Finite-state transducersare an extension of finite-state automata that can gen-

erate output symbols.
• Important operations for FSTs includecomposition, projection, andintersec-

tion.
• Finite-state morphologyandtwo-level morphologyare applications of finite-

state transducers to morphological representation and parsing.
• Spelling rulescan be implemented as transducers.
• There are automatic transducer-compilers that can producea transducer for any

simple rewrite rule.
• The lexicon and spelling rules can be combined bycomposingandintersecting

various transducers.
• ThePorter algorithm is a simple and efficient way to dostemming, stripping

off affixes. It is not as accurate as a transducer model that includes a lexicon,
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but may be preferable for applications likeinformation retrieval in which exact
morphological structure is not needed.

• Word tokenization can be done by simple regular expressions substitutions or
by transducers.

• Spelling error detection is normally done by finding words which are not in a
dictionary; an FST dictionary can be useful for this.

• The minimum edit distance between two strings is the minimum number of
operations it takes to edit one into the other. Minimum edit distance can be
computed bydynamic programming, which also results in analignment of the
two strings.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Despite the close mathematical similarity of finite-state transducers to finite-state au-
tomata, the two models grew out of somewhat different traditions. Ch. 2 described how
the finite automaton grew out of Turing’s (1936) model of algorithmic computation,
and McCulloch and Pitts finite-state-like models of the neuron. The influence of the
Turing machine on the transducer was somewhat more indirect. Huffman (1954) pro-
posed what was essentially a state-transition table to model the behavior of sequential
circuits, based on the work of Shannon (1938) on an algebraicmodel of relay circuits.
Based on Turing and Shannon’s work, and unaware of Huffman’swork, Moore (1956)
introduced the termfinite automaton for a machine with a finite number of states
with an alphabet of input symbols and an alphabet of output symbols. Mealy (1955)
extended and synthesized the work of Moore and Huffman.

The finite automata in Moore’s original paper, and the extension by Mealy differed
in an important way. In a Mealy machine, the input/output symbols are associated
with the transitions between states. In a Moore machine, theinput/output symbols
are associated with the state. The two types of transducers are equivalent; any Moore
machine can be converted into an equivalent Mealy machine and vice versa. Further
early work on finite-state transducers, sequential transducers, and so on, was conducted
by Salomaa (1973), Schützenberger (1977).

Early algorithms for morphological parsing used either thebottom-up or top-down
methods that we will discuss when we turn to parsing in Ch. 13.An early bottom-up
affix-stripping approach as Packard’s (1973) parser for ancient Greek whichitera-
tively stripped prefixes and suffixes off the input word, making note of them, and then
looked up the remainder in a lexicon. It returned any root that was compatible with
the stripped-off affixes. AMPLE (A Morphological Parser forLinguistic Exploration)
(Weber and Mann, 1981; Weber et al., 1988; Hankamer and Black, 1991) is another
early bottom-up morphological parser. Hankamer’s (1986) keCi is a an early top-down
generate-and-testor analysis-by-synthesismorphological parser for Turkish which is
guided by a finite-state representation of Turkish morphemes. The program begins
with a morpheme that might match the left edge of the word, andapplies every possi-
ble phonological rule to it, checking each result against the input. If one of the outputs
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succeeds, the program then follows the finite-state morphotactics to the next morpheme
and tries to continue matching the input.

The idea of modeling spelling rules as finite-state transducers is really based on
Johnson’s (1972) early idea that phonological rules (to be discussed in Ch. 7) have
finite-state properties. Johnson’s insight unfortunatelydid not attract the attention of
the community, and was independently discovered by Ronald Kaplan and Martin Kay,
first in an unpublished talk (Kaplan and Kay, 1981) and then finally in print (Kaplan
and Kay, 1994) (see page?? for a discussion of multiple independent discoveries).
Kaplan and Kay’s work was followed up and most fully worked out by Koskenniemi
(1983), who described finite-state morphological rules forFinnish. Karttunen (1983)
built a program called KIMMO based on Koskenniemi’s models.Antworth (1990)
gives many details of two-level morphology and its application to English. Besides
Koskenniemi’s work on Finnish and that of Antworth (1990) onEnglish, two-level or
other finite-state models of morphology have been worked outfor many languages,
such as Turkish (Oflazer, 1993) and Arabic (Beesley, 1996). Barton et al. (1987)
bring up some computational complexity problems with two-level models, which are
responded to by Koskenniemi and Church (1988). Readers withfurther interest in
finite-state morphology should turn to Beesley and Karttunen (2003). Readers with
further interest in computational models of Arabic and Semitic morphology should see
Smrž (1998), Kiraz (2001), Habash et al. (2005).

A number of practical implementations of sentence segmentation were available by
the 1990s. Summaries of sentence segmentation history and various algorithms can be
found in Palmer (2000), Grefenstette (1999), and Mikheev (2003). Word segmentation
has been studied especially in Japanese and Chinese. While the max-match algorithm
we describe is very commonly used as a baseline, or when a simple but accurate al-
gorithm is required, more recent algorithms rely on stochastic and machine learning
algorithms; see for example such algorithms as Sproat et al.(1996), Xue and Shen
(2003), and Tseng et al. (2005).

Gusfield (1997) is an excellent book covering everything youcould want to know
about string distance, minimum edit distance, and related areas.

Students interested in further details of the fundamental mathematics of automata
theory should see Hopcroft and Ullman (1979) or Lewis and Papadimitriou (1988).
Roche and Schabes (1997) is the definitive mathematical introduction to finite-state
transducers for language applications, and together with Mohri (1997) and Mohri (2000)
give many useful algorithms such as those for transducer minimization and deter-
minization.

The CELEX dictionary is an extremely useful database for morphological analysis,
containing full morphological parses of a large lexicon of English, German, and Dutch
(Baayen et al., 1995).

Roark and Sproat (2007) is a general introduction to computational issues in mor-
phology and syntax. Sproat (1993) is an older general introduction to computational
morphology.
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EXERCISES

3.1 Give examples of each of the noun and verb classes in Fig. 3.6,and find some
exceptions to the rules.

3.2 Extend the transducer in Fig. 3.17 to deal withsh andch .

3.3 Write a transducer(s) for the K insertion spelling rule in English.

3.4 Write a transducer(s) for the consonant doubling spelling rule in English.

3.5 The Soundex algorithm (Odell and Russell, 1922; Knuth, 1973) is a method com-
monly used in libraries and older Census records for representing people’s names. It
has the advantage that versions of the names that are slightly misspelled or otherwise
modified (common, for example, in hand-written census records) will still have the
same representation as correctly-spelled names. (e.g., Jurafsky, Jarofsky, Jarovsky, and
Jarovski all map to J612).

a. Keep the first letter of the name, and drop all occurrences ofnon-initial a, e, h, i,
o, u, w, y

b. Replace the remaining letters with the following numbers:

b, f, p, v→ 1
c, g, j, k, q, s, x, z→ 2
d, t→ 3
l → 4
m, n→ 5
r→ 6

c. Replace any sequences of identical numbers , only if they derive from two or
more letters that wereadjacentin the original name, with a single number (i.e.,
666→ 6).

d. Convert to the formLetter Digit Digit Digit by dropping digits past
the third (if necessary) or padding with trailing zeros (if necessary).

The exercise: write a FST to implement the Soundex algorithm.

3.6 Implement one of the steps of the Porter Stemmer as a transducer.

3.7 Write the algorithm for parsing a finite-state transducer, using the pseudo-code in-
troduced in Chapter 2. You should do this by modifying the algorithmND-RECOGNIZE

in Fig. ?? in Chapter 2.

3.8 Write a program that takes a word and, using an on-line dictionary, computes
possible anagrams of the word, each of which is a legal word.

3.9 In Fig. 3.17, why is there az, s, xarc fromq5 to q1?

3.10 Computing minimum edit distances by hand, figure out whetherdrive is closer
to brief or todivers, and what the edit distance is. You may use any version ofdistance
that you like.
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3.11 Now implement a minimum edit distance algorithm and use yourhand-computed
results to check your code.

3.12 Augment the minimum edit distance algorithm to output an alignment; you will
need to store pointers and add a stage to compute the backtrace.
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Schreuder, R., and Baayen, R. H. (2004). Morphological
family size in a morphologically rich language: The case of
finnish compared to dutch and hebrew.Journal of Experi-
mental Psychology: Learning, Memory, and Cognition, 30,
1271–1278.

NIST (2005). Speech recognition scoring toolkit (sctk) version
2.1. Available at http://www.nist.gov/speech/tools/.

Odell, M. K. and Russell, R. C. (1918/1922). U.S. Patents
1261167 (1918), 1435663 (1922)†. Cited in Knuth (1973).

Oflazer, K. (1993). Two-level description of Turkish morphol-
ogy. InProceedings, Sixth Conference of the European Chap-
ter of the ACL.

Packard, D. W. (1973). Computer-assisted morphological anal-
ysis of ancient Greek. In Zampolli, A. and Calzolari, N.
(Eds.), Computational and Mathematical Linguistics: Pro-
ceedings of the International Conference on Computational
Linguistics, Pisa, pp. 343–355. Leo S. Olschki.

Palmer, D. D. (2000). Tokenisation and sentence segmentation.
In Dale, R., Somers, H. L., and Moisl, H. (Eds.),Handbook of
Natural Language Processing. Marcel Dekker.

Peterson, J. L. (1986). A note on undetected typing errors.Com-
munications of the ACM, 29(7), 633–637.

Porter, M. F. (1980). An algorithm for suffix stripping.Pro-
gram, 14(3), 130–127.

Quirk, R., Greenbaum, S., Leech, G., and Svartvik, J. (1985).
A Comprehensive Grammar of the English Language. Long-
man, London.

Roark, B. and Sproat, R. (2007).Computational Approaches to
Morphology and Syntax. Oxford University Press.

Roche, E. and Schabes, Y. (1997). Introduction. In Roche, E.
and Schabes, Y. (Eds.),Finite-State Language Processing, pp.
1–65. MIT Press.

Salomaa, A. (1973).Formal Languages. Academic.

Schützenberger, M. P. (1977). Sur une variante des fonctions
sequentielles.Theoretical Computer Science, 4, 47–57.

Seuss, D. (1960).One Fish Two Fish Red Fish Blue Fish. Ran-
dom House, New York.

Shannon, C. E. (1938). A symbolic analysis of relay and switch-
ing circuits.Transactions of the American Institute of Electri-
cal Engineers, 57, 713–723.
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4 N-GRAMS

But it must be recognized that the notion “probability of a sen-
tence” is an entirely useless one, under any known interpretation
of this term.

Noam Chomsky (1969, p. 57)

Anytime a linguist leaves the group the recognition rate goes up.
Fred Jelinek (then of the IBM speech group) (1988)1

Being able to predict the future is not always a good thing. Cassandra of Troy had
the gift of fore-seeing, but was cursed by Apollo that her predictions would never be
believed. Her warnings of the destruction of Troy were ignored and to simplify, let’s
just say that things just didn’t go well for her later.

Predicting words seems somewhat less fraught, and in this chapter we take up this
idea of word prediction. What word, for example, is likely tofollow:

Please turn your homework . . .

Hopefully most of you concluded that a very likely word isin, or possiblyover,
but probably notthe. We formalize this idea ofword prediction with probabilisticWORD PREDICTION

models calledN-gram models, which predict the next word from the previousN−1NGRAM MODELS

words. Such statistical models of word sequences are also called language modelsorLANGUAGE MODELS

LMs . Computing the probability of the next word will turn out to be closely relatedLMS

to computing the probability of a sequence of words. The following sequence, for
example, has a non-zero probability of appearing in a text:

. . . all of a sudden I notice three guys standing on the sidewalk...

while this same set of words in a different order has a very lowprobability:

on guys all I of notice sidewalk three a sudden standing the

1 This wording from his address is as recalled by Jelinek himself; the quote didn’t appear in the proceed-
ings (Palmer and Finin, 1990). Some remember a more snappy version: Every time I fire a linguist the
performance of the recognizer improves.
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As we will see, estimators likeN-grams that assign a conditional probability to
possible next words can be used to assign a joint probabilityto an entire sentence.
Whether estimating probabilities of next words or of whole sequences, theN-gram
model is one of the most important tools in speech and language processing.

N-grams are essential in any task in which we have to identify words in noisy,
ambiguous input. Inspeech recognition, for example, the input speech sounds are very
confusable and many words sound extremely similar. Russelland Norvig (2002) give
an intuition fromhandwriting recognition for how probabilities of word sequences
can help. In the movieTake the Money and Run, Woody Allen tries to rob a bank with
a sloppily written hold-up note that the teller incorrectlyreads as “I have a gub”. Any
speech and language processing system could avoid making this mistake by using the
knowledge that the sequence “I have a gun” is far more probable than the non-word “I
have a gub” or even “I have a gull”.

N-gram models are also essential in statisticalmachine translation. Suppose we
are translating a Chinese source sentence and as
part of the process we have a set of potential rough English translations:

he briefed to reporters on the chief contents of the statement
he briefed reporters on the chief contents of the statement
he briefed to reporters on the main contents of the statement
he briefed reporters on the main contents of the statement

An N-gram grammar might tell us that, even after controlling forlength,briefed
reportersis more likely thanbriefed to reporters, andmain contentsis more likely than
chief contents. This lets us select the bold-faced sentence above as the most fluent
translation sentence, i.e. the one that has the highest probability.

In spelling correction, we need to find and correct spelling errors like the following
(from Kukich (1992)) that accidentally result in real English words:

They are leaving in about fifteenminuetsto go to her house.
The designanconstruction of the system will take more than a year.

Since these errors have real words, we can’t find them by just flagging words that
are not in the dictionary. But note thatin about fifteen minuetsis a much less probable
sequence thanin about fifteen minutes. A spellchecker can use a probability estimator
both to detect these errors and to suggest higher-probability corrections.

Word prediction is also important foraugmentative communication(Newell et al.,AUGMENTATIVE
COMMUNICATION

1998) systems that help the disabled. People who are unable to use speech or sign-
language to communicate, like the physicist Steven Hawking, can communicate by
using simple body movements to select words from a menu that are spoken by the
system. Word prediction can be used to suggest likely words for the menu.

Besides these sample areas,N-grams are also crucial in NLP tasks likepart-of-
speech tagging, natural language generation, andword similarity , as well as in
applications fromauthorship identification andsentiment extraction to predictive
text input systems for cell phones.
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4.1 COUNTING WORDS IN CORPORA

[upon being asked if there weren’t enough words in the English language for him]:

“Yes, there are enough, but they aren’t the right ones.”
James Joyce, reported in Bates (1997)

Probabilities are based on counting things. Before we talk about probabilities, we
need to decide what we are going to count. Counting of things in natural language is
based on acorpus (pluralcorpora), an on-line collection of text or speech. Let’s lookCORPUS

CORPORA at two popular corpora, Brown and Switchboard. The Brown corpus is a 1 million word
collection of samples from 500 written texts from differentgenres (newspaper, novels,
non-fiction, academic, etc.), assembled at Brown University in 1963-64 (Kučera and
Francis, 1967; Francis, 1979; Francis and Kučera, 1982). How many words are in the
following Brown sentence?

(4.1) He stepped out into the hall, was delighted to encounter a water brother.

Example (4.1) has 13 words if we don’t count punctuation marks as words, 15 if
we count punctuation. Whether we treat period (“.”), comma (“,”), and so on as words
depends on the task. Punctuation is critical for finding boundaries of things (com-
mas, periods, colons), and for identifying some aspects of meaning (question marks,
exclamation marks, quotation marks). For some tasks, like part-of-speech tagging or
parsing or speech synthesis, we sometimes treat punctuation marks as if they were
separate words.

The Switchboard corpus of telephone conversations betweenstrangers was col-
lected in the early 1990s and contains 2430 conversations averaging 6 minutes each,
totaling 240 hours of speech and about 3 million words (Godfrey et al., 1992). Such
corpora of spoken language don’t have punctuation, but do introduce other complica-
tions with regard to defining words. Let’s look at one utterance from Switchboard; an
utterance is the spoken correlate of a sentence:UTTERANCE

(4.2) I do uh main- mainly business data processing

This utterance has two kinds ofdisfluencies. The broken-off wordmain- is calledDISFLUENCIES

a fragment. Words likeuh and um are calledfillers or filled pauses. Should weFRAGMENT

FILLERS

FILLED PAUSES

consider these to be words? Again, it depends on the application. If we are building an
automatic dictation system based on automatic speech recognition, we might want to
eventually strip out the disfluencies.

But we also sometimes keep disfluencies around. How disfluenta person is can
be used to identify them, or to detect whether they are stressed or confused. Disfluen-
cies also often occur with particular syntactic structures, so they may help in parsing
and word prediction. Stolcke and Shriberg (1996) found for example that treatinguh
as a word improves next-word prediction (why might this be?), and so most speech
recognition systems treatuhandumas words.2

Are capitalized tokens likeTheyand uncapitalized tokens liketheythe same word?
These are lumped together in speech recognition, while for part-of-speech-taggingcap-

2 Clark and Fox Tree (2002) showed thatuh andumhave different meanings. What do you think they are?
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italization is retained as a separate feature. For the rest of this chapter we will assume
our models are not case-sensitive.

How about inflected forms likecatsversuscat? These two words have the same
lemma cat but are different wordforms. Recall from Ch. 3 that a lemma isa set of
lexical forms having the same stem, the same major part-of-speech, and the same
word-sense. Thewordform is the full inflected or derived form of the word. ForWORDFORM

morphologically complex languages like Arabic we often need to deal with lemmati-
zation. N-grams for speech recognition in English, however, and all the examples in
this chapter, are based on wordforms.

As we can see,N-gram models, and counting words in general, requires that we do
the kind of tokenization or text normalization that we introduced in the previous chap-
ter: separating out punctuation, dealing with abbreviations like m.p.h., normalizing
spelling, and so on.

How many words are there in English? To answer this question we need to dis-
tinguish types, the number of distinct words in a corpus or vocabulary sizeV, fromTYPES

tokens, the total numberN of running words. The following Brown sentence has 16TOKENS

tokens and 14 types (not counting punctuation):

(4.3) They picnicked by the pool, then lay back on the grass and looked at the stars.

The Switchboard corpus has about 20,000 wordform types (from about 3 million
wordform tokens) Shakespeare’s complete works have 29,066wordform types (from
884,647 wordform tokens) (Kučera, 1992) The Brown corpus has 61,805 wordform
types from 37,851 lemma types (from 1 million wordform tokens). Looking at a
very large corpus of 583 million wordform tokens, Brown et al. (1992a) found that
it included 293,181 different wordform types. Dictionaries can help in giving lemma
counts; dictionary entries, orboldface forms are a very rough upper bound on the
number of lemmas (since some lemmas have multiple boldface forms). The American
Heritage Dictionary lists 200,000 boldface forms. It seemslike the larger corpora we
look at, the more word types we find. In general (Gale and Church, 1990) suggest that
the vocabulary size (the number of types) grows with at leastthe square root of the
number of tokens (i.e.V > O(

√
N).

In the rest of this chapter we will continue to distinguish between types and tokens,
using “types” to mean wordform types.

4.2 SIMPLE (UNSMOOTHED) N-GRAMS

Let’s start with some intuitive motivations forN-grams. We assume that the reader has
acquired some very basic background in probability theory.Our goal is to compute the
probability of a wordw given some historyh, or P(w|h). Suppose the historyh is “its
water is so transparent that” and we want to know the probability that the next word is
the:

P(the|its water is so transparent that).(4.4)

How can we compute this probability? One way is to estimate itfrom relative frequency
counts. For example, we could take a very large corpus, countthe number of times we
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seethe water is so transparent that, and count the number of times this is followed by
the. This would be answering the question “Out of the times we sawthe historyh, how
many times was it followed by the wordw”, as follows:

P(the|its water is so transparent that) =

C(its water is so transparent that the)

C(its water is so transparent that)
(4.5)

With a large enough corpus, such as the web, we can compute these counts, and
estimate the probability from Equation (4.5). You should pause now, go to the web and
compute this estimate for yourself.

While this method of estimating probabilities directly from counts works fine in
many cases, it turns out that even the web isn’t big enough to give us good estimates
in most cases. This is because language is creative; new sentences are created all the
time, and we won’t always be able to count entire sentences. Even simple extensions
of the example sentence may have counts of zero on the web (such as “Walden Pond’s
water is so transparent that the”).

Similarly, if we wanted to know the joint probability of an entire sequence of words
like its water is so transparent, we could do it by asking “out of all possible sequences
of 5 words, how many of them areits water is so transparent?” We would have to
get the count ofits water is so transparent, and divide by the sum of the counts of all
possible 5 word sequences. That seems rather a lot to estimate!

For this reason, we’ll need to introduce cleverer ways of estimating the probability
of a wordw given a historyh, or the probability of an entire word sequenceW. Let’s
start with a little formalizing of notation. In order to represent the probability of a
particular random variableXi taking on the value “the”, orP(Xi = “the”), we will use
the simplificationP(the). We’ll represent a sequence ofN words either asw1 . . .wn

or wn
1. For the joint probability of each word in a sequence having aparticular value

P(X = w1,Y = w2,Z = w3, ...,) we’ll useP(w1,w2, ...,wn).
Now how can we compute probabilities of entire sequences like P(w1,w2, ...,wn)?

One thing we can do is to decompose this probability using thechain rule of proba-
bility :

P(X1...Xn) = P(X1)P(X2|X1)P(X3|X
2
1 ) . . .P(Xn|X

n−1
1 )

=
n

∏
k=1

P(Xk|X
k−1
1 )(4.6)

Applying the chain rule to words, we get:

P(wn
1) = P(w1)P(w2|w1)P(w3|w

2
1) . . .P(wn|w

n−1
1 )

=
n

∏
k=1

P(wk|w
k−1
1 )(4.7)

The chain rule shows the link between computing the joint probability of a sequence
and computing the conditional probability of a word given previous words. Equation
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(4.7) suggests that we could estimate the joint probabilityof an entire sequence of
words by multiplying together a number of conditional probabilities. But using the
chain rule doesn’t really seem to help us! We don’t know any way to compute the
exact probability of a word given a long sequence of preceding words,P(wn|w

n−1
1 ).

As we said above, we can’t just estimate by counting the number of times every word
occurs following every long string, because language is creative and any particular
context might have never occurred before!

The intuition of theN-gram model is that instead of computing the probability of
a word given its entire history, we willapproximate the history by just the last few
words.

The bigram model, for example, approximates the probability of a word givenBIGRAM

all the previous wordsP(wn|w
n−1
1 ) by using only the conditional probability of the

preceding wordP(wn|wn−1). In other words, instead of computing the probability

P(the|Walden Pond’s water is so transparent that)(4.8)

we approximate it with the probability

P(the|that)(4.9)

When we use a bigram model to predict the conditional probability of the next word
we are thus making the following approximation:

P(wn|w
n−1
1 ) ≈ P(wn|wn−1)(4.10)

This assumption that the probability of a word depends only on the previous word
is called aMarkov assumption. Markov models are the class of probabilistic modelsMARKOV

that assume that we can predict the probability of some future unit without looking too
far into the past. We can generalize the bigram (which looks one word into the past) to
the trigram (which looks two words into the past) and thus to theN-gram (which looksNGRAM

N−1 words into the past).
Thus the general equation for thisN-gram approximation to the conditional proba-

bility of the next word in a sequence is:

P(wn|w
n−1
1 ) ≈ P(wn|w

n−1
n−N+1)(4.11)

Given the bigram assumption for the probability of an individual word, we can
compute the probability of a complete word sequence by substituting Equation (4.10)
into Equation (4.7):

P(wn
1) ≈

n

∏
k=1

P(wk|wk−1)(4.12)

How do we estimate these bigram orN-gram probabilities? The simplest and most
intuitive way to estimate probabilities is calledMaximum Likelihood Estimation , or

MAXIMUM
LIKELIHOOD
ESTIMATION

MLE . We get the MLE estimate for the parameters of anN-gram model by takingMLE

counts from a corpus, andnormalizing them so they lie between 0 and 1.3
NORMALIZING
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For example, to compute a particular bigram probability of awordy given a previ-
ous wordx, we’ll compute the count of the bigramC(xy) and normalize by the sum of
all the bigrams that share the same first wordx:

P(wn|wn−1) =
C(wn−1wn)

∑wC(wn−1w)
(4.13)

We can simplify this equation, since the sum of all bigram counts that start with a
given wordwn−1 must be equal to the unigram count for that wordwn−1. (The reader
should take a moment to be convinced of this):

P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(4.14)

Let’s work through an example using a mini-corpus of three sentences. We’ll first
need to augment each sentence with a special symbol<s> at the beginning of the
sentence, to give us the bigram context of the first word. We’ll also need a special
end-symbol</s>.4

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

Here are the calculations for some of the bigram probabilities from this corpus

P(I|<s>) = 2
3 = .67 P(Sam|<s>) = 1

3 = .33 P(am|I) = 2
3 = .67

P(</s>|Sam) = 1
2 = 0.5 P(Sam|am) = 1

2 = .5 P(do|I) = 1
3 = .33

For the general case of MLEN-gram parameter estimation:

P(wn|w
n−1
n−N+1) =

C(wn−1
n−N+1wn)

C(wn−1
n−N+1)

(4.15)

Equation 4.15 (like equation 4.14) estimates theN-gram probability by dividing the
observed frequency of a particular sequence by the observedfrequency of a prefix. This
ratio is called arelative frequency. We said above that this use of relative frequenciesRELATIVE

FREQUENCY

as a way to estimate probabilities is an example of Maximum Likelihood Estimation or
MLE. In Maximum Likelihood Estimation, the resulting parameter set maximizes the
likelihood of the training setT given the modelM (i.e.,P(T|M)). For example, suppose
the wordChineseoccurs 400 times in a corpus of a million words like the Brown
corpus. What is the probability that a random word selected from some other text of
say a million words will be the wordChinese? The MLE estimate of its probability
is 400

1000000or .0004. Now.0004 is not the best possible estimate of the probability of
Chineseoccurring in all situations; it might turn out that in some OTHER corpus or
contextChineseis a very unlikely word. But it is the probability that makes it most

3 For probabilistic models, normalizing means dividing by some total count so that the resulting probabili-
ties fall legally between 0 and 1.
4 As Chen and Goodman (1998) point out, we need the end-symbol to make the bigram grammar a true
probability distribution. Without an end-symbol, the sentence probabilities for all sentences of a given length
would sum to one, and the probability of the whole language would be infinite.
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likely that Chinese will occur 400 times in a million-word corpus. We will see ways to
modify the MLE estimates slightly to get better probabilityestimates in Sec. 4.5.

Let’s move on to some examples from a slightly larger corpus than our 14-word
example above. We’ll use data from the now-defunct BerkeleyRestaurant Project,
a dialogue system from the last century that answered questions about a database of
restaurants in Berkeley, California (Jurafsky et al., 1994). Here are some sample user
queries, lowercased and with no punctuation (a representative corpus of 9332 sentences
is on the website):

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i’m looking for
tell me about chez panisse
can you give me a listing of the kinds of food that are available
i’m looking for a good place to eat breakfast
when is caffe venezia open during the day

Fig. 4.1 shows the bigram counts from a piece of a bigram grammar from the Berke-
ley Restaurant Project. Note that the majority of the valuesare zero. In fact, we have
chosen the sample words to cohere with each other; a matrix selected from a random
set of seven words would be even more sparse.

i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 4.1 Bigram counts for eight of the words (out ofV = 1446) in the Berkeley
Restaurant Project corpus of 9332 sentences.

Fig. 4.2 shows the bigram probabilities after normalization (dividing each row by
the following unigram counts):

i want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278

Here are a few other useful probabilities:

P(i|<s>) = 0.25 P(english|want) = 0.0011
P(food|english) = 0.5 P(</s>|food) = 0.68

Now we can compute the probability of sentences likeI want English foodor I want
Chinese foodby simply multiplying the appropriate bigram probabilities together, as
follows:
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i want to eat chinese food lunch spend

i 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

Figure 4.2 Bigram probabilities for eight words in the Berkeley Restaurant Project cor-
pus of 9332 sentences.

P(<s> i want english food </s>)

= P(i|<s>)P(want|I)P(english|want)

P(food|english)P(</s>|food)

= .25× .33× .0011×0.5×0.68

= = .000031

We leave it as an exercise for the reader to compute the probability of i want chinese
food. But that exercise does suggest that we’ll want to think a bitabout what kinds of
linguistic phenomena are captured in bigrams. Some of the bigram probabilities above
encode some facts that we think of as strictly syntactic in nature, like the fact that what
comes aftereatis usually a noun or an adjective, or that what comes afterto is usually a
verb. Others might be more cultural than linguistic, like the low probability of anyone
asking for advice on finding English food.

Although we will generally show bigram models in this chapter for pedagogical
purposes, note that when there is sufficient training data weare more likely to use
trigram models, which condition on the previous two words rather than the previousTRIGRAM

word. To compute trigram probabilities at the very beginning of sentence, we can use
two pseudo-words for the first trigram (i.e.,P(I|<s><s>).

4.3 TRAINING AND TEST SETS

The N-gram model is a good example of the kind of statistical models that we will
be seeing throughout speech and language processing. The probabilities of anN-gram
model come from the corpus it is trained on. In general, the parameters of a statistical
model are trained on some set of data, and then we apply the models to some new data
in some task (such as speech recognition) and see how well they work. Of course this
new data or task won’t be the exact same data we trained on.

We can formalize this idea of training on some data, and testing on some other
data by talking about these two data sets as atraining set and atest set(or a trainingTRAINING SET

TEST SET corpus and atest corpus). Thus when using a statistical model of language given
some corpus of relevant data, we start by dividing the data into training and test sets.
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We train the statistical parameters of the model on the training set, and then use this
trained model to compute probabilities on the test set.

This training-and-testing paradigm can also be used toevaluatedifferentN-gramEVALUATE

architectures. Suppose we want to compare different language models (such as those
based onN-grams of different ordersN, or using the differentsmoothingalgorithms
to be introduced in Sec. 4.5). We can do this by taking a corpusand dividing it into
a training set and a test set. Then we train the two differentN-gram models on the
training set and see which one better models the test set. Butwhat does it mean to
“model the test set”? There is is a useful metric for how well agiven statistical model
matches a test corpus, calledperplexity, introduced on page 13. Perplexity is based on
computing the probability of each sentence in the test set; intuitively, whichever model
assigns a higher probability to the test set (hence more accurately predicts the test set)
is a better model.

Since our evaluation metric is based on test set probability, it’s important not to let
the test sentences into the training set. Suppose we are trying to compute the probability
of a particular “test” sentence. If our test sentence is partof the training corpus, we will
mistakenly assign it an artificially high probability when it occurs in the test set. We
call this situationtraining on the test set. Training on the test set introduces a bias that
makes the probabilities all look too high and causes huge inaccuracies in perplexity.

In addition to training and test sets, other divisions of data are often useful. Some-
times we need an extra source of data to augment the training set. Such extra data is
called aheld-out set, because we hold it out from our training set when we trainourHELDOUT

N-gram counts. The held-out corpus is then used to set some other parameters; for ex-
ample we will see the use of held-out data to set interpolation weights ininterpolated
N-gram models in Sec. 4.6. Finally, sometimes we need to have multiple test sets. This
happens because we might use a particular test set so often that we implicitly tune to
its characteristics. Then we would definitely need a fresh test set which is truly unseen.
In such cases, we call the initial test set thedevelopmenttest set or,devset. We willDEVELOPMENT

discuss development test sets again in Ch. 5.
How do we divide our data into training, dev, and test sets? There is a tradeoff, since

we want our test set to be as large as possible and a small test set may be accidentally
unrepresentative. On the other hand, we want as much training data as possible. At the
minimum, we would want to pick the smallest test set that gives us enough statistical
power to measure a statistically significant difference between two potential models.
In practice, we often just divide our data into 80% training,10% development, and
10% test. Given a large corpus that we want to divide into training and test, test data
can either be taken from some continuous sequence of text inside the corpus, or we
can remove smaller “stripes” of text from randomly selectedparts of our corpus and
combine them into a test set.

4.3.1 N-gram Sensitivity to the Training Corpus

The N-gram model, like many statistical models, is very dependent on the training
corpus. One implication of this is that the probabilities often encode very specific facts
about a given training corpus. Another implication is thatN-grams do a better and
better job of modeling the training corpus as we increase thevalue ofN.
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We can visualize both of these facts by borrowing the technique of Shannon (1951)
and Miller and Selfridge (1950), of generating random sentences from differentN-
gram models. It’s simplest to visualize how this works for the unigram case. Imagine
all the words of English covering the probability space between 0 and 1, each word
covering an interval equal to its frequency. We choose a random value between 0 and
1, and print out the word whose interval includes the real value we have chosen. We
continue choosing random numbers and generating words until we randomly generate
the sentence-final token</s>. The same technique can be used to generate bigrams
by first generating a random bigram that starts with<s> (according to its bigram prob-
ability), then choosing a random bigram to follow it (again,according to its conditional
probability), and so on.

To give an intuition for the increasing power of higher-order N-grams, Fig. 4.3
shows random sentences generated from unigram, bigram, trigram, and quadrigram
models trained on Shakespeare’s works.

U
ni

gr
am

• To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have
• Every enter now severally so, let
• Hill he late speaks; or! a more to leg less first you enter
• Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile
like

B
ig

ra
m

• What means, sir. I confess she? then all sorts, he is trim, captain.
•Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.
•What we, hath got so she that I rest and sent to scold and naturebankrupt, nor the first
gentleman?
•Enter Menenius, if it so many good direction found’st thou art a strong upon command
of fear not a liberal largess given away, Falstaff! Exeunt

T
ri

gr
am

• Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.
• This shall forbid it should be branded, if renown made it empty.
• Indeed the duke; and had a very good friend.
• Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

Q
ua

dr
ig

ra
m • King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A

great banquet serv’d in;
• Will you not tell me who I am?
• It cannot be but so.
• Indeed the short and the long. Marry, ’tis a noble Lepidus.

Figure 4.3 Sentences randomly generated from fourN-gram models computed from
Shakespeare’s works. All characters were mapped to lower case and punctuation marks
were treated as words. Output was hand-corrected for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words, nor any
sentence-final punctuation. The bigram sentences have somevery local word-to-word
coherence (especially if we consider that punctuation counts as a word). The trigram
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and quadrigram sentences are beginning to look a lot like Shakespeare. Indeed a care-
ful investigation of the quadrigram sentences shows that they look a little too much
like Shakespeare. The wordsIt cannot be but soare directly fromKing John. This is
because, not to put the knock on Shakespeare, his oeuvre is not very large as corpora
go (N = 884,647,V = 29,066), and ourN-gram probability matrices are ridiculously
sparse. There areV2 = 844,000,000 possible bigrams alone, and the number of possi-
ble quadrigrams isV4 = 7×1017. Thus once the generator has chosen the first quadri-
gram (It cannot be but), there are only five possible continuations (that, I, he, thou, and
so); indeed for many quadrigrams there is only one continuation.

To get an idea of the dependence of a grammar on its training set, let’s look at
an N-gram grammar trained on a completely different corpus:the Wall Street Jour-
nal (WSJ) newspaper. Shakespeare andthe Wall Street Journalare both English, so
we might expect some overlap between ourN-grams for the two genres. In order to
check whether this is true, Fig. 4.4 shows sentences generated by unigram, bigram, and
trigram grammars trained on 40 million words from WSJ.

unigram: Months the my and issue of year foreign new exchange’s september were
recession exchange new endorsed a acquire to six executives
bigram: Last December through the way to preserve the Hudson corporation N. B. E. C.
Taylor would seem to complete the major central planners onepoint five percent of U.
S. E. has already old M. X. corporation of living on information such as more frequently
fishing to keep her
trigram: They also point to ninety nine point six billion dollars fromtwo hundred four oh
six three percent of the rates of interest stores as Mexico and Brazil on market conditions

Figure 4.4 Sentences randomly generated from three orders ofN-gram computed from
40 million words ofthe Wall Street Journal. All characters were mapped to lower case and
punctuation marks were treated as words. Output was hand corrected for capitalization to
improve readability.

Compare these examples to the pseudo-Shakespeare in Fig. 4.3. While superficially
they both seem to model “English-like sentences” there is obviously no overlap what-
soever in possible sentences, and little if any overlap evenin small phrases. This stark
difference tells us that statistical models are likely to bepretty useless as predictors if
the training sets and the test sets are as different as Shakespeare and WSJ.

How should we deal with this problem when we buildN-gram models? In general
we need to be sure to use a training corpus that looks like our test corpus. We especially
wouldn’t choose training and tests from differentgenresof text like newspaper text,
early English fiction, telephone conversations, and web pages. Sometimes finding ap-
propriate training text for a specific new task can be difficult; to buildN-grams for text
prediction in SMS (Short Message Service), we need a training corpus of SMS data.
To buildN-grams on business meetings, we would need to have corpora oftranscribed
business meetings.

For general research where we know we want written English but don’t have a
domain in mind, we can use a balanced training corpus that includes cross sections
from different genres, such as the 1-million-word Brown corpus of English (Francis and
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Kučera, 1982) or the 100-million-word British National Corpus (Leech et al., 1994).
Recent research has also studied ways to dynamicallyadapt language models to

different genres; see Sec. 4.9.4.

4.3.2 Unknown Words: Open versus closed vocabulary tasks

Sometimes we have a language task in which we know all the words that can occur,
and hence we know the vocabulary sizeV in advance. Theclosed vocabularyas-CLOSED

VOCABULARY

sumption is the assumption that we have such a lexicon, and that the test set can only
contain words from this lexicon. The closed vocabulary taskthus assumes there are no
unknown words.

But of course this is a simplification; as we suggested earlier, the number of unseen
words grows constantly, so we can’t possibly know in advanceexactly how many there
are, and we’d like our model to do something reasonable with them. We call these
unseen eventsunknown words, orout of vocabulary (OOV) words. The percentageOOV

of OOV words that appear in the test set is called theOOV rate.
An open vocabularysystem is one where we model these potential unknown wordsOPEN VOCABULARY

in the test set by adding a pseudo-word called<UNK>. We can train the probabilities
of the unknown word model<UNK> as follows:

1. Choose a vocabulary(word list) which is fixed in advance.

2. Convert in the training set any word that is not in this set (any OOV word) to the
unknown word token<UNK> in a text normalization step.

3. Estimate the probabilities for<UNK> from its counts just like any other regular
word in the training set.

4.4 EVALUATING N-GRAMS: PERPLEXITY

The best way to evaluate the performance of a language model is to embed it in an
application and measure the total performance of the application. Such end-to-end
evaluation is calledextrinsic evaluation, and also sometimes calledin vivo evaluationEXTRINSIC

EVALUATION

IN VIVO (Sparck Jones and Galliers, 1996). Extrinisic evaluation is the only way to know if a
particular improvement in a component is really going to help the task at hand. Thus
for speech recognition, we can compare the performance of two language models by
running the speech recognizer twice, once with each language model, and seeing which
gives the more accurate transcription.

Unfortunately, end-to-end evaluation is often very expensive; evaluating a large
speech recognition test set, for example, takes hours or even days. Thus we would
like a metric that can be used to quickly evaluate potential improvements in a language
model. Anintrinsitic evaluation metric is one which measures the quality of a modelINTRINSITIC

EVALUATION

independent of any application.Perplexity is the most common intrinsic evaluation
metric for N-gram language models. While an (intrinsic) improvement inperplexity
does not guarantee an (extrinsic) improvement in speech recognition performance (or
any other end-to-end metric), it often correlates with suchimprovements. Thus it is
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commonly used as a quick check on an algorithm and an improvement in perplexity
can then be confirmed by an end-to-end evaluation.

The intuition of perplexity is that given two probabilisticmodels, the better model
is the one that has a tighter fit to the test data, or predicts the details of the test data
better. We can measure better prediction by looking at the probability the model assigns
to the test data; the better model will assign a higher probability to the test data.

More formally, theperplexity (sometimes calledPP for short) of a language modelPERPLEXITY

on a test set is a function of the probability that the language model assigns to that test
set. For a test setW = w1w2 . . .wN, the perplexity is the probability of the test set,
normalized by the number of words:

PP(W) = P(w1w2 . . .wN)−
1
N(4.16)

= N

√

1
P(w1w2 . . .wN

)

We can use the chain rule to expand the probability ofW:

PP(W) = N

√

N

∏
i=1

1
P(wi |w1 . . .wi−1)

(4.17)

Thus if we are computing the perplexity ofW with a bigram language model, we
get:

PP(W) = N

√

N

∏
i=1

1
P(wi |wi−1)

(4.18)

Note that because of the inverse in Equation (4.17), the higher the conditional prob-
ability of the word sequence, the lower the perplexity. Thusminimizing perplexity
is equivalent to maximizing the test set probability according to the language model.
What we generally use for word sequence in Equation (4.17) orEquation (4.18) is the
entire sequence of words in some test set. Since of course this sequence will cross
many sentence boundaries, we need to include the begin- and end-sentence markers
<s> and</s> in the probability computation. We also need to include the end-of-
sentence marker</s> (but not the beginning-of-sentence marker<s>) in the total
count of word tokensN.

There is another way to think about perplexity: as theweighted average branching
factor of a language. The branching factor of a language is the number of possible next
words that can follow any word. Consider the task of recognizing the digits in English
(zero, one, two,..., nine), given that each of the 10 digits occur with equal probability
P= 1

10. The perplexity of this mini-language is in fact 10. To see that, imagine a string
of digits of lengthN. By Equation (4.17), the perplexity will be:

PP(W) = P(w1w2 . . .wN)−
1
N
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= (
1
10

N

)−
1
N

=
1
10

−1

= 10(4.19)

But now suppose that the number zero is really frequent and occurs 10 times more
often than other numbers. Now we should expect the perplexity to be lower, since most
of the time the next number will be zero. Thus although the branching factor is still 10,
the perplexity or weighted branching factor is smaller. We leave this calculation as an
exercise to the reader.

We’ll see in Sec. 4.10 that perplexity is also closely related to the information-
theoretic notion of entropy.

Finally, let’s see an example of how perplexity can be used tocompare threeN-
gram models. We trained unigram, bigram, and trigram grammars on 38 million words
(including start-of-sentence tokens) from the Wall StreetJournal, using a 19,979 word
vocabulary.5 We then computed the perplexity of each of these models on a test set of
1.5 million words via Equation (4.65). The table below showsthe perplexity of a 1.5
million word WSJ test set according to each of these grammars.

N-gram Order Unigram Bigram Trigram
Perplexity 962 170 109

As we see above, the more information theN-gram gives us about the word se-
quence, the lower the perplexity (since as Equation (4.17) showed, perplexity is related
inversely to the likelihood of the test sequence according to the model).

Note that in computing perplexities theN-gram modelP must be constructed with-
out any knowledge of the test set. Any kind of knowledge of thetest set can cause
the perplexity to be artificially low. For example, we definedabove theclosed vocab-
ulary task, in which the vocabulary for the test set is specified in advance. This canCLOSED

VOCABULARY

greatly reduce the perplexity. As long as this knowledge is provided equally to each of
the models we are comparing, the closed vocabulary perplexity can still be useful for
comparing models, but care must be taken in interpreting theresults. In general, the
perplexity of two language models is only comparable if theyuse the same vocabulary.

4.5 SMOOTHING

Never do I ever want
to hear another word!
There isn’t one,
I haven’t heard!

5 More specifically, Katz-style backoff grammars with Good-Turing discounting trained on 38 million
words from the WSJ0 corpus (LDC, 1993), open-vocabulary, using the<UNK> token; see later sections for
definitions.
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Eliza Doolittle in Alan
Jay Lerner’s My Fair
Lady

There is a major problem with the maximum likelihood estimation process we have
seen for training the parameters of anN-gram model. This is the problem ofsparse
data caused by the fact that our maximum likelihood estimate was based on a particularSPARSE DATA

set of training data. For anyN-gram that occurred a sufficient number of times, we
might have a good estimate of its probability. But because any corpus is limited, some
perfectly acceptable English word sequences are bound to bemissing from it. This
missing data means that theN-gram matrix for any given training corpus is bound to
have a very large number of cases of putative “zero probability N-grams” that should
really have some non-zero probability. Furthermore, the MLE method also produces
poor estimates when the counts are non-zero but still small.

We need a method which can help get better estimates for thesezero or low-
frequency counts. Zero counts turn out to cause another hugeproblem. Theperplexity
metric defined above requires that we compute the probability of each test sentence.
But if a test sentence has anN-gram that never appeared in the training set, the Maxi-
mum Likelihood estimate of the probability for thisN-gram, and hence for the whole
test sentence, will be zero! This means that in order to evaluate our language mod-
els, we need to modify the MLE method to assign some non-zero probability to any
N-gram, even one that was never observed in training.

For these reasons, we’ll want to modify the maximum likelihood estimates for
computingN-gram probabilities, focusing on theN-gram events that we incorrectly
assumed had zero probability. We use the termsmoothingfor such modifications thatSMOOTHING

address the poor estimates that are due to variability in small data sets. The name
comes from the fact that (looking ahead a bit) we will be shaving a little bit of proba-
bility mass from the higher counts, and piling it instead on the zero counts, making the
distribution a little less jagged.

In the next few sections we will introduce some smoothing algorithms and show
how they modify the Berkeley Restaurant bigram probabilities in Fig. 4.2.

4.5.1 Laplace Smoothing

One simple way to do smoothing might be just to take our matrixof bigram counts,
before we normalize them into probabilities, and add one to all the counts. This algo-
rithm is calledLaplace smoothing, or Laplace’s Law (Lidstone, 1920; Johnson, 1932;LAPLACE

SMOOTHING

Jeffreys, 1948). Laplace smoothing does not perform well enough to be used in modern
N-gram models, but we begin with it because it introduces manyof the concepts that
we will see in other smoothing algorithms and also gives us a useful baseline.

Let’s start with the application of Laplace smoothing to unigram probabilities. Re-
call that the unsmoothed maximum likelihood estimate of theunigram probability of
the wordwi is its countci normalized by the total number of word tokensN:

P(wi) =
ci

N

Laplace smoothing merely adds one to each count (hence its alternate nameadd-
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one smoothing). Since there areV words in the vocabulary, and each one got incre-ADDONE

mented, we also need to adjust the the denominator to take into account the extraV
observations.6

PLaplace(wi) =
ci +1
N+V

(4.20)

Instead of changing both the numerator and denominator it isconvenient to describe
how a smoothing algorithm affects the numerator, by defininganadjusted countc∗.
This adjusted count is easier to compare directly with the MLE counts, and can be
turned into a probability like an MLE count by normalizing byN. To define this count,
since we are only changing the numerator, in addition to adding one we’ll also need to
multiply by a normalization factor N

N+V :

c∗i = (ci +1)
N

N+V
(4.21)

We can now turnc∗ into a probabilityp∗i by normalizing byN.
A related way to view smoothing is asdiscounting (lowering) some non-zeroDISCOUNTING

counts in order to get the probability mass that will be assigned to the zero counts.
Thus instead of referring to the discounted countsc∗, we might describe a smoothing
algorithm in terms of a relativediscount dc, the ratio of the discounted counts to theDISCOUNT

original counts:

dc =
c∗

c

Now that we have the intuition for the unigram case, let’s smooth our Berkeley
Restaurant Project bigrams. Fig. 4.5 shows the add-one smoothed counts for the bi-
grams in Fig. 4.1.

i want to eat chinese food lunch spend

i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 4.5 Add-one smoothed bigram counts for eight of the words (out ofV = 1446)
in the Berkeley Restaurant Project corpus of 9332 sentences.

Fig. 4.6 shows the add-one smoothed probabilities for the bigrams in Fig. 4.2. Re-
call that normal bigram probabilities are computed by normalizing each row of counts
by the unigram count:

6 What happens to ourP values if we don’t increase the denominator?
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P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(4.22)

For add-one smoothed bigram counts we need to augment the unigram count by
the number of total word types in the vocabularyV:

P∗
Laplace(wn|wn−1) =

C(wn−1wn)+1
C(wn−1)+V

(4.23)

Thus each of the unigram counts given in the previous sectionwill need to be
augmented byV = 1446. The result is the smoothed bigram probabilities in Fig. 4.6.

i want to eat chinese food lunch spend

i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 4.6 Add-one smoothed bigram probabilities for eight of the words (out ofV = 1446) in the BeRP
corpus of 9332 sentences.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. Theseadjusted counts can be
computed by Equation (4.24). Fig. 4.7 shows the reconstructed counts.

c∗(wn−1wn) =
[C(wn−1wn)+1]×C(wn−1)

C(wn−1)+V
(4.24)

i want to eat chinese food lunch spend

i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 4.7 Add-one reconstituted counts for eight words (ofV = 1446) in the BeRP
corpus of 9332 sentences.

Note that add-one smoothing has made a very big change to the counts.C(want to)
changed from 608 to 238! We can see this in probability space as well: P(to|want)
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decreases from .66 in the unsmoothed case to .26 in the smoothed case. Looking at the
discountd (the ratio between new and old counts) shows us how strikingly the counts
for each prefix word have been reduced; the discount for the bigramwant to is .39,
while the discount forChinese foodis .10, a factor of 10!

The sharp change in counts and probabilities occurs becausetoo much probability
mass is moved to all the zeros. We could move a bit less mass by adding a frac-
tional count rather than 1 (add-δ smoothing; (Lidstone, 1920; Johnson, 1932; Jeffreys,
1948)), but this method requires a method for choosingδ dynamically, results in an in-
appropriate discount for many counts, and turns out to give counts with poor variances.
For these and other reasons (Gale and Church, 1994), we’ll need better smoothing
methods forN-grams like the ones we’ll see in the next section.

4.5.2 Good-Turing Discounting

There are a number of much better discounting algorithms that are only slightly more
complex than add-one smoothing. In this section we introduce one of them, known as
Good-Turing smoothing.GOODTURING

The intuition of a number of discounting algorithms (Good Turing, Witten-Bell
discounting, andKneyser-Ney smoothing) is to use the count of things you’ve seenWITTENBELL

DISCOUNTING

KNEYSERNEY
SMOOTHING onceto help estimate the count of things you’venever seen. The Good-Turing algo-

rithm was first described by Good (1953), who credits Turing with the original idea.
The basic insight of Good-Turing smoothing is to re-estimate the amount of probabil-
ity mass to assign toN-grams with zero counts by looking at the number ofN-grams
that occurred one time. A word orN-gram (or any event) that occurs once is called a
singleton, or ahapax legomenon. The Good-Turing intuition is to use the frequencySINGLETON

of singletons as a re-estimate of the frequency of zero-count bigrams.
Let’s formalize the algorithm. The Good-Turing algorithm is based on computing

Nc, the number ofN-grams that occurc times. We refer to the number ofN-grams that
occurc times as thefrequency of frequencyc. So applying the idea to smoothing the
joint probability of bigrams,N0 is the number of bigrams with count 0,N1 the number
of bigrams with count 1 (singletons), and so on. We can think of each of theNc as a bin
which stores the number of differentN-grams that occur in the training set with that
frequencyc. More formally:

Nc = ∑
x:count(x)=c

1(4.25)

The MLE count forNc isc. The Good-Turing estimate replaces this with a smoothed
countc∗, as a function ofNc+1:

c∗ = (c+1)
Nc+1

Nc
(4.26)

We can use (Equation (4.26)) to replace the MLE counts for allthe binsN1, N2,
and so on. Instead of using this equation directly to re-estimate the smoothed countc∗

for N0, we use the following equation for the probabilityP∗
GT for things that had zero

countN0, or what we might call themissing mass:
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P∗
GT(things with frequency zero in training) =

N1

N
(4.27)

HereN1 is the count of items in bin 1, i.e. that were seen once in training, andN
is the total number of items we have seen in training. Equation (4.27) thus gives the
probability that theN + 1st bigram we see will be one that we never saw in training.
Showing that (Equation (4.27)) follows from (Equation (4.26)) is left as Exercise 4.8
for the reader.

The Good-Turing method was first proposed for estimating thepopulations of ani-
mal species. Let’s consider an illustrative example from this domain created by Joshua
Goodman and Stanley Chen. Suppose we are fishing in a lake with8 species (bass,
carp, catfish, eel, perch, salmon, trout, whitefish) and we have seen 6 species with the
following counts: 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, and 1 eel (so we
haven’t yet seen the catfish or bass). What is the probabilitythat the next fish we catch
will be a new species, i.e., one that had a zero frequency in our training set, i.e., in this
case either a catfish or a bass?

The MLE countc of a hitherto-unseen species (bass or catfish) is 0. But Equa-
tion (4.27) tells us that the probability of a new fish being one of these unseen species
is 3

18, sinceN1 is 3 andN is 18:

P∗
GT(things with frequency zero in training) =

N1

N
=

3
18

(4.28)

What is the probability that the next fish will be another trout? The MLE count
for trout is 1, so the MLE estimated probability is118. But the Good-Turing estimate
must be lower, since we just stole318 of our probability mass to use on unseen events!
We’ll need to discount the MLE probabilities for trout, perch, carp, etc. In summary,
the revised countsc∗ and Good-Turing smoothed probabilitiesp∗GT for species with
count 0 (like bass or catfish) or count 1 (like trout, salmon, or eel) are as follows:

unseen (bass or catfish) trout
c 0 1

MLE p p = 0
18 = 0 1

18

c∗ c∗(trout)= 2× N2
N1

= 2× 1
3 = .67

GT p∗GT p∗GT(unseen)= N1
N = 3

18 = .17 p∗GT(trout)= .67
18 = 1

27 = .037

Note that the revised countc∗ for eel was discounted fromc= 1.0 toc∗ = .67, (thus
leaving some probability massp∗GT(unseen)= 3

18 = .17 for the catfish and bass). And
since we know there were 2 unknown species, the probability of the next fish being
specifically a catfish isp∗GT(catfish)= 1

2 ×
3
18 = .085.

Fig. 4.8 gives two examples of the application of Good-Turing discounting to bi-
gram grammars, one on the BeRP corpus of 9332 sentences, and alarger example com-
puted from 22 million words from the Associated Press (AP) newswire by Church and
Gale (1991) . For both examples the first column shows the count c, i.e., the number of
observed instances of a bigram. The second column shows the number of bigrams that
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had this count. Thus 449,721 of the AP bigrams have a count of 2. The third column
showsc∗, the Good-Turing re-estimation of the count.

AP Newswire Berkeley Restaurant
c (MLE) Nc c∗ (GT) c (MLE) Nc c∗ (GT)
0 74,671,100,000 0.0000270 0 2,081,496 0.002553
1 2,018,046 0.446 1 5315 0.533960
2 449,721 1.26 2 1419 1.357294
3 188,933 2.24 3 642 2.373832
4 105,668 3.24 4 381 4.081365
5 68,379 4.22 5 311 3.781350
6 48,190 5.19 6 196 4.500000

Figure 4.8 Bigram “frequencies of frequencies” and Good-Turing re-estimations for
the 22 million AP bigrams from Church and Gale (1991) and fromthe Berkeley Restaurant
corpus of 9332 sentences.

4.5.3 Some advanced issues in Good-Turing estimation

Good-Turing estimation assumes that the distribution of each bigram is binomial (Church
et al., 1991) and assumes we knowN0, the number of bigrams we haven’t seen. We
know this because given a vocabulary size ofV, the total number of bigrams isV2,
henceN0 is V2 minus all the bigrams we have seen.

There are a number of additional complexities in the use of Good-Turing. For
example, we don’t just use the rawNc values in Equation (4.26). This is because
the re-estimatec∗ for Nc depends onNc+1, hence Equation (4.26) is undefined when
Nc+1 = 0. Such zeros occur quite often. In our sample problem above,for example,
sinceN4 = 0, how can we computeN3? One solution to this is calledSimple Good-
Turing (Gale and Sampson, 1995). In Simple Good-Turing, after we compute the binsSIMPLE

GOODTURING

Nc, but before we compute Equation (4.26) from them, we smooth the Nc counts to
replace any zeros in the sequence. The simplest thing is justto replace the valueNc

with a value computed from a linear regression which is fit to mapNc to c in log space
(see Gale and Sampson (1995) for details):

log(Nc) = a+b log(c)(4.29)

In addition, in practice, the discounted estimatec∗ is not used for all countsc.
Large counts (wherec > k for some thresholdk) are assumed to be reliable. Katz
(1987) suggests settingk at 5. Thus we define

c∗ = c for c > k(4.30)

The correct equation forc∗ when somek is introduced (from Katz (1987)) is:

c∗ =
(c+1)

Nc+1
Nc

−c(k+1)Nk+1
N1

1− (k+1)Nk+1
N1

, for 1≤ c≤ k.(4.31)
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Second, with Good-Turing discounting as with any other, it is usual to treatN-
grams with low raw counts (especially counts of 1) as if the count were 0, i.e., to apply
Good-Turing discounting to these as if they were unseen.

It turns out that Good-Turing discounting is not used by itself in discountingN-
grams; it is only used in combination with the backoff and interpolation algorithms
described in the next sections.

4.6 INTERPOLATION

The discounting we have been discussing so far can help solvethe problem of zero
frequencyN-grams. But there is an additional source of knowledge we candraw on.
If we are trying to computeP(wn|wn−1wn−2), but we have no examples of a particular
trigramwn−2wn−1wn, we can instead estimate its probability by using the bigramprob-
ability P(wn|wn−1). Similarly, if we don’t have counts to computeP(wn|wn−1), we can
look to the unigramP(wn).

There are two ways to use thisN-gram “hierarchy”,backoff andinterpolation . InBACKOFF

INTERPOLATION backoff, if we have non-zero trigram counts, we rely solely on the trigram counts. We
only “back off” to a lower orderN-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimates from
all theN-gram estimators, i.e., we do a weighted interpolation of trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different orderN-grams by linearly in-
terpolating all the models. Thus we estimate the trigram probability P(wn|wn−1wn−2)
by mixing together the unigram, bigram, and trigram probabilities, each weighted by a
λ:

P̂(wn|wn−1wn−2) = λ1P(wn|wn−1wn−2)

+λ2P(wn|wn−1)

+λ3P(wn)(4.32)

such that theλs sum to 1:

∑
i

λi = 1(4.33)

In a slightly more sophisticated version of linear interpolation, eachλ weight is
computed in a more sophisticated way, by conditioning on thecontext. This way if we
have particularly accurate counts for a particular bigram,we assume that the counts
of the trigrams based on this bigram will be more trustworthy, so we can make theλs
for those trigrams higher and thus give that trigram more weight in the interpolation.
Equation (4.34) shows the equation for interpolation with context-conditioned weights:

P̂(wn|wn−2wn−1) = λ1(w
n−1
n−2)P(wn|wn−2wn−1)

+λ2(w
n−1
n−2)P(wn|wn−1)

+ λ3(w
n−1
n−2)P(wn)(4.34)
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How are theseλ values set? Both the simple interpolation and conditional inter-
polationλs are learned from aheld-out corpus. Recall from Sec. 4.3 that a held-outHELDOUT

corpus is an additional training corpus that we use not to settheN-gram counts, but to
set other parameters. In this case we can use such data to set theλ values. We can do
this by choosing theλ values which maximize the likelihood of the held-out corpus.
That is, we fix theN-gram probabilities and then search for theλ values that when
plugged into Equation (4.32) give us the highest probability of the held-out set, There
are various ways to find this optimal set ofλs. One way is to use theEM algorithm to
be defined in Ch. 6, which is an iterative learning algorithm that converges on locally
optimalλs (Baum, 1972; Dempster et al., 1977; Jelinek and Mercer, 1980).

4.7 BACKOFF

While simple interpolation is indeed simple to understand and implement, it turns out
that there are a number of better algorithms. One of these is backoffN-gram modeling.
The version of backoff that we describe uses Good-Turing discounting as well. It was
introduced by Katz (1987), hence this kind of backoff with discounting is also called
Katz backoff. In a Katz backoffN-gram model, if theN-gram we need has zero counts,KATZ BACKOFF

we approximate it by backing off to the (N-1)-gram. We continue backing off until we
reach a history that has some counts:

Pkatz(wn|w
n−1
n−N+1) =







P∗(wn|w
n−1
n−N+1), if C(wn

n−N+1) > 0

α(wn−1
n−N+1)Pkatz(wn|w

n−1
n−N+2), otherwise.

(4.35)

Equation (4.35) shows that the Katz backoff probability foranN-gram just relies on
the (discounted) probabilityP∗ if we’ve seen thisN-gram before (i.e. if we have non-
zero counts). Otherwise, we recursively back off to the Katzprobability for the shorter-
history (N-1)-gram. We’ll define the discounted probabilityP∗, the normalizing factor
α, and other details about dealing with zero counts in Sec. 4.7.1. Based on these details,
the trigram version of backoff might be represented as follows (where for pedagogical
clarity, since it’s easy to confuse the indiceswi ,wi−1 and so on, we refer to the three
words in a sequence asx, y, zin that order):

Pkatz(z|x,y) =











P∗(z|x,y), if C(x,y,z) > 0

α(x,y)Pkatz(z|y), else ifC(x,y) > 0

P∗(z), otherwise.

(4.36)

Pkatz(z|y) =

{

P∗(z|y), if C(y,z) > 0

α(y)P∗(z), otherwise.
(4.37)

Katz backoff incorporates discounting as an integral part of the algorithm. Our
previous discussions of discounting showed how a method like Good-Turing could be
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used to assign probability mass to unseen events. For simplicity, we assumed that these
unseen events were all equally probable, and so the probability mass got distributed
evenly among all unseen events. Katz backoff gives us a better way to distribute the
probability mass among unseen trigram events, by relying oninformation from uni-
grams and bigrams. We use discounting to tell us how much total probability mass to
set aside for all the events we haven’t seen and backoff to tell us how to distribute this
probability.

Discounting is implemented by using discounted probabilities P∗(·) rather than
MLE probabilitiesP(·) in Equation (4.35) and Equation (4.37).

Why do we need discounts andα values in Equation (4.35) and Equation (4.37)?
Why couldn’t we just have three sets of MLE probabilities without weights? Because
without discounts andα weights, the result of the equation would not be a true prob-
ability! The MLE estimates ofP(wn|w

n−1
n−N+1) are true probabilities; if we sum the

probability of allwi over a givenN-gram context, we should get 1:

∑
i

P(wi |wj wk) = 1(4.38)

But if that is the case, if we use MLE probabilities but back off to a lower order
model when the MLE probability is zero, we would be adding extra probability mass
into the equation, and the total probability of a word would be greater than 1!

Thus any backoff language model must also be discounted. TheP∗ is used to
discount the MLE probabilities to save some probability mass for the lower orderN-
grams. Theα is used to ensure that the probability mass from all the lowerorder
N-grams sums up to exactly the amount that we saved by discounting the higher-order
N-grams. We defineP∗ as the discounted (c∗) estimate of the conditional probability
of anN-gram, (and saveP for MLE probabilities):

P∗(wn|w
n−1
n−N+1) =

c∗(wn
n−N+1)

c(wn−1
n−N+1)

(4.39)

Because on average the (discounted)c∗ will be less thanc, this probabilityP∗ will
be slightly less than the MLE estimate, which is

c(wn
n−N+1)

c(wn−1
n−N+1)

This will leave some probability mass for the lower orderN-grams which is then
distributed by theα weights; details of computingα are in Sec. 4.7.1. Fig. 4.9 shows
the Katz backoff bigram probabilities for our 8 sample words, computed from the BeRP
corpus using the SRILM toolkit.

4.7.1 Advanced: Details of computing Katz backoffα and P∗

In this section we give the remaining details of the computation of the discounted prob-
ability P∗ and the backoff weightsα(w).

We begin withα, which passes the left-over probability mass to the lower order
N-grams. Let’s represent the total amount of left-over probability mass by the function
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i want to eat chinese food lunch spend

i 0.0014 0.326 0.00248 0.00355 0.000205 0.0017 0.00073 0.000489
want 0.00134 0.00152 0.656 0.000483 0.00455 0.00455 0.00384 0.000483
to 0.000512 0.00152 0.00165 0.284 0.000512 0.0017 0.00175 0.0873
eat 0.00101 0.00152 0.00166 0.00189 0.0214 0.00166 0.0563 0.000585
chinese 0.00283 0.00152 0.00248 0.00189 0.000205 0.519 0.00283 0.000585
food 0.0137 0.00152 0.0137 0.00189 0.000409 0.00366 0.00073 0.000585
lunch 0.00363 0.00152 0.00248 0.00189 0.000205 0.00131 0.00073 0.000585
spend 0.00161 0.00152 0.00161 0.00189 0.000205 0.0017 0.00073 0.000585

Figure 4.9 Good-Turing smoothed bigram probabilities for eight words(of V = 1446) in the BeRP corpus of
9332 sentences, computing by using SRILM, withk = 5 and counts of 1 replaced by 0.

β, a function of the (N-1)-gram context. For a given (N-1)-gram context, the total
left-over probability mass can be computed by subtracting from 1 the total discounted
probability mass for allN-grams starting with that context:

β(wn−1
n−N+1) = 1− ∑

wn:c(wn
n−N+1)>0

P∗(wn|w
n−1
n−N+1)(4.40)

This gives us the total probability mass that we are ready to distribute to all (N-
1)-gram (e.g., bigrams if our original model was a trigram).Each individual (N-1)-
gram (bigram) will only get a fraction of this mass, so we needto normalizeβ by the
total probability of all the (N-1)-grams (bigrams) that begin someN-gram (trigram)
which has zero count. The final equation for computing how much probability mass to
distribute from anN-gram to an (N-1)-gram is represented by the functionα:

α(wn−1
n−N+1) =

β(wn−1
n−N+1)

∑wn:c(wn
n−N+1)=0Pkatz(wn|w

n−1
n−N+2)

=
1−∑wn:c(wn

n−N+1)>0P∗(wn|w
n−1
n−N+1)

1−∑wn:c(wn
n−N+1)>0P∗(wn|w

n−1
n−N+2)

(4.41)

Note thatα is a function of the preceding word string, that is, ofwn−1
n−N+1; thus

the amount by which we discount each trigram (d), and the mass that gets reassigned
to lower orderN-grams (α) are recomputed for every (N-1)-gram that occurs in any
N-gram.

We only need to specify what to do when the counts of an (N-1)-gram context are
0, (i.e., whenc(wn−1

n−N+1) = 0) and our definition is complete:

Pkatz(wn|w
n−1
n−N+1) = Pkatz(wn|w

n−1
n−N+2) if c(wn−1

n−N+1) = 0(4.42)

and

P∗(wn|w
n−1
n−N+1) = 0 if c(wn−1

n−N+1) = 0(4.43)
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and

β(wn−1
n−N+1) = 1 if c(wn−1

n−N+1) = 0(4.44)

4.8 PRACTICAL ISSUES: TOOLKITS AND DATA FORMATS

Let’s now examine howN-gram language models are represented. We represent and
compute language model probabilities in log format, in order to avoid underflow and
also to speed up computation. Since probabilities are (by definition) less than 1, the
more probabilities we multiply together the smaller the product becomes. Multiplying
enoughN-grams together would result in numerical underflow. By using log prob-
abilities instead of raw probabilities, the numbers are notas small. Since adding in
log space is equivalent to multiplying in linear space, we combine log probabilities by
adding them. Besides avoiding underflow, addition is fasterto compute than multipli-
cation. Since we do all computation and storage in log space,if we ever need to report
probabilities we just take the exp of the logprob:

p1× p2× p3× p4 = exp(logp1 + logp2 + logp3 + logp4)(4.45)

Backoff N-gram language models are generally stored inARPA format . An N-
gram in ARPA format is an ASCII file with a small header followed by a list of all
the non-zeroN-gram probabilities (all the unigrams, followed by bigrams, followed by
trigrams, and so on). EachN-gram entry is stored with its discounted log probability
(in log10 format) and its backoff weightα. Backoff weights are only necessary for
N-grams which form a prefix of a longerN-gram, so noα is computed for the highest
orderN-gram (in this case the trigram) orN-grams ending in the end-of-sequence token
<s>. Thus for a trigram grammar, the format of eachN-gram is:

unigram: logp∗(wi) wi logα(wi)
bigram: logp∗(wi |wi−1) wi−1wi logα(wi−1wi)
trigram: logp∗(wi |wi−2,wi−1) wi−2wi−1wi

Fig. 4.10 shows an ARPA formatted LM file with selectedN-grams from the BeRP
corpus. Given one of these trigrams, the probabilityP(z|x,y) for the word sequence
x,y,z can be computed as follows (repeated from (4.37)):

Pkatz(z|x,y) =











P∗(z|x,y), if C(x,y,z) > 0

α(x,y)Pkatz(z|y), else ifC(x,y) > 0

P∗(z), otherwise.

(4.46)

Pkatz(z|y) =

{

P∗(z|y), if C(y,z) > 0

α(y)P∗(z), otherwise.
(4.47)

Toolkits: There are two commonly used available toolkits for buildinglanguage
models, the SRILM toolkit (Stolcke, 2002) and the Cambridge-CMU toolkit (Clark-
son and Rosenfeld, 1997). Both are publicly available, and have similar functionality.
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\data\
ngram 1=1447
ngram 2=9420
ngram 3=5201

\1-grams:
-0.8679678 </s>
-99 <s> -1.068532
-4.743076 chow-fun -0.1943932
-4.266155 fries -0.5432462
-3.175167 thursday -0.7510199
-1.776296 want -1.04292
...

\2-grams:
-0.6077676 <s> i -0.6257131
-0.4861297 i want 0.0425899
-2.832415 to drink -0.06423882
-0.5469525 to eat -0.008193135
-0.09403705 today </s>
...

\3-grams:
-2.579416 <s> i prefer
-1.148009 <s> about fifteen
-0.4120701 to go to
-0.3735807 me a list
-0.260361 at jupiter </s>
-0.260361 a malaysian restaurant
...
\end\

Figure 4.10 ARPA format forN-grams, showing some sampleN-grams. Each is rep-
resented by alogprob, the word sequence,w1...wn, followed by the log backoff weightα.
Note that noα is computed for the highest-orderN-gram or forN-grams ending in<s>.

In training mode, each toolkit takes a raw text file, one sentence per line with words
separated by white-space, and various parameters such as the orderN, the type of dis-
counting (Good Turing or Kneser-Ney, discussed in Sec. 4.9.1), and various thresholds.
The output is a language model in ARPA format. In perplexity or decoding mode, the
toolkits take a language model in ARPA format, and a sentenceor corpus, and pro-
duce the probability and perplexity of the sentence or corpus. Both also implement
many advanced features to be discussed later in this chapterand in following chapters,
including skipN-grams, word lattices, confusion networks, andN-gram pruning.

4.9 ADVANCED ISSUES INLANGUAGE MODELING

4.9.1 Advanced Smoothing Methods: Kneser-Ney Smoothing

In this section we give a brief introduction to the most commonly used modernN-gram
smoothing method, the interpolatedKneser-Neyalgorithm.KNESERNEY

Kneser-Ney has its roots in a discounting method calledabsolute discounting.
Absolute discounting is a much better method of computing a revised countc∗ than the
Good-Turing discount formula we saw in Equation (4.26), based on frequencies-of-
frequencies. To get the intuition, let’s revisit the Good-Turing estimates of the bigram
c∗ extended from Fig. 4.8 and reformatted below:
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c (MLE) 0 1 2 3 4 5 6 7 8 9
c∗ (GT) 0.00002700.446 1.26 2.24 3.24 4.22 5.19 6.21 7.24 8.25

The astute reader may have noticed that except for the re-estimated counts for 0
and 1, all the other re-estimated countsc∗ could be estimated pretty well by just sub-
tracting 0.75 from the MLE countc! Absolute discountingformalizes this intuition,ABSOLUTE

DISCOUNTING

by subtracting a fixed (absolute) discountd from each count. The intuition is that we
have good estimates already for the high counts, and a small discountd won’t affect
them much. It will mainly modify the smaller counts, for which we don’t necessarily
trust the estimate anyway. The equation for absolute discounting applied to bigrams
(assuming a proper coefficientα on the backoff to make everything sum to one) is:

Pabsolute(wi |wi−1) =

{

C(wi−1wi)−D
C(wi−1)

, if C(wi−1wi) > 0

α(wi)Pabsolute(wi), otherwise.
(4.48)

In practice, we might also want to keep distinct discount valuesd for the 0 and 1
counts.

Kneser-Ney discounting(Kneser and Ney, 1995) augments absolute discounting
with a more sophisticated way to handle the backoff distribution. Consider the job of
predicting the next word in this sentence, assuming we are backing off to a unigram
model:

I can’t see without my reading .

The wordglassesseems much more likely to follow here than the wordFrancisco.
But Franciscois in fact more common, so a unigram model will prefer it toglasses.
We would like to capture the intuition that althoughFranciscois frequent, it is only
frequent after the wordSan, i.e. in the phraseSan Francisco. The wordglasseshas a
much wider distribution.

Thus instead of backing off to the unigram MLE count (the number of times the
wordw has been seen), we want to use a completely different backoffdistribution! We
want a heuristic that more accurately estimates the number of times we might expect to
see wordw in a new unseen context. The Kneser-Ney intuition is to base our estimate
on thenumber of different contexts word w has appeared in. Words that have appeared
in more contexts are more likely to appear in some new contextas well. We can express
this new backoff probability, the “continuation probability”, as follows:

PCONTINUATION(wi) =
|{wi−1 : C(wi−1wi) > 0}|

∑wi
|{wi−1 : C(wi−1wi) > 0}|

(4.49)

The Kneser-Ney backoff intuition can be formalized as follows (again assuming a
proper coefficientα on the backoff to make everything sum to one):

PKN(wi |wi−1) =







C(wi−1wi)−D
C(wi−1)

, if C(wi−1wi) > 0

α(wi)
|{wi−1:C(wi−1wi)>0}|

∑wi
|{wi−1:C(wi−1wi)>0}| otherwise.

(4.50)

Finally, it turns out to be better to use aninterpolated rather thanbackoff form
of Kneser-Ney. While Sec. 4.6 showed thatlinear interpolation is not as successful
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as Katz backoff, it turns out that more powerful interpolated models, such as interpo-
lated Kneser-Ney, work better than their backoff version.Interpolated Kneser-NeyINTERPOLATED

KNESERNEY

discounting can be computed with an equation like the following (omitting the compu-
tation ofβ):

PKN(wi |wi−1) =
C(wi−1wi)−D

C(wi−1)
+ β(wi)

|{wi−1 : C(wi−1wi) > 0}|

∑wi
|{wi−1 : C(wi−1wi) > 0}|

(4.51)

A final practical note: it turns out that any interpolation model can be represented as
a backoff model, hence stored in ARPA backoff format. We simply do the interpolation
when we build the model, so the ‘bigram’ probability stored in the backoff format is
really ‘bigram already interpolated with unigram’.

4.9.2 Class-based N-grams

Theclass-based N-gramor cluster N-gram is a variant of theN-gram that uses infor-CLASSBASED
NGRAM

CLUSTER NGRAM mation about word classes or clusters. Class-basedN-grams can be useful for dealing
with sparsity in the training data. Suppose for a flight reservation system we want to
compute the probability of the bigramto Shanghai, but this bigram never occurs in the
training set. Instead, our training data hasto London, to Beijing, andto Denver. If we
knew that these were all cities, and assumingShanghaidoes appear in the training set
in other contexts, we could predict the likelihood of a city following from.

There are many variants of clusterN-grams. The simplest one is sometimes known
asIBM clustering , after its originators (Brown et al., 1992b). IBM clustering is a kindIBM CLUSTERING

of hard clustering, in which each word can belong to only one class. The model esti-
mates the conditional probability of a wordwi by multiplying two factors: the probabil-
ity of the word’s classci given the preceding classes (based on anN-gram of classes),
and the probability ofwi givenci . Here is the IBM model in bigram form:

P(wi |wi−1) ≈ P(ci |,ci−1)×P(wi|ci)

If we had a training corpus in which we knew the class for each word, the maxi-
mum likelihood estimate (MLE) of the probability of the wordgiven the class and the
probability of the class given the previous class could be computed as follows:

P(w|c) =
C(w)

C(c)

P(ci |ci−1) =
C(ci−1ci)

∑cC(ci−1c)

ClusterN-grams are generally used in two ways. In dialog systems (Ch.24), we of-
ten hand-design domain-specific word classes. Thus for an airline information system,
we might use classes likeCITYNAME , AIRLINE , DAYOFWEEK, or MONTH. In other
cases, we can automatically induce the classes by clustering words in a corpus (Brown
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et al., 1992b). Syntactic categories like part-of-speech tags don’t seem to work well as
classes (Niesler et al., 1998).

Whether automatically induced or hand-designed, clusterN-grams are generally
mixed with regular word-basedN-grams.

4.9.3 Language Model Adaptation and Using the Web

One of the most exciting recent developments in language modeling is language model
adaptation. This is relevant when we have only a small amount of in-domain trainingADAPTATION

data, but a large amount of data from some other domain. We cantrain on the larger
out-of-domain dataset and adapt our models to the small in-domain set. (Iyer and
Ostendorf, 1997, 1999a, 1999b; Bacchiani and Roark, 2003; Bacchiani et al., 2004).

An obvious large data source for this type of adaptation is the web. Indeed, use of
the web does seem to be helpful in language modeling. The simplest way to apply the
web to improve, say, trigram language models is to use searchengines to get counts for
w1w2w3 andw1w2w3, and then compute:

p̂web=
cweb(w1w2w3)

cweb(w1w2)
(4.52)

We can then mix ˆpweb with a conventionalN-gram (Berger and Miller, 1998; Zhu
and Rosenfeld, 2001). We can also use more sophisticated combination methods that
make use of topic or class dependencies, to find domain-relevant data on the web data
(Bulyko et al., 2003).

In practice it is difficult or impossible to download every page from the web in
order to computeN-grams. For this reason most uses of web data rely on page counts
from search engines. Page counts are only an approximation to actual counts for many
reasons: a page may contain anN-gram multiple times, most search engines round off
their counts, punctuation is deleted, and the counts themselves may be adjusted due to
link and other information. It seems that this kind of noise does not hugely affect the
results of using the web as a corpus (Keller and Lapata, 2003;Nakov and Hearst, 2005),
although it is possible to perform specific adjustments, such as fitting a regression to
predict actual word counts from page counts (Zhu and Rosenfeld, 2001).

4.9.4 Using Longer Distance Information: A Brief Summary

There are many methods for incorporating longer-distance context intoN-gram model-
ing. While we have limited our discussion mainly to bigram and trigrams, state-of-the-
art speech recognition systems, for example, are based on longer-distanceN-grams,
especially 4-grams, but also 5-grams. Goodman (2006) showed that with 284 million
words of training data, 5-grams do improve perplexity scores over 4-grams, but not
by much. Goodman checked contexts up to 20-grams, and found that after 6-grams,
longer contexts weren’t useful, at least not with 284 million words of training data.

Many models focus on more sophisticated ways to get longer-distance information.
For example people tend to repeat words they have used before. Thus if a word is used
once in a text, it will probably be used again. We can capture this fact by acacheCACHE

language model (Kuhn and De Mori, 1990). For example to use a unigram cache model
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to predict wordi of a test corpus, we create a unigram grammar from the preceding part
of the test corpus (words 1 toi −1) and mix this with our conventionalN-gram. We
might use only a shorter window from the previous words, rather than the entire set.
Cache language models are very powerful in any applicationswhere we have perfect
knowledge of the words. Cache models work less well in domains where the previous
words are not known exactly. In speech applications, for example, unless there is some
way for users to correct errors, cache models tend to “lock in” errors they made on
earlier words.

The fact that words are often repeated in a text is a symptom ofa more general
fact about words; texts tend to beabout things. Documents which are about particular
topics tend to use similar words. This suggests that we couldtrain separate language
models for different topics. Intopic-basedlanguage models (Chen et al., 1998; GildeaTOPICBASED

and Hofmann, 1999), we try to take advantage of the fact that different topics will have
different kinds of words. For example we can train differentlanguage models for each
topic t, and then mix them, weighted by how likely each topic is giventhe historyh:

p(w|h) = ∑
t

P(w|t)P(t|h)(4.53)

A very similar class of models relies on the intuition that upcoming words are se-
mantically similar to preceding words in the text. These models use a measure of
semantic word association such as thelatent semantic indexingdescribed in Ch. 20LATENT SEMANTIC

INDEXING

(Coccaro and Jurafsky, 1998; Bellegarda, 1999, 2000), or on-line dictionaries or the-
sauri (Demetriou et al., 1997) to compute a probability based on a word’s similarity to
preceding words, and then mix it with a conventionalN-gram.

There are also various ways to extend theN-gram model by having the previous
(conditioning) word be something other than a fixed window ofprevious words. For
example we can choose as a predictor a word called atrigger which is not adjacentTRIGGER

but which is very related (has high mutual information with)the word we are trying to
predict (Rosenfeld, 1996; Niesler and Woodland, 1999; Zhouand Lua, 1998). Or we
can createskip N-grams, where the preceding context ‘skips over’ some intermediateSKIP NGRAMS

words, for example computing a probability such asP(wi |wi−1,wi−3). We can also
use extra previous context just in cases where a longer phrase is particularly frequent
or predictive, producing avariable-length N-gram (Ney et al., 1994; Kneser, 1996;VARIABLELENGTH

NGRAM

Niesler and Woodland, 1996).
In general, using very large and rich contexts can result in very large language mod-

els. Thus these models are often pruned by removing low-probability events. Pruning
is also essential for using language models on small platforms such as cellphones (Stol-
cke, 1998; Church et al., 2007).

Finally, there is a wide body of research on integrating sophisticated linguistic
structures into language modeling. Language models based on syntactic structure from
probabilistic parsers are described in Ch. 14. Language models based on the current
speech act in dialogue are described in Ch. 24.
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4.10 ADVANCED: INFORMATION THEORY BACKGROUND

I got the horse right here
Frank Loesser,Guys and Dolls

We introduced perplexity in Sec. 4.4 as a way to evaluateN-gram models on a
test set. A betterN-gram model is one which assigns a higher probability to the test
data, and perplexity is a normalized version of the probability of the test set. Another
way to think about perplexity is based on the information-theoretic concept of cross-
entropy. In order to give another intuition into perplexityas a metric, this section gives
a quick review of fundamental facts frominformation theory including the concept
of cross-entropy that underlies perplexity. The interested reader should consult a good
information theory textbook like Cover and Thomas (1991).

Perplexity is based on the information-theoretic notion ofcross-entropy, which we
will now work toward defining.Entropy is a measure of information, and is invaluableENTROPY

throughout speech and language processing. It can be used asa metric for how much
information there is in a particular grammar, for how well a given grammar matches
a given language, for how predictive a givenN-gram grammar is about what the next
word could be. Given two grammars and a corpus, we can use entropy to tell us which
grammar better matches the corpus. We can also use entropy tocompare how difficult
two speech recognition tasks are, and also to measure how well a given probabilistic
grammar matches human grammars.

Computing entropy requires that we establish a random variableX that ranges over
whatever we are predicting (words, letters, parts of speech, the set of which we’ll call
χ), and that has a particular probability function, call itp(x). The entropy of this
random variableX is then

H(X) = −∑
x∈χ

p(x) log2 p(x)(4.54)

The log can in principle be computed in any base. If we use log base 2, the resulting
value of entropy will be measured inbits.

The most intuitive way to define entropy for computer scientists is to think of the
entropy as a lower bound on the number of bits it would take to encode a certain
decision or piece of information in the optimal coding scheme.

Cover and Thomas (1991) suggest the following example. Imagine that we want
to place a bet on a horse race but it is too far to go all the way toYonkers Racetrack,
and we’d like to send a short message to the bookie to tell him which horse to bet on.
Suppose there are eight horses in this particular race.

One way to encode this message is just to use the binary representation of the
horse’s number as the code; thus horse 1 would be001, horse 2010, horse 3011,
and so on, with horse 8 coded as000. If we spend the whole day betting, and each
horse is coded with 3 bits, on average we would be sending 3 bits per race.

Can we do better? Suppose that the spread is the actual distribution of the bets
placed, and that we represent it as the prior probability of each horse as follows:
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Horse 1 1
2 Horse 5 1

64
Horse 2 1

4 Horse 6 1
64

Horse 3 1
8 Horse 7 1

64
Horse 4 1

16 Horse 8 1
64

The entropy of the random variableX that ranges over horses gives us a lower
bound on the number of bits, and is:

H(X) = −
i=8

∑
i=1

p(i) logp(i)

= − 1
2 log 1

2−
1
4 log 1

4−
1
8 log 1

8−
1
16 log 1

16−4( 1
64 log 1

64)

= 2 bits(4.55)

A code that averages 2 bits per race can be built by using shortencodings for more
probable horses, and longer encodings for less probable horses. For example, we could
encode the most likely horse with the code0, and the remaining horses as10, then
110, 1110, 111100, 111101, 111110, and111111.

What if the horses are equally likely? We saw above that if we used an equal-length
binary code for the horse numbers, each horse took 3 bits to code, so the average was
3. Is the entropy the same? In this case each horse would have aprobability of 1

8. The
entropy of the choice of horses is then:

H(X) = −
i=8

∑
i=1

1
8

log
1
8

= − log
1
8

= 3 bits(4.56)

Until now we have been computing the entropy of a single variable. But most of
what we will use entropy for involvessequences. For a grammar, for example, we will
be computing the entropy of some sequence of wordsW = {w0,w1,w2, . . . ,wn}. One
way to do this is to have a variable that ranges over sequencesof words. For example
we can compute the entropy of a random variable that ranges over all finite sequences
of words of lengthn in some languageL as follows:

H(w1,w2, . . . ,wn) = − ∑
Wn

1 ∈L

p(Wn
1 ) logp(Wn

1 )(4.57)

We could define theentropy rate (we could also think of this as theper-wordENTROPY RATE

entropy) as the entropy of this sequence divided by the number of words:

1
n

H(Wn
1 ) = −

1
n ∑

Wn
1 ∈L

p(Wn
1 ) logp(Wn

1 )(4.58)

But to measure the true entropy of a language, we need to consider sequences of
infinite length. If we think of a language as a stochastic processL that produces a
sequence of words, its entropy rateH(L) is defined as:
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H(L) = − lim
n→∞

1
n

H(w1,w2, . . . ,wn)

= − lim
n→∞

1
n ∑

W∈L
p(w1, . . . ,wn) logp(w1, . . . ,wn)(4.59)

The Shannon-McMillan-Breiman theorem (Algoet and Cover, 1988; Cover and
Thomas, 1991) states that if the language is regular in certain ways (to be exact, if it is
both stationary and ergodic),

H(L) = lim
n→∞

−
1
n

logp(w1w2 . . .wn)(4.60)

That is, we can take a single sequence that is long enough instead of summing over
all possible sequences. The intuition of the Shannon-McMillan-Breiman theorem is
that a long enough sequence of words will contain in it many other shorter sequences,
and that each of these shorter sequences will reoccur in the longer sequence according
to their probabilities.

A stochastic process is said to bestationary if the probabilities it assigns to aSTATIONARY

sequence are invariant with respect to shifts in the time index. In other words, the
probability distribution for words at timet is the same as the probability distribution
at time t + 1. Markov models, and henceN-grams, are stationary. For example, in
a bigram,Pi is dependent only onPi−1. So if we shift our time index byx, Pi+x is
still dependent onPi+x−1. But natural language is not stationary, since as we will
see in Ch. 12, the probability of upcoming words can be dependent on events that
were arbitrarily distant and time dependent. Thus our statistical models only give an
approximation to the correct distributions and entropies of natural language.

To summarize, by making some incorrect but convenient simplifying assumptions,
we can compute the entropy of some stochastic process by taking a very long sample
of the output, and computing its average log probability. Inthe next section we talk
about the why and how:whywe would want to do this (i.e., for what kinds of problems
would the entropy tell us something useful), andhow to compute the probability of a
very long sequence.

4.10.1 Cross-Entropy for Comparing Models

In this section we introducecross-entropy, and discuss its usefulness in comparingCROSSENTROPY

different probabilistic models. The cross-entropy is useful when we don’t know the
actual probability distributionp that generated some data. It allows us to use somem,
which is a model ofp (i.e., an approximation top). The cross-entropy ofm on p is
defined by:

H(p,m) = lim
n→∞

−
1
n ∑

W∈L
p(w1, . . . ,wn) logm(w1, . . . ,wn)(4.61)

That is, we draw sequences according to the probability distribution p, but sum the
log of their probabilities according tom.
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Again, following the Shannon-McMillan-Breimantheorem, for a stationary ergodic
process:

H(p,m) = lim
n→∞

−
1
n

logm(w1w2 . . .wn)(4.62)

This means that, as for entropy, we can estimate the cross-entropy of a modelmon
some distributionp by taking a single sequence that is long enough instead of summing
over all possible sequences.

What makes the cross entropy useful is that the cross entropyH(p,m) is an upper
bound on the entropyH(p). For any modelm:

H(p) ≤ H(p,m)(4.63)

This means that we can use some simplified modelm to help estimate the true
entropy of a sequence of symbols drawn according to probability p. The more accurate
m is, the closer the cross entropyH(p,m) will be to the true entropyH(p). Thus
the difference betweenH(p,m) andH(p) is a measure of how accurate a model is.
Between two modelsm1 andm2, the more accurate model will be the one with the
lower cross-entropy. (The cross-entropy can never be lowerthan the true entropy, so a
model cannot err by underestimating the true entropy).

We are finally ready to see the relation between perplexity and cross-entropy as
we saw it in Equation (4.62). Cross-entropy is defined in the limit, as the length of
the observed word sequence goes to infinity. We will need an approximation to cross-
entropy, relying on a (sufficiently long) sequence of fixed length. This approximation
to the cross-entropy of a modelM = P(wi |wi−N+1...wi−1) on a sequence of wordsW
is:

H(W) = −
1
N

logP(w1w2 . . .wN)(4.64)

Theperplexity of a modelP on a sequence of wordsW is now formally defined as thePERPLEXITY

exp of this cross-entropy:

Perplexity(W) = 2H(W)

= P(w1w2 . . .wN)−
1
N

= N

√

1
P(w1w2 . . .wN)

= N

√

N

∏
i=1

1
P(wi |w1 . . .wi−1)

(4.65)



DRAFT

36 Chapter 4. N-grams

4.11 ADVANCED: THE ENTROPY OFENGLISH AND ENTROPY RATE

CONSTANCY

As we suggested in the previous section, the cross-entropy of some modelm can be
used as an upper bound on the true entropy of some process. We can use this method to
get an estimate of the true entropy of English. Why should we care about the entropy
of English?

One reason is that the true entropy of English would give us a solid lower bound
for all of our future experiments on probabilistic grammars. Another is that we can use
the entropy values for English to help understand what partsof a language provide the
most information (for example, is the predictability of English mainly based on word
order, on semantics, on morphology, on constituency, or on pragmatic cues?) This can
help us immensely in knowing where to focus our language-modeling efforts.

There are two common methods for computing the entropy of English. The first
was employed by Shannon (1951), as part of his groundbreaking work in defining the
field of information theory. His idea was to use human subjects, and to construct a psy-
chological experiment that requires them to guess strings of letters. By looking at how
many guesses it takes them to guess letters correctly we can estimate the probability of
the letters, and hence the entropy of the sequence.

The actual experiment is designed as follows: we present a subject with some En-
glish text and ask the subject to guess the next letter. The subjects will use their knowl-
edge of the language to guess the most probable letter first, the next most probable next,
and so on. We record the number of guesses it takes for the subject to guess correctly.
Shannon’s insight was that the entropy of the number-of-guesses sequence is the same
as the entropy of English. (The intuition is that given the number-of-guesses sequence,
we could reconstruct the original text by choosing the “nth most probable” letter when-
ever the subject tookn guesses). This methodology requires the use of letter guesses
rather than word guesses (since the subject sometimes has todo an exhaustive search
of all the possible letters!), so Shannon computed theper-letter entropy of English
rather than the per-word entropy. He reported an entropy of 1.3 bits (for 27 characters
(26 letters plus space)). Shannon’s estimate is likely to betoo low, since it is based on a
single text (Jefferson the Virginianby Dumas Malone). Shannon notes that his subjects
had worse guesses (hence higher entropies) on other texts (newspaper writing, scien-
tific work, and poetry). More recent variations on the Shannon experiments include the
use of a gambling paradigm where the subjects get to bet on thenext letter (Cover and
King, 1978; Cover and Thomas, 1991).

The second method for computing the entropy of English helpsavoid the single-
text problem that confounds Shannon’s results. This methodis to take a very good
stochastic model, train it on a very large corpus, and use it to assign a log-probability
to a very long sequence of English, using the Shannon-McMillan-Breiman theorem:

H(English) ≤ lim
n→∞

−
1
n

logm(w1w2 . . .wn)(4.66)

For example, Brown et al. (1992a) trained a trigram languagemodel on 583 million
words of English (293,181 different types) and used it to compute the probability of
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the entire Brown corpus (1,014,312 tokens). The training data include newspapers,
encyclopedias, novels, office correspondence, proceedings of the Canadian parliament,
and other miscellaneous sources.

They then computed the character entropy of the Brown corpusby using their word-
trigram grammar to assign probabilities to the Brown corpus, considered as a sequence
of individual letters. They obtained an entropy of 1.75 bits per character (where the set
of characters included all the 95 printable ASCII characters).

The average length of English written words (including space) has been reported
at 5.5 letters (Nádas, 1984). If this is correct, it means that the Shannon estimate of
1.3 bits per letter corresponds to a per-word perplexity of 142 for general English. The
numbers we report earlier for the WSJ experiments are significantly lower than this,
since the training and test set came from the same subsample of English. That is, those
experiments underestimate the complexity of English (since the Wall Street Journal
looks very little like Shakespeare, for example)

A number of scholars have independently made the intriguingsuggestion that en-
tropy rate plays a role in human communication in general (Lindblom, 1990; Van Son
et al., 1998; Aylett, 1999; Genzel and Charniak, 2002; Van Son and Pols, 2003). The
idea is that people speak so as to keep the rate of informationbeing transmitted per
second roughly constant, i.e., transmitting a constant number of bits per second, or
maintaining a constant entropy rate. Since the most efficient way of transmitting in-
formation through a channel is at a constant rate, language may even have evolved
for such communicative efficiency (Plotkin and Nowak, 2000). There is a wide vari-
ety of evidence for the constant entropy rate hypothesis. One class of evidence, for
speech, shows that speakers shorten predictable words (i.e., they take less time to say
predictable words) and lengthen unpredictable words (Aylett, 1999; Jurafsky et al.,
2001; Aylett and Turk, 2004). In another line of research, Genzel and Charniak (2002,
2003) show that entropy rate constancy makes predictions about the entropy of individ-
ual sentences from a text. In particular, they show that it predicts that local measures
of sentence entropy which ignore previous discourse context (for example theN-gram
probability of sentence), should increase with the sentence number, and they document
this increase in corpora. Keller (2004) provides evidence that entropy rate plays a role
for the addressee as well, showing a correlation between theentropy of a sentence
and the processing effort it causes in comprehension, as measured by reading times in
eye-tracking data.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The underlying mathematics of theN-gram was first proposed by Markov (1913), who
used what are now calledMarkov chains (bigrams and trigrams) to predict whether an
upcoming letter in Pushkin’sEugene Oneginwould be a vowel or a consonant. Markov
classified 20,000 letters as V or C and computed the bigram andtrigram probability that
a given letter would be a vowel given the previous one or two letters. Shannon (1948)
appliedN-grams to compute approximations to English word sequences. Based on
Shannon’s work, Markov models were commonly used in engineering, linguistic, and
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psychological work on modeling word sequences by the 1950s.
In a series of extremely influential papers starting with Chomsky (1956) and in-

cluding Chomsky (1957) and Miller and Chomsky (1963), Noam Chomsky argued that
“finite-state Markov processes”, while a possibly useful engineering heuristic, were in-
capable of being a complete cognitive model of human grammatical knowledge. These
arguments led many linguists and computational linguists to ignore work in statistical
modeling for decades.

The resurgence ofN-gram models came from Jelinek, Mercer, Bahl, and colleagues
at the IBM Thomas J. Watson Research Center, who were influenced by Shannon, and
Baker at CMU, who was influenced by the work of Baum and colleagues. Indepen-
dently these two labs successfully usedN-grams in their speech recognition systems
(Baker, 1990; Jelinek, 1976; Baker, 1975; Bahl et al., 1983;Jelinek, 1990). A trigram
model was used in the IBM TANGORA speech recognition system in the 1970s, but
the idea was not written up until later.

Add-one smoothing derives from Laplace’s 1812 law of succession, and was first
applied as an engineering solution to the zero-frequency problem by Jeffreys (1948)
based on an earlier Add-K suggestion by Johnson (1932). Problems with the Add-one
algorithm are summarized in Gale and Church (1994). The Good-Turing algorithm was
first applied to the smoothing ofN-gram grammars at IBM by Katz, as cited in Nádas
(1984). Church and Gale (1991) give a good description of theGood-Turing method,
as well as the proof. Sampson (1996) also has a useful discussion of Good-Turing.
Jelinek (1990) summarizes this and many other early language model innovations used
in the IBM language models.

A wide variety of different language modeling and smoothingtechniques were
tested through the 1980’s and 1990’s, including Witten-Bell discounting (Witten and
Bell, 1991), varieties of class-based models (Jelinek, 1990; Kneser and Ney, 1993;
Heeman, 1999; Samuelsson and Reichl, 1999), and others (Gupta et al., 1992). In
the late 1990’s, Chen and Goodman produced a very influentialseries of papers with
a comparison of different language models (Chen and Goodman, 1996, 1998, 1999;
Goodman, 2006). They performed a number of carefully controlled experiments com-
paring different discounting algorithms, cache models, class-based (cluster) models,
and other language model parameters. They showed the advantages of Interpolated
Kneser-Ney, which has since become one of the most popular current methods for
language modeling. These papers influenced our discussion in this chapter, and are
recommended reading if you have further interest in language modeling.

As we suggested earlier in the chapter, recent research in language modeling has fo-
cused on adaptation, on the use of sophisticated linguisticstructures based on syntactic
and dialogue structure, and on very very largeN-grams. For example in 2006, Google
publicly released a very large set ofN-grams that is a useful research resource, consist-
ing of all the five-word sequences that appear at least 40 times from 1,024,908,267,229
words of running text; there are 1,176,470,663 five-word sequences using over 13 mil-
lion unique words types (Franz and Brants, 2006). Large language models generally
need to be pruned to be practical, using techniques such as Stolcke (1998) and Church
et al. (2007).
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4.12 SUMMARY

This chapter introduced theN-gram, one of the oldest and most broadly useful practical
tools in language processing.

• An N-gram probability is the conditional probability of a word given the previous
N− 1 words. N-gram probabilities can be computed by simply counting in a
corpus and normalizing (theMaximum Likelihood Estimate ) or they can be
computed by more sophisticated algorithms. The advantage of N-grams is that
they take advantage of lots of rich lexical knowledge. A disadvantage for some
purposes is that they are very dependent on the corpus they were trained on.

• Smoothingalgorithms provide a better way of estimating the probability of N-
grams than Maximum Likelihood Estimation. Commonly usedN-gram smooth-
ing algorithms rely on lower-orderN-gram counts viabackoff or interpolation .

• Both backoff and interpolation require discounting such asKneser-Ney, Witten-
Bell or Good-Turing discounting.

• N-gramlanguage modelsare evaluated by separating the corpus into atraining
setand atest set, training the model on the training set, and evaluating on the test
set. Theperplexity 2H of of the language model on a test set is used to compare
language models.

EXERCISES

4.1 Write out the equation for trigram probability estimation (modifying Eq. 4.14).

4.2 Write a program to compute unsmoothed unigrams and bigrams.

4.3 Run yourN-gram program on two different small corpora of your choice (you
might use email text or newsgroups). Now compare the statistics of the two corpora.
What are the differences in the most common unigrams betweenthe two? How about
interesting differences in bigrams?

4.4 Add an option to your program to generate random sentences.

4.5 Add an option to your program to do Good-Turing discounting.

4.6 Add an option to your program to implement Katz backoff.

4.7 Add an option to your program to compute the perplexity of a test set.

4.8 (Adapted from Michael Collins). Prove Equation (4.27) given Equation (4.26)
and any necessary assumptions. That is, show that given a probability distribution
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defined by the GT formula in Equation (4.26) for theN items seen in training, that the
probability of the next, (i.e.N + 1st) item being unseen in training can be estimated
by Equation (4.27). You may make any necessary assumptions for the proof, including
assuming that allNc are non-zero.

4.9 (Advanced) Suppose someone took all the words in a sentence and reordered
them randomly. Write a program which take as input such abag of words and pro-BAG OF WORDS

duces as output a guess at the original order. You will need toan N-gram grammar
produced by yourN-gram program (on some corpus), and you will need to use the
Viterbi algorithm introduced in the next chapter. This taskis sometimes calledbag
generation.BAG GENERATION

4.10 The field ofauthorship attribution is concerned with discovering the authorAUTHORSHIP
ATTRIBUTION

of a particular text. Authorship attribution is important in many fields, including his-
tory, literature, and forensic linguistics. For example Mosteller and Wallace (1964)
applied authorship identification techniques to discover who wroteThe Federalistpa-
pers. The Federalist papers were written in 1787-1788 by Alexander Hamilton, John
Jay and James Madison to persuade New York to ratify the United States Constitution.
They were published anonymously, and as a result, although some of the 85 essays
were clearly attributable to one author or another, the authorship of 12 were in dispute
between Hamilton and Madison. Foster (1989) applied authorship identification tech-
niques to suggest that W.S.’sFuneral Elegyfor William Peter might have been written
by William Shakespeare (he turned out to be wrong on this one), and that the anony-
mous author ofPrimary Colors, the roman à clef about the Clinton campaign for the
American presidency, was journalist Joe Klein (Foster, 1996).

A standard technique for authorship attribution, first usedby Mosteller and Wal-
lace, is a Bayesian approach. For example, they trained a probabilistic model of the
writing of Hamilton and another model on the writings of Madison, then computed the
maximum-likelihood author for each of the disputed essays.There are many complex
factors that go into these models, including vocabulary use, word length, syllable struc-
ture, rhyme, grammar; see Holmes (1994) for a summary. This approach can also be
used for identifying which genre a text comes from.

One factor in many models is the use of rare words. As a simple approximation
to this one factor, apply the Bayesian method to the attribution of any particular text.
You will need three things: a text to test and two potential authors or genres, with a
large on-line text sample of each. One of them should be the correct author. Train
a unigram language model on each of the candidate authors. You are only going to
use thesingletonunigrams in each language model. You will computeP(T|A1), the
probability of the text given author or genreA1, by (1) taking the language model from
A1, (2) by multiplying together the probabilities of all the unigrams that only occur once
in the “unknown” text and (3) taking the geometric mean of these (i.e., thenth root,
wheren is the number of probabilities you multiplied). Do the same for A2. Choose
whichever is higher. Did it produce the correct candidate?
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5
WORD CLASSES AND
PART-OF-SPEECH
TAGGING

Conjunction Junction, what’s your function?
Bob Dorough,Schoolhouse Rock, 1973

A gnostic was seated before a grammarian. The grammarian
said, ‘A word must be one of three things: either it is a noun, a
verb, or a particle.’ The gnostic tore his robe and cried, “Alas!
Twenty years of my life and striving and seeking have gone to the
winds, for I laboured greatly in the hope that there was another
word outside of this. Now you have destroyed my hope.’ Though
the gnostic had already attained the word which was his purpose,
he spoke thus in order to arouse the grammarian.

Rumi (1207–1273),The Discourses of Rumi, Translated by A. J. Arberry

Dionysius Thrax of Alexandria (c. 100 B.C.), or perhaps someone else (exact au-
thorship being understandably difficult to be sure of with texts of this vintage), wrote
a grammatical sketch of Greek (a “techn̄e”) which summarized the linguistic knowl-
edge of his day. This work is the direct source of an astonishing proportion of our
modern linguistic vocabulary, including among many other words,syntax, diphthong,
clitic, andanalogy. Also included are a description of eightparts-of-speech: noun,PARTSOFSPEECH

verb, pronoun, preposition, adverb, conjunction, participle, and article. Although ear-
lier scholars (including Aristotle as well as the Stoics) had their own lists of parts-of-
speech, it was Thrax’s set of eight which became the basis forpractically all subsequent
part-of-speech descriptions of Greek, Latin, and most European languages for the next
2000 years.

Schoolhouse Rock was a popular series of 3-minute musical animated clips first
aired on television in 1973. The series was designed to inspire kids to learn multipli-
cation tables, grammar, and basic science and history. The Grammar Rock sequence,
for example, included songs about parts-of-speech, thus bringing these categories into
the realm of popular culture. As it happens, Grammar Rock wasremarkably tradi-
tional in its grammatical notation, including exactly eight songs about parts-of-speech.
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Although the list was slightly modified from Thrax’s original, substituting adjective
and interjection for the original participle and article, the astonishing durability of the
parts-of-speech through two millenia is an indicator of both the importance and the
transparency of their role in human language.

More recent lists of parts-of-speech (ortagsets) have many more word classes; 45TAGSETS

for the Penn Treebank (Marcus et al., 1993), 87 for the Brown corpus (Francis, 1979;
Francis and Kučera, 1982), and 146 for the C7 tagset (Garside et al., 1997).

The significance of parts-of-speech (also known asPOS, word classes, morpho-POS

logical classes, or lexical tags) for language processing is the large amount of informa-
tion they give about a word and its neighbors. This is clearlytrue for major categories,
(verb versusnoun), but is also true for the many finer distinctions. For example these
tagsets distinguish between possessive pronouns (my, your, his, her, its) and personal
pronouns (I, you, he, me). Knowing whether a word is a possessive pronoun or a per-
sonal pronoun can tell us what words are likely to occur in itsvicinity (possessive
pronouns are likely to be followed by a noun, personal pronouns by a verb). This can
be useful in a language model for speech recognition.

A word’s part-of-speech can tell us something about how the word is pronounced.
As Ch. 8 will discuss, the wordcontent, for example, can be a noun or an adjective.
They are pronounced differently (the noun is pronouncedCONtentand the adjective
conTENT). Thus knowing the part-of-speech can produce more naturalpronunciations
in a speech synthesis system and more accuracy in a speech recognition system. (Other
pairs like this includeOBject (noun) andobJECT(verb), DIScount(noun) anddis-
COUNT(verb); see Cutler (1986)).

Parts-of-speech can also be used in stemming for informational retrieval (IR), since
knowing a word’s part-of-speech can help tell us which morphological affixes it can
take, as we saw in Ch. 3. They can also enhance an IR application by selecting out
nouns or other important words from a document. Automatic assignment of part-of-
speech plays a role in parsing, in word-sense disambiguation algorithms, and in shallow
parsing of texts to quickly find names, times, dates, or othernamed entities for the
information extraction applications discussed in Ch. 22. Finally, corpora that have
been marked for parts-of-speech are very useful for linguistic research. For example,
they can be used to help find instances or frequencies of particular constructions.

This chapter focuses on computational methods for assigning parts-of-speech to
words (part-of-speech tagging). Many algorithms have been applied to this problem,
including hand-written rules (rule-based tagging), probabilistic methods (HMM tag-
gingandmaximum entropy tagging), as well as other methods such astransformation-
based taggingandmemory-based tagging. We will introduce three of these algo-
rithms in this chapter: rule-based tagging, HMM tagging, and transformation-based
tagging. But before turning to the algorithms themselves, let’s begin with a summary
of English word classes, and of various tagsets for formallycoding these classes.
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5.1 (MOSTLY) ENGLISH WORD CLASSES

Until now we have been using part-of-speech terms likenoun andverb rather freely.
In this section we give a more complete definition of these andother classes. Tradi-
tionally the definition of parts-of-speech has been based onsyntactic and morphologi-
cal function; words that function similarly with respect towhat can occur nearby (their
“syntactic distributional properties”), or with respect to the affixes they take (their mor-
phological properties) are grouped into classes. While word classes do have tendencies
toward semantic coherence (nouns do in fact often describe “people, places or things”,
and adjectives often describe properties), this is not necessarily the case, and in general
we don’t use semantic coherence as a definitional criterion for parts-of-speech.

Parts-of-speech can be divided into two broad supercategories: closed classtypesCLOSED CLASS

andopen classtypes. Closed classes are those that have relatively fixed membership.OPEN CLASS

For example, prepositions are a closed class because there is a fixed set of them in En-
glish; new prepositions are rarely coined. By contrast nouns and verbs are open classes
because new nouns and verbs are continually coined or borrowed from other languages
(e.g., the new verbto faxor the borrowed nounfuton). It is likely that any given speaker
or corpus will have different open class words, but all speakers of a language, and cor-
pora that are large enough, will likely share the set of closed class words. Closed class
words are also generallyfunction words like of, it, and, or you, which tend to be veryFUNCTION WORDS

short, occur frequently, and often have structuring uses ingrammar.
There are four major open classes that occur in the languagesof the world;nouns,

verbs, adjectives, andadverbs. It turns out that English has all four of these, although
not every language does.

Noun is the name given to the syntactic class in which the words formost people,NOUN

places, or things occur. But since syntactic classes likenoun are defined syntacti-
cally and morphologically rather than semantically, some words for people, places,
and things may not be nouns, and conversely some nouns may notbe words for people,
places, or things. Thus nouns include concrete terms likeshipandchair, abstractions
like bandwidthand relationship, and verb-like terms likepacingas inHis pacing to
and fro became quite annoying. What defines a noun in English, then, are things like
its ability to occur with determiners (a goat, its bandwidth, Plato’s Republic), to take
possessives (IBM’s annual revenue), and for most but not all nouns, to occur in the
plural form (goats, abaci).

Nouns are traditionally grouped intoproper nouns andcommon nouns. ProperPROPER NOUNS

COMMON NOUNS nouns, likeRegina, Colorado, andIBM, are names of specific persons or entities. In
English, they generally aren’t preceded by articles (e.g.,the book is upstairs, butRegina
is upstairs). In written English, proper nouns are usually capitalized.

In many languages, including English, common nouns are divided intocount nounsCOUNT NOUNS

andmass nouns. Count nouns are those that allow grammatical enumeration;that is,MASS NOUNS

they can occur in both the singular and plural (goat/goats, relationship/relationships)
and they can be counted (one goat, two goats). Mass nouns are used when something
is conceptualized as a homogeneous group. So words likesnow, salt, andcommunism
are not counted (i.e.,*two snowsor *two communisms). Mass nouns can also appear
without articles where singular count nouns cannot (Snow is whitebut not*Goat is
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white).
Theverb class includes most of the words referring to actions and processes, in-VERB

cluding main verbs likedraw, provide, differ, andgo. As we saw in Ch. 3, English
verbs have a number of morphological forms (non-3rd-person-sg (eat), 3rd-person-sg
(eats), progressive (eating), past participle (eaten)). A subclass of English verbs called
auxiliaries will be discussed when we turn to closed class forms.AUXILIARIES

While many researchers believe that all human languages have the categories of
noun and verb, others have argued that some languages, such as Riau Indonesian and
Tongan, don’t even make this distinction (Broschart, 1997;Evans, 2000; Gil, 2000).

The third open class English form is adjectives; semantically this class includes
many terms that describe properties or qualities. Most languages have adjectives for
the concepts of color (white, black), age (old, young), and value (good, bad), but there
are languages without adjectives. In Korean, for example, the words corresponding
to English adjectives act as a subclass of verbs, so what is inEnglish an adjective
‘beautiful’ acts in Korean like a verb meaning ‘to be beautiful’ (Evans, 2000).

The final open class form,adverbs, is rather a hodge-podge, both semantically andADVERBS

formally. For example Schachter (1985) points out that in a sentence like the following,
all the italicized words are adverbs:

Unfortunately, John walkedhome extremely slowly yesterday

What coherence the class has semantically may be solely thateach of these words
can be viewed as modifying something (often verbs, hence thename “adverb”, but
also other adverbs and entire verb phrases).Directional adverbs or locative adverbsLOCATIVE

(home, here, downhill) specify the direction or location of some action;degree adverbsDEGREE

(extremely, very, somewhat) specify the extent of some action, process, or property;
manner adverbs(slowly, slinkily, delicately) describe the manner of some action orMANNER

process; andtemporal adverb describe the time that some action or event took placeTEMPORAL

(yesterday, Monday). Because of the heterogeneous nature of this class, some adverbs
(for example temporal adverbs likeMonday) are tagged in some tagging schemes as
nouns.

The closed classes differ more from language to language than do the open classes.
Here’s a quick overview of some of the more important closed classes in English, with
a few examples of each:

• prepositions: on, under, over, near, by, at, from, to, with
• determiners: a, an, the
• pronouns: she, who, I, others
• conjunctions: and, but, or, as, if, when
• auxiliary verbs: can, may, should, are
• particles: up, down, on, off, in, out, at, by,
• numerals: one, two, three, first, second, third

Prepositions occur before noun phrases; semantically they are relational, oftenPREPOSITIONS

indicating spatial or temporal relations, whether literal(on it, before then, by the house)
or metaphorical (on time, with gusto, beside herself). But they often indicate other
relations as well (Hamlet was written byShakespeare, and [from Shakespeare] “And I
did laugh sansintermission an hour byhis dial”). Fig. 5.1 shows the prepositions of
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English according to the CELEX on-line dictionary (Baayen et al., 1995), sorted by
their frequency in the COBUILD 16 million word corpus of English. Fig. 5.1 should
not be considered a definitive list, since different dictionaries and tagsets label word
classes differently. Furthermore, this list combines prepositions and particles.

of 540,085 through 14,964 worth 1,563 pace 12
in 331,235 after 13,670 toward 1,390 nigh 9
for 142,421 between 13,275 plus 750 re 4
to 125,691 under 9,525 till 686 mid 3
with 124,965 per 6,515 amongst 525 o’er 2
on 109,129 among 5,090 via 351 but 0
at 100,169 within 5,030 amid 222 ere 0
by 77,794 towards 4,700 underneath 164 less 0
from 74,843 above 3,056 versus 113 midst 0
about 38,428 near 2,026 amidst 67 o’ 0
than 20,210 off 1,695 sans 20 thru 0
over 18,071 past 1,575 circa 14 vice 0

Figure 5.1 Prepositions (and particles) of English from the CELEX on-line dictionary.
Frequency counts are from the COBUILD 16 million word corpus.

A particle is a word that resembles a preposition or an adverb, and is used inPARTICLE

combination with a verb. When a verb and a particle behave as asingle syntactic and/or
semantic unit, we call the combination aphrasal verb. Phrasal verbs can behave as aPHRASAL VERB

semantic unit; thus they often have a meaning that is not predictable from the separate
meanings of the verb and the particle. Thusturn downmeans something like ‘reject’,
rule outmeans ‘eliminate’,find outis ‘discover’, andgo onis ‘continue’; these are not
meanings that could have been predicted from the meanings ofthe verb and the particle
independently. Here are some examples of phrasal verbs fromThoreau:

So Iwent onfor some days cutting and hewing timber. . .
Moral reform is the effort tothrow offsleep. . .

Particles don’t always occur with idiomatic phrasal verb semantics; here are more
examples of particles from the Brown corpus:

. . . she had turned the paperover.
He arose slowly and brushed himselfoff.
He packeduphis clothes.

We show in Fig. 5.2 a list of single-word particles from Quirket al. (1985). Since it
is extremely hard to automatically distinguish particles from prepositions, some tagsets
(like the one used for CELEX) do not distinguish them, and even in corpora that do (like
the Penn Treebank) the distinction is very difficult to make reliably in an automatic
process, so we do not give counts.

A closed class that occurs with nouns, often marking the beginning of a noun
phrase, is thedeterminers. One small subtype of determiners is thearticles: EnglishDETERMINERS

ARTICLES has three articles:a, an, andthe. Other determiners includethis (as inthis chapter) and
that (as inthat page). A andanmark a noun phrase as indefinite, whilethecan mark it
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aboard aside besides forward(s) opposite through
about astray between home out throughout
above away beyond in outside together
across back by inside over under
ahead before close instead overhead underneath
alongside behind down near past up
apart below east, etc. off round within
around beneath eastward(s),etc. on since without

Figure 5.2 English single-word particles from Quirk et al. (1985).

as definite; definiteness is a discourse and semantic property that will be discussed in
Ch. 21. Articles are quite frequent in English; indeedthe is the most frequently occur-
ring word in most corpora of written English. Here are COBUILD statistics, again out
of 16 million words:

the: 1,071,676 a: 413,887 an: 59,359

Conjunctions are used to join two phrases, clauses, or sentences. CoordinatingCONJUNCTIONS

conjunctions likeand, or, andbut, join two elements of equal status. Subordinating
conjunctions are used when one of the elements is of some sortof embedded status.
For examplethat in “I thought that you might like some milk”is a subordinating con-
junction that links the main clauseI thoughtwith the subordinate clauseyou might like
some milk. This clause is called subordinate because this entire clause is the “content”
of the main verbthought. Subordinating conjunctions likethat which link a verb to its
argument in this way are also calledcomplementizers. Ch. 12 and Ch. 16 will discussCOMPLEMENTIZERS

complementation in more detail. Table 5.3 lists English conjunctions.

and 514,946 yet 5,040 considering 174 forasmuch as 0
that 134,773 since 4,843 lest 131 however 0
but 96,889 where 3,952 albeit 104 immediately 0
or 76,563 nor 3,078 providing 96 in as far as 0
as 54,608 once 2,826 whereupon 85 in so far as 0
if 53,917 unless 2,205 seeing 63 inasmuch as 0
when 37,975 why 1,333 directly 26 insomuch as 0
because 23,626 now 1,290 ere 12 insomuch that 0
so 12,933 neither 1,120 notwithstanding 3 like 0
before 10,720 whenever 913 according as 0 neither nor 0
though 10,329 whereas 867 as if 0 now that 0
than 9,511 except 864 as long as 0 only 0
while 8,144 till 686 as though 0 provided that 0
after 7,042 provided 594 both and 0 providing that 0
whether 5,978 whilst 351 but that 0 seeing as 0
for 5,935 suppose 281 but then 0 seeing as how 0
although 5,424 cos 188 but then again 0 seeing that 0
until 5,072 supposing 185 either or 0 without 0

Figure 5.3 Coordinating and subordinating conjunctions of English from CELEX. Fre-
quency counts are from COBUILD (16 million words).

Pronouns are forms that often act as a kind of shorthand for referring to somePRONOUNS

noun phrase or entity or event.Personal pronounsrefer to persons or entities (you,PERSONAL

she, I, it, me, etc.).Possessive pronounsare forms of personal pronouns that indicatePOSSESSIVE
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either actual possession or more often just an abstract relation between the person and
some object (my, your, his, her, its, one’s, our, their). Wh-pronouns (what, who,WH

whom, whoever) are used in certain question forms, or may also act as complementizers
(Frieda, who I met five years ago . . .). Table 5.4 shows English pronouns, again from
CELEX.

it 199,920 how 13,137 yourself 2,437 no one 106
I 198,139 another 12,551 why 2,220 wherein 58
he 158,366 where 11,857 little 2,089 double 39
you 128,688 same 11,841 none 1,992 thine 30
his 99,820 something 11,754 nobody 1,684 summat 22
they 88,416 each 11,320 further 1,666 suchlike 18
this 84,927 both 10,930 everybody 1,474 fewest 15
that 82,603 last 10,816 ourselves 1,428 thyself 14
she 73,966 every 9,788 mine 1,426 whomever 11
her 69,004 himself 9,113 somebody 1,322 whosoever 10
we 64,846 nothing 9,026 former 1,177 whomsoever 8
all 61,767 when 8,336 past 984 wherefore 6
which 61,399 one 7,423 plenty 940 whereat 5
their 51,922 much 7,237 either 848 whatsoever 4
what 50,116 anything 6,937 yours 826 whereon 2
my 46,791 next 6,047 neither 618 whoso 2
him 45,024 themselves 5,990 fewer 536 aught 1
me 43,071 most 5,115 hers 482 howsoever 1
who 42,881 itself 5,032 ours 458 thrice 1
them 42,099 myself 4,819 whoever 391 wheresoever 1
no 33,458 everything 4,662 least 386 you-all 1
some 32,863 several 4,306 twice 382 additional 0
other 29,391 less 4,278 theirs 303 anybody 0
your 28,923 herself 4,016 wherever 289 each other 0
its 27,783 whose 4,005 oneself 239 once 0
our 23,029 someone 3,755 thou 229 one another 0
these 22,697 certain 3,345 ’un 227 overmuch 0
any 22,666 anyone 3,318 ye 192 such and such 0
more 21,873 whom 3,229 thy 191 whate’er 0
many 17,343 enough 3,197 whereby 176 whenever 0
such 16,880 half 3,065 thee 166 whereof 0
those 15,819 few 2,933 yourselves 148 whereto 0
own 15,741 everyone 2,812 latter 142 whereunto 0
us 15,724 whatever 2,571 whichever 121 whichsoever 0

Figure 5.4 Pronouns of English from the CELEX on-line dictionary. Frequency counts
are from the COBUILD 16 million word corpus.

A closed class subtype of English verbs are theauxiliary verbs. Crosslinguistically,AUXILIARY

auxiliaries are words (usually verbs) that mark certain semantic features of a main
verb, including whether an action takes place in the present, past or future (tense),
whether it is completed (aspect), whether it is negated (polarity), and whether an action
is necessary, possible, suggested, desired, etc. (mood).

English auxiliaries include thecopula verbbe, the two verbsdo andhave, alongCOPULA

with their inflected forms, as well as a class ofmodal verbs. Be is called a copulaMODAL

because it connects subjects with certain kinds of predicate nominals and adjectives (He
is a duck). The verbhaveis used for example to mark the perfect tenses (I havegone,
I had gone), while be is used as part of the passive (We wererobbed), or progressive
(We areleaving) constructions. The modals are used to mark the mood associated with
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the event or action depicted by the main verb. Socan indicates ability or possibility,
may indicates permission or possibility,mustindicates necessity, and so on. Fig. 5.5
gives counts for the frequencies of the modals in English. Inaddition to the perfect
havementioned above, there is a modal verbhave(e.g.,I haveto go), which is very
common in spoken English. Neither it nor the modal verbdare, which is very rare,
have frequency counts because the CELEX dictionary does notdistinguish the main
verb sense (I have three oranges, He daredme to eat them), from the modal sense
(There hasto be some mistake, Dare I confront him?), from the non-modal auxiliary
verb sense (I havenever seen that).

can 70,930 might 5,580 shouldn’t 858
will 69,206 couldn’t 4,265 mustn’t 332
may 25,802 shall 4,118 ’ll 175
would 18,448 wouldn’t 3,548 needn’t 148
should 17,760 won’t 3,100 mightn’t 68
must 16,520 ’d 2,299 oughtn’t 44
need 9,955 ought 1,845 mayn’t 3
can’t 6,375 will 862 dare, have ???

Figure 5.5 English modal verbs from the CELEX on-line dictionary. Frequency counts
are from the COBUILD 16 million word corpus.

English also has many words of more or less unique function, includinginterjec-
tions (oh, ah, hey, man, alas, uh, um), negatives(no, not), politeness markers(please,INTERJECTIONS

NEGATIVES

POLITENESS
MARKERS

thank you), greetings(hello, goodbye), and the existentialthere (thereare two on the
table) among others. Whether these classes are assigned particular names or lumped
together (as interjections or even adverbs) depends on the purpose of the labeling.

5.2 TAGSETS FORENGLISH

The previous section gave broad descriptions of the kinds ofsyntactic classes that En-
glish words fall into. This section fleshes out that sketch bydescribing the actual tagsets
used in part-of-speech tagging, in preparation for the various tagging algorithms to be
described in the following sections.

There are a small number of popular tagsets for English, manyof which evolved
from the 87-tag tagset used for the Brown corpus (Francis, 1979; Francis and Kučera,
1982). The Brown corpus is a 1 million word collection of samples from 500 writ-
ten texts from different genres (newspaper, novels, non-fiction, academic, etc.) which
was assembled at Brown University in 1963–1964 (Kučera andFrancis, 1967; Francis,
1979; Francis and Kučera, 1982). This corpus was tagged with parts-of-speech by first
applying the TAGGIT program and then hand-correcting the tags.

Besides this original Brown tagset, two of the most commonlyused tagsets are
the small 45-tag Penn Treebank tagset (Marcus et al., 1993),and the medium-sized
61 tag C5 tagset used by the Lancaster UCREL project’s CLAWS (the Constituent
Likelihood Automatic Word-tagging System) tagger to tag the British National Corpus
(BNC) (Garside et al., 1997). We give all three of these tagsets here, focusing on the
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Tag Description Example Tag Description Example

CC Coordin. Conjunction and, but, or SYM Symbol + ,%, &
CD Cardinal number one, two, three TO “to” to
DT Determiner a, the UH Interjection ah, oops
EX Existential ‘there’ there VB Verb, base form eat
FW Foreign word mea culpa VBD Verb, past tense ate
IN Preposition/sub-conj of, in, by VBG Verb, gerund eating
JJ Adjective yellow VBN Verb, past participle eaten
JJR Adj., comparative bigger VBP Verb, non-3sg pres eat
JJS Adj., superlative wildest VBZ Verb, 3sg pres eats
LS List item marker 1, 2, One WDT Wh-determiner which, that
MD Modal can, should WP Wh-pronoun what, who
NN Noun, sing. or mass llama WP$ Possessive wh- whose
NNS Noun, plural llamas WRB Wh-adverb how, where
NNP Proper noun, singular IBM $ Dollar sign $
NNPS Proper noun, plural Carolinas # Pound sign #
PDT Predeterminer all, both “ Left quote ‘ or “
POS Possessive ending ’s ” Right quote ’ or ”
PRP Personal pronoun I, you, he ( Left parenthesis [, (,{, <

PRP$ Possessive pronoun your, one’s ) Right parenthesis ], ),}, >

RB Adverb quickly, never , Comma ,
RBR Adverb, comparative faster . Sentence-final punc . ! ?
RBS Adverb, superlative fastest : Mid-sentence punc : ; ... – -
RP Particle up, off

Figure 5.6 Penn Treebank part-of-speech tags (including punctuation).

smallest, the Penn Treebank set, and discuss difficult tagging decisions in that tag set
and some useful distinctions made in the larger tagsets.

The Penn Treebank tagset, shown in Fig. 5.6, has been appliedto the Brown corpus,
the Wall Street Journal corpus, and the Switchboard corpus among others; indeed,
perhaps partly because of its small size, it is one of the mostwidely used tagsets. Here
are some examples of tagged sentences from the Penn Treebankversion of the Brown
corpus (we will represent a tagged word by placing the tag after each word, delimited
by a slash):

(5.1) The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ
topics/NNS ./.

(5.2) There/EX are/VBP 70/CD children/NNSthere/RB
(5.3) Although/IN preliminary/JJ findings/NNS were/VBDreported/VBN more/RBR

than/IN a/DT year/NN ago/IN ,/, the/DT latest/JJS results/NNS appear/VBP in/IN
today/NN’s/POSNew/NNP England/NNP Journal/NNP of/IN Medicine/NNP ,/,

Example (5.1) shows phenomena that we discussed in the previous section; the de-
terminerstheanda, the adjectivesgrandandother, the common nounsjury, number,
and topics, the past tense verbcommented. Example (5.2) shows the use of the EX
tag to mark the existentialthereconstruction in English, and, for comparison, another
use oftherewhich is tagged as an adverb (RB). Example (5.3) shows the segmenta-
tion of the possessive morpheme’s, and shows an example of a passive construction,
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‘were reported’, in which the verbreportedis marked as a past participle (VBN), rather
than a simple past (VBD). Note also that the proper nounNew Englandis tagged NNP.
Finally, note that sinceNew England Journal of Medicineis a proper noun, the Tree-
bank tagging chooses to mark each noun in it separately as NNP, includingjournal and
medicine, which might otherwise be labeled as common nouns (NN).

Some tagging distinctions are quite hard for both humans andmachines to make.
For example prepositions (IN), particles (RP), and adverbs(RB) can have a large over-
lap. Words likearoundcan be all three:

(5.4) Mrs./NNP Shaefer/NNP never/RB got/VBDaround/RP to/TO joining/VBG

(5.5) All/DT we/PRP gotta/VBN do/VB is/VBZ go/VBaround/IN the/DT corner/NN

(5.6) Chateau/NNP Petrus/NNP costs/VBZaround/RB 250/CD

Making these decisions requires sophisticated knowledge of syntax; tagging man-
uals (Santorini, 1990) give various heuristics that can help human coders make these
decisions, and that can also provide useful features for automatic taggers. For example
two heuristics from Santorini (1990) are that prepositionsgenerally are associated with
a following noun phrase (although they also may be followed by prepositional phrases),
and that the wordaroundis tagged as an adverb when it means “approximately”. Fur-
thermore, particles often can either precede or follow a noun phrase object, as in the
following examples:

(5.7) She told off/RP her friends

(5.8) She told her friends off/RP.

Prepositions, on the other hand, cannot follow their noun phrase (* is used here to mark
an ungrammatical sentence, a concept which we will return toin Ch. 12):

(5.9) She stepped off/IN the train

(5.10) *She stepped the train off/IN.

Another difficulty is labeling the words that can modify nouns. Sometimes the
modifiers preceding nouns are common nouns likecottonbelow, other times the Tree-
bank tagging manual specifies that modifiers be tagged as adjectives (for example if
the modifier is a hyphenated common noun likeincome-tax) and other times as proper
nouns (for modifiers which are hyphenated proper nouns likeGramm-Rudman):

(5.11) cotton/NN sweater/NN

(5.12) income-tax/JJ return/NN

(5.13) the/DT Gramm-Rudman/NP Act/NP

Some words that can be adjectives, common nouns, or proper nouns, are tagged in
the Treebank as common nouns when acting as modifiers:

(5.14) Chinese/NN cooking/NN

(5.15) Pacific/NN waters/NNS

A third known difficulty in tagging is distinguishing past participles (VBN) from
adjectives (JJ). A word likemarried is a past participle when it is being used in an
eventive, verbal way, as in (5.16) below, and is an adjectivewhen it is being used to
express a property, as in (5.17):
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(5.16) They were married/VBN by the Justice of the Peace yesterday at 5:00.

(5.17) At the time, she was already married/JJ.

Tagging manuals like Santorini (1990) give various helpfulcriteria for deciding
how ‘verb-like’ or ‘eventive’ a particular word is in a specific context.

The Penn Treebank tagset was culled from the original 87-tagtagset for the Brown
corpus. This reduced set leaves out information that can be recovered from the identity
of the lexical item. For example the original Brown and C5 tagsets include a separate
tag for each of the different forms of the verbsdo (e.g. C5 tag “VDD” fordid and
“VDG” for doing), be, andhave. These were omitted from the Treebank set.

Certain syntactic distinctions were not marked in the Penn Treebank tagset because
Treebank sentences were parsed, not merely tagged, and so some syntactic information
is represented in the phrase structure. For example, the single tag IN is used for both
prepositions and subordinating conjunctions since the tree-structure of the sentence
disambiguates them (subordinating conjunctions always precede clauses, prepositions
precede noun phrases or prepositional phrases). Most tagging situations, however, do
not involve parsed corpora; for this reason the Penn Treebank set is not specific enough
for many uses. The original Brown and C5 tagsets, for example, distinguish preposi-
tions (IN) from subordinating conjunctions (CS), as in the following examples:

(5.18) after/CS spending/VBG a/AT few/AP days/NNS at/IN the/AT Brown/NP Palace/NN
Hotel/NN

(5.19) after/IN a/AT wedding/NN trip/NN to/IN Corpus/NP Christi/NP ./.

The original Brown and C5 tagsets also have two tags for the word to; in Brown
the infinitive use is tagged TO, while the prepositional use as IN:

(5.20) to/TO give/VB priority/NN to/IN teacher/NN pay/NN raises/NNS

Brown also has the tag NR for adverbial nouns likehome, west, Monday, andto-
morrow. Because the Treebank lacks this tag, it has a much less consistent policy for
adverbial nouns;Monday, Tuesday, and other days of the week are marked NNP,tomor-
row, west, andhomeare marked sometimes as NN, sometimes as RB. This makes the
Treebank tagset less useful for high-level NLP tasks like the detection of time phrases.

Nonetheless, the Treebank tagset has been the most widely used in evaluating tag-
ging algorithms, and so many of the algorithms we describe below have been evaluated
mainly on this tagset. Of course whether a tagset is useful for a particular application
depends on how much information the application needs.

5.3 PART-OF-SPEECHTAGGING

Part-of-speech tagging (or justtagging for short) is the process of assigning a part-TAGGING

of-speech or other syntactic class marker to each word in a corpus. Because tags are
generally also applied to punctuation, tagging requires that the punctuation marks (pe-
riod, comma, etc) be separated off of the words. Thustokenization of the sort de-
scribed in Ch. 3 is usually performed before, or as part of, the tagging process, separat-
ing commas, quotation marks, etc., from words, and disambiguating end-of-sentence
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Tag Description Example
( opening parenthesis (, [
) closing parenthesis ),]
* negator not n’t
, comma ,
– dash –
. sentence terminator . ; ? !
: colon :
ABL pre-qualifier quite, rather, such
ABN pre-quantifier half, all,
ABX pre-quantifier, double conjunction both
AP post-determiner many, next, several, last
AT article a the an no a every
BE/BED/BEDZ/BEG/BEM/BEN/BER/BEZ be/were/was/being/am/been/are/is
CC coordinating conjunction and or but either neither
CD cardinal numeral two, 2, 1962, million
CS subordinating conjunction that as after whether before
DO/DOD/DOZ do, did, does
DT singular determiner, this, that
DTI singular or plural determiner some, any
DTS plural determiner these those them
DTX determiner, double conjunction either, neither
EX existential there there
HV/HVD/HVG/HVN/HVZ have, had, having, had, has
IN preposition of in for by to on at
JJ adjective
JJR comparative adjective better, greater, higher, larger, lower
JJS semantically superlative adj. main, top, principal, chief, key, foremost
JJT morphologically superlative adj. best, greatest, highest, largest, latest, worst
MD modal auxiliary would, will, can, could, may, must, should
NN (common) singular or mass noun time, world, work, school, family, door
NN$ possessive singular common noun father’s, year’s, city’s, earth’s
NNS plural common noun years, people, things, children, problems
NNS$ possessive plural noun children’s, artist’s parent’s years’
NP singular proper noun Kennedy, England, Rachel, Congress
NP$ possessive singular proper noun Plato’s Faulkner’s Viola’s
NPS plural proper noun Americans Democrats Belgians Chinese Sox
NPS$ possessive plural proper noun Yankees’, Gershwins’ Earthmen’s
NR adverbial noun home, west, tomorrow, Friday, North,
NR$ possessive adverbial noun today’s, yesterday’s, Sunday’s, South’s
NRS plural adverbial noun Sundays Fridays
OD ordinal numeral second, 2nd, twenty-first, mid-twentieth
PN nominal pronoun one, something, nothing, anyone, none,
PN$ possessive nominal pronoun one’s someone’s anyone’s
PP$ possessive personal pronoun his their her its my our your
PP$$ second possessive personal pronounmine, his, ours, yours, theirs
PPL singular reflexive personal pronoun myself, herself
PPLS plural reflexive pronoun ourselves, themselves
PPO objective personal pronoun me, us, him
PPS 3rd. sg. nominative pronoun he, she, it
PPSS other nominative pronoun I, we, they
QL qualifier very, too, most, quite, almost, extremely
QLP post-qualifier enough, indeed
RB adverb
RBR comparative adverb later, more, better, longer, further
RBT superlative adverb best, most, highest, nearest
RN nominal adverb here, then

Figure 5.7 First part of original 87-tag Brown corpus tagset (Francis and Kučera, 1982).
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Tag Description Example
RP adverb or particle across, off, up
TO infinitive marker to
UH interjection, exclamation well, oh, say, please, okay, uh, goodbye
VB verb, base form make, understand, try, determine, drop
VBD verb, past tense said, went, looked, brought, reached kept
VBG verb, present participle, gerund getting, writing, increasing
VBN verb, past participle made, given, found, called, required
VBZ verb, 3rd singular present says, follows, requires, transcends
WDT wh- determiner what, which
WP$ possessive wh- pronoun whose
WPO objective wh- pronoun whom, which, that
WPS nominative wh- pronoun who, which, that
WQL how
WRB wh- adverb how, when

Figure 5.8 Rest of 87-tag Brown corpus tagset (Francis and Kučera, 1982).

punctuation (period, question mark, etc) from part-of-word punctuation (such as in
abbreviations likee.g.andetc.)

The input to a tagging algorithm is a string of words and a specified tagset of the
kind described in the previous section. The output is a single best tag for each word. For
example, here are some sample sentences from the ATIS corpusof dialogues about air-
travel reservations that we will discuss in Ch. 12. For each we have shown a potential
tagged output using the Penn Treebank tagset defined in Fig. 5.6 on page 9:

(5.21) Book/VB that/DT flight/NN ./.
(5.22) Does/VBZ that/DT flight/NN serve/VB dinner/NN ?/.

The previous section discussed some tagging decisions thatare difficult to make
for humans. Even in these simple examples, automatically assigning a tag to each
word is not trivial. For example,book is ambiguous. That is, it has more than oneAMBIGUOUS

possible usage and part-of-speech. It can be a verb (as inbookthat flightor to book
the suspect) or a noun (as inhand me that book, or a bookof matches). Similarly that
can be a determiner (as inDoes thatflight serve dinner), or a complementizer (as inI
thought thatyour flight was earlier). The problem of POS-tagging is toresolvetheseRESOLVE

ambiguities, choosing the proper tag for the context. Part-of-speech tagging is thus one
of the manydisambiguation tasks we will see in this book.DISAMBIGUATION

How hard is the tagging problem? The previous section described some difficult
tagging decisions; how common is tag ambiguity? It turns outthat most words in En-
glish are unambiguous; i.e., they have only a single tag. Butmany of the most common
words of English are ambiguous (for examplecancan be an auxiliary (‘to be able’), a
noun (‘a metal container’), or a verb (‘to put something in such a metal container’)). In
fact, DeRose (1988) reports that while only 11.5% of Englishword types in the Brown
corpus are ambiguous, over 40% of Brown tokens are ambiguous. Fig. 5.10 shows
the number of word types with different levels of part-of-speech ambiguity from the
Brown corpus. We show these computations from two versions of the tagged Brown
corpus, the original tagging done at Brown by Francis and Kuˇcera (1982), and the
Treebank-3 tagging done at the University of Pennsylvania.Note that despite having
more coarse-grained tags, the 45-tag corpus unexpectedly has more ambiguity than the
87-tag corpus.
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Tag Description Example
AJ0 adjective (unmarked) good, old
AJC comparative adjective better, older
AJS superlative adjective best, oldest
AT0 article the, a, an
AV0 adverb (unmarked) often, well, longer, furthest
AVP adverb particle up, off, out
AVQ wh-adverb when, how, why
CJC coordinating conjunction and, or
CJS subordinating conjunction although, when
CJT the conjunctionthat
CRD cardinal numeral (exceptone) 3, twenty-five, 734
DPS possessive determiner your, their
DT0 general determiner these, some
DTQ wh-determiner whose, which
EX0 existentialthere
ITJ interjection or other isolate oh, yes, mhm
NN0 noun (neutral for number) aircraft, data
NN1 singular noun pencil, goose
NN2 plural noun pencils, geese
NP0 proper noun London, Michael, Mars
ORD ordinal sixth, 77th, last
PNI indefinite pronoun none, everything
PNP personal pronoun you, them, ours
PNQ wh-pronoun who, whoever
PNX reflexive pronoun itself, ourselves
POS possessive’s or ’
PRF the prepositionof
PRP preposition (exceptof) for, above, to
PUL punctuation – left bracket ( or [
PUN punctuation – general mark . ! , : ; - ? ...
PUQ punctuation – quotation mark ‘ ’ ”
PUR punctuation – right bracket ) or ]
TO0 infinitive markerto
UNC unclassified items (not English)
VBB base forms ofbe(except infinitive) am, are
VBD past form ofbe was, were
VBG -ing form of be being
VBI infinitive of be
VBN past participle ofbe been
VBZ -s form ofbe is, ’s
VDB/D/G/I/N/Z form of do do, does, did, doing, to do, etc.
VHB/D/G/I/N/Z form of have have, had, having, to have, etc.
VM0 modal auxiliary verb can, could, will, ’ll
VVB base form of lexical verb (except infin.) take, live
VVD past tense form of lexical verb took, lived
VVG -ing form of lexical verb taking, living
VVI infinitive of lexical verb take, live
VVN past participle form of lex. verb taken, lived
VVZ -s form of lexical verb takes, lives
XX0 the negativenot or n’t
ZZ0 alphabetical symbol A, B, c, d

Figure 5.9 UCREL’s C5 tagset for the British National Corpus (Garside et al., 1997).

Luckily, it turns out that many of the 40% ambiguous tokens are easy to disam-
biguate. This is because the various tags associated with a word are not equally likely.
For example,a can be a determiner, or the lettera (perhaps as part of an acronym or an
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Original Treebank
87-tag corpus 45-tag corpus

Unambiguous (1 tag) 44,019 38,857
Ambiguous (2–7 tags) 5,490 8844
Details: 2 tags 4,967 6,731

3 tags 411 1621
4 tags 91 357
5 tags 17 90
6 tags 2 (well, beat) 32
7 tags 2 (still, down) 6 (well, set, round, open, fit,

down)
8 tags 4 (’s, half, back, a)
9 tags 3 (that, more, in)

Figure 5.10 The amount of tag ambiguity for word types in the Brown corpus, from
the ICAME release of the original (87-tag) tagging and the Treebank-3 (45-tag) tagging.
Numbers are not strictly comparable because only the Treebank segments’s. An earlier
estimate of some of these numbers is reported in DeRose (1988).

initial). But the determiner sense ofa is much more likely.
Most tagging algorithms fall into one of two classes:rule-basedtaggers andstochas-RULEBASED

tic taggers taggers. Rule-based taggers generally involve a large database of hand-STOCHASTIC
TAGGERS

written disambiguation rules which specify, for example, that an ambiguous word is
a noun rather than a verb if it follows a determiner. The next section will describe a
sample rule-based tagger,EngCG, based on the Constraint Grammar architecture of
Karlsson et al. (1995b).

Stochastic taggers generally resolve tagging ambiguitiesby using a training cor-
pus to compute the probability of a given word having a given tag in a given context.
Sec. 5.5 describes the Hidden Markov Model orHMM tagger .HMM TAGGER

Finally, Sec. 5.6 will describe an approach to tagging called thetransformation-
based taggeror theBrill tagger , after Brill (1995). The Brill tagger shares featuresBRILL TAGGER

of both tagging architectures. Like the rule-based tagger,it is based on rules which
determine when an ambiguous word should have a given tag. Like the stochastic tag-
gers, it has a machine-learning component: the rules are automatically induced from a
previously tagged training corpus.

5.4 RULE-BASED PART-OF-SPEECHTAGGING

The earliest algorithms for automatically assigning part-of-speech were based on a two-
stage architecture (Harris, 1962; Klein and Simmons, 1963;Greene and Rubin, 1971).
The first stage used a dictionary to assign each word a list of potential parts-of-speech.
The second stage used large lists of hand-written disambiguation rules to winnow down
this list to a single part-of-speech for each word.

Modern rule-based approaches to part-of-speech tagging have a similar architec-
ture, although the dictionaries and the rule sets are vastlylarger than in the 1960’s.
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One of the most comprehensive rule-based approaches is the Constraint Grammar ap-
proach (Karlsson et al., 1995a). In this section we describea tagger based on this
approach, theEngCG tagger (Voutilainen, 1995, 1999).ENGCG

The EngCG ENGTWOL lexicon is based on the two-level morphology described in
Ch. 3, and has about 56,000 entries for English word stems (Heikkilä, 1995), counting
a word with multiple parts-of-speech (e.g., nominal and verbal senses ofhit) as separate
entries, and not counting inflected and many derived forms. Each entry is annotated
with a set of morphological and syntactic features. Fig. 5.11 shows some selected
words, together with a slightly simplified listing of their features; these features are
used in rule writing.

Word POS Additional POS features
smaller ADJ COMPARATIVE
entire ADJ ABSOLUTE ATTRIBUTIVE
fast ADV SUPERLATIVE
that DET CENTRAL DEMONSTRATIVE SG
all DET PREDETERMINER SG/PL QUANTIFIER
dog’s N GENITIVE SG
furniture N NOMINATIVE SG NOINDEFDETERMINER
one-third NUM SG
she PRON PERSONAL FEMININE NOMINATIVE SG3
show V PRESENT -SG3 VFIN
show N NOMINATIVE SG
shown PCP2 SVOO SVO SV
occurred PCP2 SV
occurred V PAST VFIN SV

Figure 5.11 Sample lexical entries from the ENGTWOL lexicon described in Vouti-
lainen (1995) and Heikkilä (1995).

Most of the features in Fig. 5.11 are relatively self-explanatory; SG for singular,
-SG3 for other than third-person-singular. ABSOLUTE meansnon-comparative and
non-superlative for an adjective, NOMINATIVE just means non-genitive, and PCP2
means past participle. PRE, CENTRAL, and POST are ordering slots for determiners
(predeterminers (all) come before determiners (the): all the president’s men). NOIN-
DEFDETERMINER means that words likefurniture do not appear with the indefinite
determinera. SV, SVO, and SVOO specify thesubcategorizationor complementa-SUBCATEGORIZATION

tion pattern for the verb. Subcategorization will be discussed in Ch. 12 and Ch. 16, butCOMPLEMENTATION

briefly SV means the verb appears solely with a subject (nothing occurred); SVO with
a subject and an object (I showed the film); SVOO with a subject and two complements:
She showed her the ball.

In the first stage of the tagger, each word is run through the two-level lexicon trans-
ducer and the entries for all possible parts-of-speech are returned. For example the
phrasePavlov had shown that salivation . . .would return the following list (one line
per possible tag, with the correct tag shown in boldface):



DRAFT

Section 5.4. Rule-Based Part-of-Speech Tagging 17

Pavlov PAVLOV N NOM SG PROPER
had HAVE V PAST VFIN SVO

HAVE PCP2 SVO
shown SHOW PCP2 SVOO SVO SV
that ADV

PRON DEM SG
DET CENTRAL DEM SG
CS

salivation N NOM SG
. . .

EngCG then applies a large set of constraints (as many as 3,744 constraints in
the EngCG-2 system) to the input sentence to rule out incorrect parts-of-speech. The
boldfaced entries in the table above show the desired result, in which the simple past
tense tag (rather than the past participle tag) is applied tohad, and the complementizer
(CS) tag is applied tothat. The constraints are used in a negative way, to eliminate
tags that are inconsistent with the context. For example oneconstraint eliminates all
readings ofthat except the ADV (adverbial intensifier) sense (this is the sense in the
sentenceit isn’t that odd). Here’s a simplified version of the constraint:

ADVERBIAL -THAT RULE

Given input: “that”
if

(+1 A/ADV/QUANT); /* if next word is adj, adverb, or quantifier*/
(+2 SENT-LIM); /* and following which is a sentence boundary,*/
(NOT -1 SVOC/A);/* and the previous word is not a verb like*/

/* ‘consider’ which allows adjs as object complements*/
then eliminate non-ADV tags
elseeliminate ADV tag

The first two clauses of this rule check to see that thethat directly precedes a
sentence-final adjective, adverb, or quantifier. In all other cases the adverb reading
is eliminated. The last clause eliminates cases preceded byverbs likeconsideror be-
lieve which can take a noun and an adjective; this is to avoid tagging the following
instance ofthatas an adverb:

I consider that odd.

Another rule is used to express the constraint that the complementizer sense ofthat
is most likely to be used if the previous word is a verb which expects a complement
(like believe, think, or show), and if that is followed by the beginning of a noun phrase,
and a finite verb.

This description oversimplifies the EngCG architecture; the system also includes
probabilistic constraints, and also makes use of other syntactic information we haven’t
discussed. The interested reader should consult Karlsson et al. (1995b) and Voutilainen
(1999).
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5.5 HMM PART-OF-SPEECHTAGGING

The use of probabilities in tags is quite old; probabilitiesin tagging were first used by
Stolz et al. (1965), a complete probabilistic tagger with Viterbi decoding was sketched
by Bahl and Mercer (1976), and various stochastic taggers were built in the 1980s
(Marshall, 1983; Garside, 1987; Church, 1988; DeRose, 1988). This section describes
a particular stochastic tagging algorithm generally knownas the Hidden Markov Model
or HMM tagger. Hidden Markov Models themselves will be more fully introduced and
defined in Ch. 6. In this section, we prefigure Ch. 6 a bit by giving an initial introduction
to the Hidden Markov Model as applied to part-of-speech tagging.

Use of a Hidden Markov Model to do part-of-speech-tagging, as we will define it, is
a special case ofBayesian inference, a paradigm that has been known since the work ofBAYESIAN

INFERENCE

Bayes (1763). Bayesian inference or Bayesian classification was applied successfully
to language problems as early as the late 1950s, including the OCR work of Bledsoe
in 1959, and the seminal work of Mosteller and Wallace (1964)on applying Bayesian
inference to determine the authorship of the Federalist papers.

In a classification task, we are given some observation(s) and our job is to determine
which of a set of classes it belongs to. Part-of-speech tagging is generally treated as a
sequence classification task. So here the observation is a sequence of words (let’s say
a sentence), and it is our job to assign them a sequence of part-of-speech tags.

For example, say we are given a sentence like

(5.23) Secretariat is expected torace tomorrow.

What is the best sequence of tags which corresponds to this sequence of words?
The Bayesian interpretation of this task starts by considering all possible sequences
of classes—in this case, all possible sequences of tags. Outof this universe of tag
sequences, we want to choose the tag sequence which is most probable given the ob-
servation sequence ofn wordswn

1. In other words, we want, out of all sequences ofn
tagstn

1 the single tag sequence such thatP(tn
1|w

n
1) is highest. We use the hat notationˆˆ

to mean “our estimate of the correct tag sequence”.

t̂n
1 = argmax

tn1

P(tn
1|w

n
1)(5.24)

The function argmaxx f (x) means “thex such thatf (x) is maximized”. Equation
(5.24) thus means, out of all tag sequences of lengthn, we want the particular tag
sequencetn

1 which maximizes the right-hand side. While (5.24) is guaranteed to give
us the optimal tag sequence, it is not clear how to make the equation operational; that
is, for a given tag sequencetn

1 and word sequencewn
1, we don’t know how to directly

computeP(tn
1|w

n
1).

The intuition of Bayesian classification is to use Bayes’ rule to transform (5.24)
into a set of other probabilities which turn out to be easier to compute. Bayes’ rule is
presented in (5.25); it gives us a way to break down any conditional probabilityP(x|y)
into three other probabilities:

P(x|y) =
P(y|x)P(x)

P(y)
(5.25)
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We can then substitute (5.25) into (5.24) to get (5.26):

t̂n
1 = argmax

tn1

P(wn
1|t

n
1)P(tn

1)

P(wn
1)

(5.26)

We can conveniently simplify 5.26 by dropping the denominator P(wn
1). Why is

that? Since we are choosing a tag sequence out of all tag sequences, we will be comput-

ing
P(wn

1|t
n
1)P(tn1)

P(wn
1)

for each tag sequence. ButP(wn
1) doesn’t change for each tag sequence;

we are always asking about the most likely tag sequence for the same observationwn
1,

which must have the same probabilityP(wn
1). Thus we can choose the tag sequence

which maximizes this simpler formula:

t̂n
1 = argmax

tn1

P(wn
1|t

n
1)P(tn

1)(5.27)

To summarize, the most probable tag sequencet̂n
1 given some word stringwn

1 can
be computed by taking the product of two probabilities for each tag sequence, and
choosing the tag sequence for which this product is greatest. The two terms are the
prior probability of the tag sequenceP(tn

1)), and thelikelihood of the word stringPRIOR PROBABILITY

LIKELIHOOD P(wn
1|t

n
1):

t̂n
1 = argmax

tn1

likelihood
︷ ︸︸ ︷

P(wn
1|t

n
1)

prior
︷ ︸︸ ︷

P(tn
1)(5.28)

Unfortunately, (5.28) is still too hard to compute directly. HMM taggers therefore
make two simplifying assumptions. The first assumption is that the probability of a
word appearing is dependent only on its own part-of-speech tag; that it is independent
of other words around it, and of the other tags around it:

P(wn
1|t

n
1) ≈

n

∏
i=1

P(wi |ti)(5.29)

The second assumption is that the probability of a tag appearing is dependent only
on the previous tag, thebigram assumption we saw in Ch. 4:

P(tn
1) ≈

n

∏
i=1

P(ti |ti−1)(5.30)

Plugging the simplifying assumptions (5.29) and (5.30) into (5.28) results in the
following equation by which a bigram tagger estimates the most probable tag sequence:

t̂n
1 = argmax

tn1

P(tn
1|w

n
1)≈ argmax

tn1

n

∏
i=1

P(wi |ti)P(ti |ti−1)(5.31)

Equation (5.31) contains two kinds of probabilities, tag transition probabilities and
word likelihoods. Let’s take a moment to see what these probabilities represent. The
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tag transition probabilities,P(ti |ti−1), represent the probability of a tag given the previ-
ous tag. For example, determiners are very likely to precedeadjectives and nouns, as in
sequences likethat/DT flight/NNandthe/DT yellow/JJ hat/NN. Thus we would expect
the probabilitiesP(NN|DT) andP(JJ|DT) to be high. But in English, adjectives don’t
tend to precede determiners, so the probabilityP(DT|JJ) ought to be low.

We can compute the maximum likelihood estimate of a tag transition probability
P(NN|DT) by taking a corpus in which parts-of-speech are labeled and counting, out
of the times we see DT, how many of those times we see NN after the DT. That is, we
compute the following ratio of counts:

P(ti |ti−1) =
C(ti−1,ti)
C(ti−1)

(5.32)

Let’s choose a specific corpus to examine. For the examples inthis chapter we’ll
use the Brown corpus, the 1 million word corpus of American English described earlier.
The Brown corpus has been tagged twice, once in the 1960’s with the 87-tag tagset, and
again in the 1990’s with the 45-tag Treebank tagset. This makes it useful for comparing
tagsets, and is also widely available.

In the 45-tag Treebank Brown corpus, the tag DT occurs 116,454 times. Of these,
DT is followed by NN 56,509 times (if we ignore the few cases ofambiguous tags).
Thus the MLE estimate of the transition probability is calculated as follows:

P(NN|DT) =
C(DT,NN)

C(DT)
=

56,509
116,454

= .49(5.33)

The probability of getting a common noun after a determiner,.49, is indeed quite
high, as we suspected.

The word likelihood probabilities,P(wi |ti), represent the probability, given that we
see a given tag, that it will be associated with a given word. For example if we were to
see the tag VBZ (third person singular present verb) and guess the verb that is likely to
have that tag, we might likely guess the verbis, since the verbto beis so common in
English.

We can compute the MLE estimate of a word likelihood probability like P(is|VBZ)
again by counting, out of the times we see VBZ in a corpus, how many of those times
the VBZ is labeling the wordis. That is, we compute the following ratio of counts:

P(wi |ti) =
C(ti ,wi)

C(ti)
(5.34)

In Treebank Brown corpus, the tag VBZ occurs 21,627 times, and VBZ is the tag
for is 10,073 times. Thus:

P(is|VBZ) =
C(VBZ, is)
C(VBZ)

=
10,073
21,627

= .47(5.35)

For those readers who are new to Bayesian modeling note that this likelihood term
is not asking “which is the most likely tag for the wordis”. That is, the term is not
P(VBZ|is). Instead we are computingP(is|VBZ). The probability, slightly counterin-
tuitively, answers the question “If we were expecting a third person singular verb, how
likely is it that this verb would beis?”.
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We have now defined HMM tagging as a task of choosing a tag-sequence with the
maximum probability, derived the equations by which we willcompute this probability,
and shown how to compute the component probabilities. In fact we have simplified the
presentation of the probabilities in many ways; in later sections we will return to these
equations and introduce the deleted interpolation algorithm for smoothing these counts,
the trigram model of tag history, and a model for unknown words.

But before turning to these augmentations, we need to introduce the decoding algo-
rithm by which these probabilities are combined to choose the most likely tag sequence.

5.5.1 Computing the most-likely tag sequence: A motivatingex-
ample

The previous section showed that the HMM tagging algorithm chooses as the most
likely tag sequence the one that maximizes the product of twoterms; the probability of
the sequence of tags, and the probability of each tag generating a word. In this section
we ground these equations in a specific example, showing for aparticular sentence how
the correct tag sequence achieves a higher probability thanone of the many possible
wrong sequences.

We will focus on resolving the part-of-speech ambiguity of the wordrace, which
can be a noun or verb in English, as we show in two examples modified from the Brown
and Switchboard corpus. For this example, we will use the 87-tag Brown corpus tagset,
because it has a specific tag forto, TO, used only whento is an infinitive; prepositional
uses ofto are tagged as IN. This will come in handy in our example.1

In (5.36)race is a verb (VB) while in (5.37)race is a common noun (NN):

(5.36) Secretariat/NNP is/BEZ expected/VBN to/TOrace/VB tomorrow/NR

(5.37) People/NNS continue/VB to/TO inquire/VB the/AT reason/NNfor/IN the/AT
race/NN for/IN outer/JJ space/NN

Let’s look at howracecan be correctly tagged as a VB instead of an NN in (5.36).
HMM part-of-speech taggers resolve this ambiguity globally rather than locally, pick-
ing the best tag sequence for the whole sentence. There are many hypothetically pos-
sible tag sequences for (5.36), since there are other ambiguities in the sentence (for
exampleexpectedcan be an adjective (JJ), a past tense/preterite (VBD) or a past partici-
ple (VBN)). But let’s just consider two of the potential sequences, shown in Fig. 5.12.
Note that these sequences differ only in one place; whether the tag chosen forrace is
VB or NN.

Almost all the probabilities in these two sequences are identical; in Fig. 5.12 we
have highlighted in boldface the three probabilities that differ. Let’s consider two
of these, corresponding toP(ti |ti−1) and P(wi |ti). The probabilityP(ti |ti−1) in Fig-
ure 5.12a isP(VB|TO), while in Figure 5.12b the transition probability isP(NN|TO).

The tag transition probabilitiesP(NN|TO) andP(VB|TO) give us the answer to the
question “How likely are we to expect a verb (noun) given the previous tag?” As we

1 The 45-tag Treebank-3 tagset does make this distinction in the Switchboard corpus but not, alas, in the
Brown corpus. Recall that in the 45-tag tagset time adverbs like tomorroware tagged as NN; in the 87-tag
tagset they appear as NR.
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Figure 5.12 Two of the possible sequences of tags corresponding to the Secretariat
sentence, one of them corresponding to the correct sequence, in which race is a VB. Each
arc in these graphs would be associated with a probability. Note that the two graphs differ
only in 3 arcs, hence in 3 probabilities.

saw in the previous section, the maximum likelihood estimate for these probabilities
can be derived from corpus counts.

Since the (87-tag Brown tagset) tag TO is used only for the infinitive markerto, we
expect that only a very small number of nouns can follow this marker (as an exercise,
try to think of a sentence where a noun can follow the infinitive marker use ofto).
Sure enough, a look at the (87-tag) Brown corpus gives us the following probabilities,
showing that verbs are about 500 times as likely as nouns to occur after TO:

P(NN|TO) = .00047

P(VB|TO) = .83

Let’s now turn toP(wi |ti), the lexical likelihood of the wordracegiven a part-of-
speech tag. For the two possible tags VB and NN, these correspond to the probabilities
P(race|VB) andP(race|NN). Here are the lexical likelihoods from Brown:

P(race|NN) = .00057

P(race|VB) = .00012

Finally, we need to represent the tag sequence probability for the following tag (in this
case the tag NR fortomorrow):

P(NR|VB) = .0027

P(NR|NN) = .0012

If we multiply the lexical likelihoods with the tag sequenceprobabilities, we see
that the probability of the sequence with the VB tag is higherand the HMM tagger
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correctly tagsraceas a VB in Fig. 5.12 despite the fact that it is the less likely sense of
race:

P(VB|TO)P(NR|VB)P(race|VB) = .00000027

P(NN|TO)P(NR|NN)P(race|NN) = .00000000032

5.5.2 Formalizing Hidden Markov Model taggers

Now that we have seen the equations and some examples of choosing the most probable
tag sequence, we show a brief formalization of this problem as a Hidden Markov Model
(see Ch. 6 for the more complete formalization).

The HMM is an extension of the finite automata of Ch. 3. Recall that a finite
automaton is defined by a set of states, and a set of transitions between states that are
taken based on the input observations. Aweighted finite-state automatonis a simpleWEIGHTED

augmentation of the finite automaton in which each arc is associated with a probability,
indicating how likely that path is to be taken. The probability on all the arcs leaving
a node must sum to 1. AMarkov chain is a special case of a weighted automatonMARKOV CHAIN

in which the input sequence uniquely determines which states the automaton will go
through. Because they can’t represent inherently ambiguous problems, a Markov chain
is only useful for assigning probabilities to unambiguous sequences.

While the Markov chain is appropriate for situations where we can see the actual
conditioning events, it is not appropriate in part-of-speech tagging. This is because in
part-of-speech tagging, while we observe the words in the input, we donot observe
the part-of-speech tags. Thus we can’t condition any probabilities on, say, a previous
part-of-speech tag, because we cannot be completely certain exactly which tag applied
to the previous word. AHidden Markov Model (HMM ) allows us to talk about bothHIDDEN MARKOV

MODEL

observedevents (like words that we see in the input) andhiddenevents (like part-of-
speech tags) that we think of as causal factors in our probabilistic model.

An HMM is specified by the following components:HMM

Q = q1q2 . . .qN a set ofN states

A = a11a12. . .an1 . . .ann a transition probability matrix A, eachai j rep-
resenting the probability of moving from statei
to statej, s.t.∑n

j=1ai j = 1 ∀i

O = o1o2 . . .oT a sequence ofT observations, each one drawn
from a vocabularyV = v1,v2, ...,vV .

B = bi(ot) A sequence ofobservation likelihoods:, also
called emission probabilities, each expressing
the probability of an observationot being gen-
erated from a statei.

q0,qF a specialstart state andend (final) statewhich
are not associated with observations, together
with transition probabilitiesa01a02..a0n out of the
start state anda1Fa2F ...anF into the end state.
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Figure 5.13 The Markov chain corresponding to the hidden states of the HMM. TheA
transition probabilities are used to compute the prior probability.

An HMM thus has two kinds of probabilities; theA transition probabilities, and
theB observation likelihoods, corresponding respectively to theprior andlikelihood
probabilities that we saw in equation (5.31). Fig. 5.13 illustrates the prior probabilities
in an HMM part-of-speech tagger, showing 3 sample states andsome of theA transition
probabilities between them. Fig. 5.14 shows another view ofan HMM part-of-speech
tagger, focusing on the word likelihoodsB. Each hidden state is associated with a
vector of likelihoods for each observation word.

Figure 5.14 TheB observation likelihoods for the HMM in the previous figure. Each
state (except the non-emitting Start and End states) is associated with a vector of probabil-
ities, one likelihood for each possible observation word.
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5.5.3 The Viterbi Algorithm for HMM Tagging

For any model, such as an HMM, that contains hidden variables, the task of determin-
ing which sequence of variables is the underlying source of some sequence of observa-
tions is called thedecodingtask. TheViterbi algorithm is perhaps the most commonDECODING

VITERBI decoding algorithm used for HMMs, whether for part-of-speech tagging or for speech
recognition. The termViterbi is common in speech and language processing, but this
is really a standard application of the classicdynamic programming algorithm, and
looks a lot like theminimum edit distance algorithm of Ch. 3. The Viterbi algorithm
was first applied to speech and language processing in the context of speech recogni-
tion by Vintsyuk (1968), but has what Kruskal (1983) calls a ‘remarkable history of
multiple independent discovery and publication’; see the History section at the end of
Ch. 6 for more details.

The slightly simplified version of the Viterbi algorithm that we will present takes
as input a single HMM and a set of observed wordsO= (o1o2o3 . . .oT) and returns the
most probable state/tag sequenceQ = (q1q2q3 . . .qT), together with its probability.

Let the HMM be defined by the two tables in Fig. 5.15 and Fig. 5.16. Fig. 5.15
expresses theai j probabilities, thetransition probabilities between hidden states (i.e.
part-of-speech tags). Fig. 5.16 expresses thebi(ot) probabilities, theobservationlike-
lihoods of words given tags.

VB TO NN PPSS
<s> .019 .0043 .041 .067
VB .0038 .035 .047 .0070
TO .83 0 .00047 0
NN .0040 .016 .087 .0045
PPSS .23 .00079 .0012 .00014

Figure 5.15 Tag transition probabilities (thea array,p(ti |ti−1)) computed from the 87-
tag Brown corpus without smoothing. The rows are labeled with the conditioning event;
thusP(PPSS|VB) is .0070. The symbol<s> is the start-of-sentence symbol.

I want to race
VB 0 .0093 0 .00012
TO 0 0 .99 0
NN 0 .000054 0 .00057
PPSS .37 0 0 0

Figure 5.16 Observation likelihoods (theb array) computed from the 87-tag Brown
corpus without smoothing.

Fig. 5.17 shows pseudocode for the Viterbi algorithm. The Viterbi algorithm sets
up a probability matrix, with one column for each observation t and one row for each
state in the state graph. Each column thus has a cell for each state qi in the single
combined automaton for the four words.
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function V ITERBI(observationsof lenT,state-graphof lenN) returns best-path

create a path probability matrixviterbi[N+2,T]
for each states from 1 to N do ;initialization step

viterbi[s,1]←a0,s ∗ bs(o1)
backpointer[s,1]←0

for each time stept from 2 to T do ;recursion step
for each states from 1 to N do

viterbi[s,t]←
N

max
s′=1

viterbi[s′,t−1] ∗ as′,s ∗ bs(ot )

backpointer[s,t]←
N

argmax
s′=1

viterbi[s′,t−1] ∗ as′,s

viterbi[qF ,T]←
N

max
s=1

viterbi[s,T] ∗ as,qF ; termination step

backpointer[qF ,T]←
N

argmax
s=1

viterbi[s,T] ∗ as,qF ; termination step

return the backtrace path by following backpointers to states backin time from
backpointer[qF ,T]

Figure 5.17 Viterbi algorithm for finding optimal sequence of tags. Given an observa-
tion sequence and an HMMλ = (A,B), the algorithm returns the state-path through the
HMM which assigns maximum likelihood to the observation sequence. Note that states 0
andqF are non-emitting.

The algorithm first createsN or four state columns. The first column corresponds
to the observation of the first wordi, the second to the second wordwant, the third to
the third wordto, and the fourth to the fourth wordrace. We begin in the first column
by setting the viterbi value in each cell to the product of thetransition probability (into
it from the state state) and the observation probability (ofthe first word); the reader
should find this in Fig. 5.18.

Then we move on, column by column; for every state in column 1,we compute the
probability of moving into each state in column 2, and so on. For each stateq j at time
t, the valueviterbi[s, t] is computed by taking the maximum over the extensions of all
the paths that lead to the current cell, following the following equation:

vt( j) =
N

max
i=1

vt−1(i) ai j b j(ot)(5.38)

The three factors that are multiplied in Eq. 5.38 for extending the previous paths to
compute the Viterbi probability at timet are:

vt−1(i) theprevious Viterbi path probability from the previous time step

ai j thetransition probability from previous stateqi to current stateq j

b j(ot) thestate observation likelihoodof the observation symbolot given
the current statej
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Figure 5.18 The entries in the individual state columns for the Viterbi algorithm. Each cell keeps the probabil-
ity of the best path so far and a pointer to the previous cell along that path. We have only filled out columns 0 and
1 and one cell of column 2; the rest is left as an exercise for the reader. After the cells are filled in, backtracing
from theendstate, we should be able to reconstruct the correct state sequence PPSS VB TO VB.

In Fig. 5.18, each cell of the trellis in the column for the word I is computed by
multiplying the previous probability at the start state (1.0), the transition probability
from the start state to the tag for that cell, and the observation likelihood of the word
I given the tag for that cell. As it turns out, three of the cellsare zero (since the word
I can be neither NN, TO nor VB). Next, each cell in thewant column gets updated
with the maximum probability path from the previous column.We have shown only
the value for the VB cell. That cell gets the max of four values; as it happens in this
case, three of them are zero (since there were zero values in the previous column). The
remaining value is multiplied by the relevant transition probability, and the (trivial)
max is taken. In this case the final value, .000051, comes fromthe PPSS state at the
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previous column.
The reader should fill in the rest of the trellis in Fig. 5.18, and backtrace to recon-

struct the correct state sequence PPSS VB TO VB.

5.5.4 Extending the HMM algorithm to trigrams

We mentioned earlier that HMM taggers in actual use have a number of sophistications
not present in the simplified tagger as we have described it sofar. One important
missing feature has to do with the tag context. In the tagger described above, we
assume that the probability of a tag appearing is dependent only on the previous tag:

P(tn
1) ≈

n

∏
i=1

P(ti |ti−1)(5.39)

Most modern HMM taggers actually use a little more of the history, letting the
probability of a tag depend on the two previous tags:

P(tn
1) ≈

n

∏
i=1

P(ti |ti−1,ti−2)(5.40)

In addition to increasing the window before a tagging decision, state-of-the-art
HMM taggers like Brants (2000) let the tagger know the location of the end of the
sentence by adding dependence on an end-of-sequence markerfor tn+1. This gives the
following equation for part of speech tagging:

t̂n
1 = argmax

tn1

P(tn
1|w

n
1)≈ argmax

tn1

[

n

∏
i=1

P(wi |ti)P(ti |ti−1,ti−2)

]

P(tn+1|tn)(5.41)

In tagging any sentence with (5.41), three of the tags used inthe context will fall off
the edge of the sentence, and hence will not match regular words. These tags,t−1, t0,
andtn+1, can all be set to be a single special ‘sentence boundary’ tagwhich is added to
the tagset. This requires that sentences passed to the tagger have sentence boundaries
demarcated, as discussed in Ch. 3.

There is one large problem with (5.41); data sparsity. Any particular sequence of
tagsti−2, ti−1, ti that occurs in the test set may simply never have occurred in the training
set. That means we cannot compute the tag trigram probability just by the maximum
likelihood estimate from counts, following Equation (5.42):

P(ti |ti−1,ti−2) =
C(ti−2,ti−1,ti)
C(ti−2,ti−1)

:(5.42)

Why not? Because many of these counts will be zero in any training set, and we will
incorrectly predict that a given tag sequence will never occur! What we need is a way
to estimateP(ti |ti−1, ti−2) even if the sequenceti−2,ti−1,ti never occurs in the training
data.
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The standard approach to solve this problem is to estimate the probability by com-
bining more robust, but weaker estimators. For example, if we’ve never seen the tag
sequence PRP VB TO, so we can’t computeP(TO|PRP,VB) from this frequency, we
still could rely on the bigram probabilityP(TO|VB), or even the unigram probabil-
ity P(TO). The maximum likelihood estimation of each of these probabilities can be
computed from a corpus via the following counts:

Trigrams P̂(ti |ti−1,ti−2) =
C(ti−2,ti−1,ti)
C(ti−2,ti−1)

(5.43)

Bigrams P̂(ti |ti−1) =
C(ti−1,ti)
C(ti−1)

(5.44)

Unigrams P̂(ti) =
C(ti)

N
(5.45)

How should these three estimators be combined in order to estimate the trigram
probabilityP(ti |ti−1, ti−2)? The simplest method of combination is linear interpolation.
In linear interpolation, we estimate the probabilityP(ti |ti−1ti−2) by a weighted sum of
the unigram, bigram, and trigram probabilities:

P(ti |ti−1ti−2) = λ1P̂(ti |ti−1ti−2)+ λ2P̂(ti |ti−1)+ λ3P̂(ti)(5.46)

We requireλ1 + λ2+ λ3 = 1, insuring that the resulting P is a probability distribu-
tion. How should theseλs be set? One good way isdeleted interpolation, developedDELETED

INTERPOLATION

by Jelinek and Mercer (1980). In deleted interpolation, we successively delete each
trigram from the training corpus, and choose theλs so as to maximize the likelihood
of the rest of the corpus. The idea of the deletion is to set theλs in such a way as to
generalize to unseen data and not overfit the training corpus. Fig. 5.19 gives the Brants
(2000) version of the deleted interpolation algorithm for tag trigrams.

Brants (2000) achieves an accuracy of 96.7% on the Penn Treebank with a trigram
HMM tagger. Weischedel et al. (1993) and DeRose (1988) have also reported accu-
racies of above 96% for HMM tagging. (Thede and Harper, 1999)offer a number of
augmentations of the trigram HMM model, including the idea of conditioning word
likelihoods on neighboring words and tags.

The HMM taggers we have seen so far are trained on hand-taggeddata. Kupiec
(1992), Cutting et al. (1992), and others show that it is alsopossible to train an HMM
tagger on unlabeled data, using the EM algorithm that we willintroduce in Ch. 6. These
taggers still start with a dictionary which lists which tagscan be assigned to which
words; the EM algorithm then learns the word likelihood function for each tag, and
the tag transition probabilities. An experiment by Merialdo (1994), however, indicates
that with even a small amount of training data, a tagger trained on hand-tagged data
worked better than one trained via EM. Thus the EM-trained “pure HMM” tagger is
probably best suited to cases where no training data is available, for example when
tagging languages for which there is no previously hand-tagged data.
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function DELETED-INTERPOLATION(corpus) returns λ1,λ2,λ3

λ1←0
λ2←0
λ3←0
foreach trigramt1,t2,t3 with f (t1,t2,t3) > 0

dependingon the maximum of the following three values

caseC(t1,t2,t3)−1
C(t1,t2)−1 : incrementλ3 by C(t1,t2,t3)

caseC(t2,t3)−1
C(t2)−1 : incrementλ2 by C(t1,t2,t3)

caseC(t3)−1
N−1 : incrementλ1 by C(t1,t2,t3)

end
end
normalizeλ1,λ2,λ3
return λ1,λ2,λ3

Figure 5.19 The deleted interpolation algorithm for setting the weights for combining
unigram, bigram, and trigram tag probabilities. If the denominator is 0 for any case, we
define the result of that case to be 0. N is the total number of tokens in the corpus. After
Brants (2000).

5.6 TRANSFORMATION-BASED TAGGING

Transformation-Based Tagging, sometimes called Brill tagging, is an instance of the
Transformation-Based Learning (TBL) approach to machine learning (Brill, 1995),TRANSFORMATION

BASED LEARNING

and draws inspiration from both the rule-based and stochastic taggers. Like the rule-
based taggers, TBL is based on rules that specify what tags should be assigned to
what words. But like the stochastic taggers, TBL is a machinelearning technique,
in which rules are automatically induced from the data. Likesome but not all of the
HMM taggers, TBL is a supervised learning technique; it assumes a pre-tagged training
corpus.

Samuel et al. (1998) offer a useful analogy for understanding the TBL parādigm,
which they credit to Terry Harvey. Imagine an artist painting a picture of a white house
with green trim against a blue sky. Suppose most of the picture was sky, and hence
most of the picture was blue. The artist might begin by using avery broad brush and
painting the entire canvas blue. Next she might switch to a somewhat smaller white
brush, and paint the entire house white. She would just colorin the whole house, not
worrying about the brown roof, or the blue windows or the green gables. Next she
takes a smaller brown brush and colors over the roof. Now she takes up the blue paint
on a small brush and paints in the blue windows on the house. Finally she takes a very
fine green brush and does the trim on the gables.

The painter starts with a broad brush that covers a lot of the canvas but colors a
lot of areas that will have to be repainted. The next layer colors less of the canvas,
but also makes less “mistakes”. Each new layer uses a finer brush that corrects less of
the picture, but makes fewer mistakes. TBL uses somewhat thesame method as this
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painter. The TBL algorithm has a set of tagging rules. A corpus is first tagged using
the broadest rule, that is, the one that applies to the most cases. Then a slightly more
specific rule is chosen, which changes some of the original tags. Next an even narrower
rule, which changes a smaller number of tags (some of which might be previously
changed tags).

5.6.1 How TBL Rules Are Applied

Let’s look at one of the rules used by Brill’s (1995) tagger. Before the rules apply, the
tagger labels every word with its most-likely tag. We get these most-likely tags from a
tagged corpus. For example, in the Brown corpus,race is most likely to be a noun:

P(NN|race) = .98

P(VB|race) = .02

This means that the two examples ofracethat we saw above will both be coded as
NN. In the first case, this is a mistake, as NN is the incorrect tag:

(5.47) is/VBZ expected/VBN to/TO race/NN tomorrow/NN

In the second case thisrace is correctly tagged as an NN:

(5.48) the/DT race/NN for/IN outer/JJ space/NN

After selecting the most-likely tag, Brill’s tagger applies its transformation rules.
As it happens, Brill’s tagger learned a rule that applies exactly to this mistagging of
race:

ChangeNN to VB when the previous tag isTO

This rule would changerace/NNto race/VBin exactly the following situation, since
it is preceded byto/TO:

(5.49) expected/VBN to/TO race/NN→ expected/VBN to/TO race/VB

5.6.2 How TBL Rules Are Learned

Brill’s TBL algorithm has three major stages. It first labelsevery word with its most-
likely tag. It then examines every possible transformation, and selects the one that
results in the most improved tagging. Finally, it then re-tags the data according to this
rule. The last two stages are repeated until some stopping criterion is reached, such as
insufficient improvement over the previous pass. Note that stage two requires that TBL
knows the correct tag of each word; that is, TBL is a supervised learning algorithm.

The output of the TBL process is an ordered list of transformations; these then
constitute a “tagging procedure” that can be applied to a newcorpus. In principle the
set of possible transformations is infinite, since we could imagine transformations such
as “transform NN to VB if the previous word was “IBM” and the word “the” occurs
between 17 and 158 words before that”. But TBL needs to consider every possible
transformation, in order to pick the best one on each pass through the algorithm. Thus
the algorithm needs a way to limit the set of transformations. This is done by designing
a small set oftemplates(abstracted transformations). Every allowable transformationTEMPLATES
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is an instantiation of one of the templates. Brill’s set of templates is listed in Fig. 5.20.
Fig. 5.21 gives the details of this algorithm for learning transformations.

The preceding (following) word is taggedz.
The word two before (after) is taggedz.
One of the two preceding (following) words is taggedz.
One of the three preceding (following) words is taggedz.
The preceding word is taggedz and the following word is taggedw.
The preceding (following) word is taggedz and the word

two before (after) is taggedw.

Figure 5.20 Brill’s (1995) templates. Each begins with“Change taga to tagb when:
. . . ” . The variablesa, b, z, andw range over parts-of-speech.

At the heart of Fig. 5.21 are the two functions GET BEST TRANSFORMATION

and GET BEST INSTANCE. GET BEST TRANSFORMATION is called with a list of
potential templates; for each template, it calls GET BEST INSTANCE. GET BEST -
INSTANCE iteratively tests every possible instantiation of each template by filling in
specific values for the tag variablesa, b, z, andw.

In practice, there are a number of ways to make the algorithm more efficient. For
example, templates and instantiated transformations can be suggested in a data-driven
manner; a transformation-instance might only be suggestedif it would improve the tag-
ging of some specific word. The search can also be made more efficient by pre-indexing
the words in the training corpus by potential transformation. Roche and Schabes (1997)
show how the tagger can also be speeded up by converting each rule into a finite-state
transducer and composing all the transducers.

Fig. 5.22 shows a few of the rules learned by Brill’s originaltagger.

5.7 EVALUATION AND ERROR ANALYSIS

The probabilities in a statistical model like an HMM POS-tagger come from the corpus
it is trained on. We saw in Sec.?? that in order to train statistical models like taggers
or N-grams, we need to set aside atraining set. The design of the training set or
training corpus needs to be carefully considered. If the training corpus is too specific
to the task or domain, the probabilities may be too narrow andnot generalize well to
tagging sentences in very different domains. But if the training corpus is too general,
the probabilities may not do a sufficient job of reflecting thetask or domain.

For evaluatingN-grams models, we said in Sec.?? that we need to divide our
corpus into a distinct training set, test set, and a second test set called a development
test set. We train our tagger on the training set. Then we use the development test
set (also called adevtestset) to perhaps tune some parameters, and in general decideDEVELOPMENT TEST

SET

DEVTEST what the best model is. Then once we come up with what we think is the best model,
we run it on the (hitherto unseen) test set to see its performance. We might use 80%
of our data for training, and save 10% each for devtest and test. Why do we need a
development test set distinct from the final test set? Because if we used the final test
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function TBL(corpus) returns transforms-queue
INTIALIZE -WITH-MOST-LIKELY -TAGS(corpus)
until end condition is metdo
templates←GENERATE-POTENTIAL-RELEVANT-TEMPLATES

best-transform←GET-BEST-TRANSFORM(corpus, templates)
APPLY-TRANSFORM(best-transform,corpus)
ENQUEUE(best-transform-rule, transforms-queue)

end
return (transforms-queue)

function GET-BEST-TRANSFORM(corpus, templates) returns transform
for each templatein templates

(instance,score)←GET-BEST-INSTANCE(corpus, template)
if (score> best-transform.score) then best-transform← (instance,score)

return (best-transform)

function GET-BEST-INSTANCE(corpus, template)returns transform
for from-tag← from tag1 to tagn do
for to-tag← from tag1 to tagn do

for pos← from 1 to corpus-sizedo
if (correct-tag(pos) == to-tag&& current-tag(pos) == from-tag)

num-good-transforms(current-tag(pos−1))++
elseif(correct-tag(pos)==from-tag&& current-tag(pos)==from-tag)

num-bad-transforms(current-tag(pos−1))++
end
best-Z←ARGMAX t(num-good-transforms(t) - num-bad-transforms(t))
if (num-good-transforms(best-Z) - num-bad-transforms(best-Z)

> best-instance.score) then
best.rule← “Change tag fromfrom-tagto to-tag if prev tag is best-Z”
best.score←num-good-transforms(best-Z) - num-bad-transforms(best-Z)

return (best)

procedure APPLY-TRANSFORM(transform,corpus)
for pos← from 1 to corpus-sizedo
if (current-tag(pos)==best-rule-from)

&& ( current-tag(pos−1)==best-rule-prev))
current-tag(pos)←best-rule-to

Figure 5.21 The TBL algorithm for learning to tag. GET BEST INSTANCEwould have
to change for transformation templates other than“Change tag from X to Y if previous tag
is Z” . After Brill (1995).

set to compute performance for all our experiments during our development phase, we
would be tuning the various changes and parameters to this set. Our final error rate on
the test set would then be optimistic: it would underestimate the true error rate.
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Change tags
# From To Condition Example
1 NN VB Previous tag is TO to/TO race/NN→ VB
2 VBP VB One of the previous 3 tags is MD might/MD vanish/VBP→ VB
3 NN VB One of the previous 2 tags is MD might/MD not reply/NN→ VB
4 VB NN One of the previous 2 tags is DT
5 VBD VBN One of the previous 3 tags is VBZ

Figure 5.22 The first 20 nonlexicalized transformations from Brill (1995).

The problem with having a fixed training set, devset, and testset is that in order to
save lots of data for training, the test set might not be largeenough to be representative.
Thus a better approach would be to somehow useall our data both for training and
test. How is this possible? The idea is to usecrossvalidation. In crossvalidation, weCROSSVALIDATION

randomly choose a training and test set division of our data,train our tagger, and then
compute the error rate on the test set. Then we repeat with a different randomly selected
training set and test set. We do this sampling process 10 times, and then average these
10 runs to get an average error rate. This is called10-fold crossvalidation.10FOLD

CROSSVALIDATION

The only problem with cross-validation is that because all the data is used for test-
ing, we need the whole corpus to be blind; we can’t examine anyof the data to suggest
possible features, and in general see what’s going on. But looking at the corpus is of-
ten important for designing the system. For this reason it iscommon to create a fixed
training set and test set, and then to do 10-fold crossvalidation inside the training set,
but compute error rate the normal way in the test set.

Once we have a test set, taggers are evaluated by comparing their labeling of the test
set with a human-labeledGold Standard test set, based onaccuracy: the percentage
of all tags in the test set where the tagger and the Gold standard agree. Most current
tagging algorithms have an accuracy of around 96–97% for simple tagsets like the Penn
Treebank set. These accuracies are for words and punctuation; the accuracy for words
only would be lower.

How good is 97%? Since tagsets and tasks differ, the performance of tags can be
compared against a lower-boundbaselineand an upper-boundceiling. One way to setBASELINE

CEILING a ceiling is to see how well humans do on the task. Marcus et al.(1993), for example,
found that human annotators agreed on about 96–97% of the tags in the Penn Treebank
version of the Brown corpus. This suggests that the Gold Standard may have a 3-4%
margin of error, and that it is meaningless to get 100% accuracy, (modeling the last
3% would just be modeling noise). Indeed Ratnaparkhi (1996)showed that the tagging
ambiguities that caused problems for his tagger were exactly the ones that humans had
labeled inconsistently in the training set. Two experiments by Voutilainen (1995, p.
174), however, found that when humans were allowed to discuss tags, they reached
consensus on 100% of the tags.

Human Ceiling: When using a human Gold Standard to evaluate a classification
algorithm, check the agreement rate of humans on the standard.

The standardbaseline, suggested by Gale et al. (1992) (in the slightly different
context of word-sense disambiguation), is to choose theunigram most-likely tag for
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each ambiguous word. The most-likely tag for each word can becomputed from a
hand-tagged corpus (which may be the same as the training corpus for the tagger being
evaluated).

Most Frequent Class Baseline:Always compare a classifier against a baseline
at least as good as the most frequent class baseline (assigning each token to the
class it occurred in most often in the training set).

Tagging algorithms since Harris (1962) incorporate this tag frequency intuition.
Charniak et al. (1993) showed that this baseline algorithm achieves an accuracy of 90–
91% on the 87-tag Brown tagset; Toutanova et al. (2003) showed that a more complex
version, augmented with an unknown word model, achieved 93.69% on the 45-tag
Treebank tagset.

When comparing models it is important to use statistical tests (introduced in any
statistics class or textbook for the social sciences) to determine if the difference be-
tween two models is significant. Cohen (1995) is a useful reference which focuses
on statistical research methods for artificial intelligence. Dietterich (1998) focuses on
statistical tests for comparing classifiers. When statistically comparing sequence mod-
els like part-of-speech taggers, it is important to usepaired tests. Commonly usedPAIRED TESTS

paired tests for evaluating part-of-speech taggers include theWilcoxon signed-rank
test, paired t-tests, versions of matched t-tests such as the Matched-Pair SentenceWILCOXON

SIGNEDRANK TEST

PAIRED TTESTS Segment Word Error (MAPSSWE) test originally applied to speech recognition word
MAPSSWE error rate, and theMcNemar test .

MCNEMAR TEST

5.7.1 Error Analysis

In order to improve any model we need to understand where it went wrong. Analyzing
the error in a classifier like a part-of-speech tagger is donevia a confusion matrix,
or contingency table. A confusion matrix for anN-way classification task is anN-
by-N matrix where the cell(x,y) contains the number of times an item with correct
classificationxwas classified by the model asy. For example, the following table shows
a portion of the confusion matrix from the HMM tagging experiments of Franz (1996).
The row labels indicate correct tags, column labels indicate the tagger’s hypothesized
tags, and each cell indicates percentage of the overall tagging error. Thus 4.4% of
the total errors were caused by mistagging a VBD as a VBN. Common errors are
boldfaced.

IN JJ NN NNP RB VBD VBN
IN - .2 .7
JJ .2 - 3.3 2.1 1.7 .2 2.7
NN 8.7 - .2
NNP .2 3.3 4.1 - .2
RB 2.2 2.0 .5 -
VBD .3 .5 - 4.4
VBN 2.8 2.6 -
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The confusion matrix above, and related error analyses in Franz (1996), Kupiec
(1992), and Ratnaparkhi (1996), suggest that some major problems facing current tag-
gers are:

1. NN versus NNP versus JJ:These are hard to distinguish prenominally. Dis-
tinguishing proper nouns is especially important for information extraction and
machine translation.

2. RP versus RB versus IN:All of these can appear in sequences of satellites
immediately following the verb.

3. VBD versus VBN versus JJ:Distinguishing these is important for partial pars-
ing (participles are used to find passives), and for correctly labeling the edges of
noun-phrases.

Error analysis like this is a crucial part of any computational linguistic application. Er-
ror analysis can help find bugs, find problems in the training data, and, most important,
help in developing new kinds of knowledge or algorithms to use in solving problems.

5.8 ADVANCED ISSUES INPART-OF-SPEECHTAGGING

5.8.1 Practical Issues: Tag Indeterminacy and Tokenization

Tag indeterminacy arises when a word is ambiguous between multiple tags and it is
impossible or very difficult to disambiguate. In this case, some taggers allow the use
of multiple tags. This is the case in both the Penn Treebank and in the British National
Corpus. Common tag indeterminacies include adjective versus preterite versus past
participle (JJ/VBD/VBN), and adjective versus noun as prenominal modifier (JJ/NN).
Given a corpus with these indeterminate tags, there are 3 ways to deal with tag indeter-
minacy when training and scoring part-of-speech taggers:

1. Somehow replace the indeterminate tags with only one tag.
2. In testing, count a tagger as having correctly tagged an indeterminate token if it

gives either of the correct tags. In training, somehow choose only one of the tags
for the word.

3. Treat the indeterminate tag as a single complex tag.

The second approach is perhaps the most sensible, although most previous published
results seem to have used the third approach. This third approach applied to the Penn
Treebank Brown corpus, for example, results in a much largertagset of 85 tags instead
of 45, but the additional 40 complex tags cover a total of only121 word instances out
of the million word corpus.

Most tagging algorithms assume a process of tokenization has been applied to the
tags. Ch. 3 discussed the issue of tokenization of periods for distinguishing sentence-
final periods from word-internal period in words likeetc.. An additional role for tok-
enization is in word splitting. The Penn Treebank and the British National Corpus split
contractions and the’s-genitive from their stems:

would/MD n’t/RB
children/NNS ’s/POS
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Indeed, the special Treebank tag POS is used only for the morpheme’s which must
be segmented off during tokenization.

Another tokenization issue concerns multi-part words. TheTreebank tagset as-
sumes that tokenization of words likeNew Yorkis done at whitespace. The phrase
a New York City firmis tagged in Treebank notation as five separate words:a/DT
New/NNP York/NNP City/NNP firm/NN. The C5 tagset, by contrast, allow prepositions
like “ in terms of” to be treated as a single word by adding numbers to each tag, as in
in/II31 terms/II32 of/II33.

5.8.2 Unknown Words

words people
never use —
could be
only I
know them

Ishikawa Takuboku 1885–1912
All the tagging algorithms we have discussed require a dictionary that lists the

possible parts-of-speech of every word. But the largest dictionary will still not contain
every possible word, as we saw in Ch. 7. Proper names and acronyms are created very
often, and even new common nouns and verbs enter the languageat a surprising rate.
Therefore in order to build a complete tagger we cannot always use a dictionary to give
us p(wi |ti). We need some method for guessing the tag of an unknown word.

The simplest possible unknown-word algorithm is to pretendthat each unknown
word is ambiguous among all possible tags, with equal probability. Then the tagger
must rely solely on the contextual POS-trigrams to suggest the proper tag. A slightly
more complex algorithm is based on the idea that the probability distribution of tags
over unknown words is very similar to the distribution of tags over words that oc-
curred only once in a training set, an idea that was suggestedby both Baayen and
Sproat (1996) and Dermatas and Kokkinakis (1995). These words that only occur once
are known ashapax legomena(singularhapax legomenon). For example, unknownHAPAX LEGOMENA

words andhapax legomenaare similar in that they are both most likely to be nouns,
followed by verbs, but are very unlikely to be determiners orinterjections. Thus the
likelihood P(wi |ti) for an unknown word is determined by the average of the distribu-
tion over all singleton words in the training set. This idea of using “things we’ve seen
once” as an estimator for “things we’ve never seen” will prove useful in the Good-
Turing algorithm of Ch. 4.

Most unknown-word algorithms, however, make use of a much more powerful
source of information: the morphology of the words. For example, words that end
in -s are likely to be plural nouns (NNS), words ending with-ed tend to be past par-
ticiples (VBN), words ending withable tend to be adjectives (JJ), and so on. Even if
we’ve never seen a word, we can use facts about its morphological form to guess its
part-of-speech. Besides morphological knowledge, orthographic information can be
very helpful. For example words starting with capital letters are likely to be proper
nouns (NP). The presence of a hyphen is also a useful feature;hyphenated words in the
Treebank version of Brown are most likely to be adjectives (JJ). This prevalence of JJs
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is caused by the labeling instructions for the Treebank, which specified that prenominal
modifiers should be labeled as JJ if they contained a hyphen.

How are these features combined and used in part-of-speech taggers? One method
is to train separate probability estimators for each feature, assume independence, and
multiply the probabilities. Weischedel et al. (1993) builtsuch a model, based on four
specific kinds of morphological and orthographic features.They used 3 inflectional
endings (-ed, -s, -ing), 32 derivational endings (such as-ion, -al, -ive, and-ly), 4 values
of capitalization depending on whether a word is sentence-initial (+/- capitalization, +/-
initial) and whether the word was hyphenated. For each feature, they trained maximum
likelihood estimates of the probability of the feature given a tag from a labeled training
set. They then combined the features to estimate the probability of an unknown word
by assuming independence and multiplying:

P(wi |ti) = p(unknown-word|ti)∗ p(capital|ti)∗ p(endings/hyph|ti)(5.50)

Another HMM-based approach, due to Samuelsson (1993) and Brants (2000), gen-
eralizes this use of morphology in a data-driven way. In thisapproach, rather than
pre-selecting certain suffixes by hand, all final letter sequences of all words are con-
sidered. They consider such suffixes of up to ten letters, computing for each suffix of
lengthi the probability of the tagti given the suffix:

P(ti |ln−i+1 . . . ln)(5.51)

These probabilities are smoothed using successively shorter and shorter suffixes.
Separate suffix tries are kept for capitalized and uncapitalized words.

In general, most unknown word models try to capture the fact that unknown words
are unlikely to be closed-class words like prepositions. Brants models this fact by only
computing suffix probabilities from the training set for words whose frequency in the
training set is≤ 10. In the HMM tagging model of Thede and Harper (1999), this fact
is modeled instead by only training on open-class words.

Note that (5.51) gives an estimate ofp(ti |wi); since for the HMM tagging approach
we need the likelihoodp(wi |ti), this can be derived from (5.51) using Bayesian inver-
sion (i.e. using Bayes rule and computation of the two priorsP(ti) andP(ti |ln−i+1 . . . ln)).

In addition to using capitalization information for unknown words, Brants (2000)
also uses capitalization information for tagging known words, by adding a capitaliza-
tion feature to each tag. Thus instead of computingP(ti |ti−1,ti−2) as in (5.44), he actu-
ally computes the probabilityP(ti ,ci |ti−1,ci−1,ti−2,ci−2). This is equivalent to having
a capitalized and uncapitalized version of each tag, essentially doubling the size of the
tagset.

A non-HMM based approach to unknown word detection was that of Brill (1995)
using the TBL algorithm, where the allowable templates weredefined orthographically
(the firstN letters of the words, the lastN letters of the word, etc.).

Most recent approaches to unknown word handling, however, combine these fea-
tures in a third way: by using maximum entropy (MaxEnt ) models such as theMaxi-
mum Entropy Markov Model (MEMM ) first introduced by Ratnaparkhi (1996) and
McCallum et al. (2000), and which we will study in Ch. 6. The maximum entropy ap-
proach is one a family of loglinear approaches to classification in which many features
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are computed for the word to be tagged, and all the features are combined in a model
based on multinomial logistic regression. The unknown wordmodel in the tagger of
Toutanova et al. (2003) uses a feature set extended from Ratnaparkhi (1996), in which
each feature represents a property of a word, including features like:

word contains a number
word contains an upper-case letter
word contains a hyphen
word is all upper-case
word contains a particular prefix (from the set of all prefixesof length≤ 4)
word contains a particular suffix (from the set of all prefixesof length≤ 4)
word is upper-case and has a digit and a dash (likeCFC-12)
word is upper-case and followed within 3 word by Co., Inc., etc

Toutanova et al. (2003) found this last feature, implementing a simple company
name detector, to be particularly useful. 3 words by a word like Co. or Inc. Note that
the Ratnaparkhi (1996) model ignored all features with counts less than 10.

Loglinear models have also been applied to Chinese tagging by Tseng et al. (2005).
Chinese words are very short (around 2.4 characters per unknown word compared with
7.7 for English), but Tseng et al. (2005) found that morphological features nonetheless
gave a huge increase in tagging performance for unknown words. For example for each
character in an unknown word and each POS tag, they added a binary feature indicating
whether that character ever occurred with that tag in any training set word. There is
also an interesting distributional difference in unknown words between Chinese and
English. While English unknown words tend to be proper nouns(41% of unknown
words in WSJ are NP), in Chinese the majority of unknown wordsare common nouns
and verbs (61% in the Chinese TreeBank 5.0). These ratios aresimilar to German,
and seem to be caused by the prevalence of compounding as a morphological device in
Chinese and German.

5.8.3 Part-of-Speech Tagging for Other Languages

As the previous paragraph suggests, part-of-speech tagging algorithms have all been
applied to many other languages as well. In some cases, the methods work well without
large modifications; Brants (2000) showed the exact same performance for tagging on
the German NEGRA corpus (96.7%) as on the English Penn Treebank. But a number
of augmentations and changes become necessary when dealingwith highly inflected or
agglutinative languages.

One problem with these languages is simply the large number of words, when
compared to English. Recall from Ch. 3 that agglutinative languages like Turkish (and
to some extent mixed agglutinative-inflectional languageslike Hungarian) are those in
which words contain long strings of morphemes, where each morpheme has relatively
few surface forms, and so it is often possible to clearly see the morphemes in the surface
text. For example Megyesi (1999) gives the following typical example of a Hungarian
word meaning “of their hits”:

(5.52) találataiknak

talál
hit/find

-at
nominalizer

-a
his

-i
poss.plur

-k
their

-nak
dat/gen
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“of their hits”

Similarly, the following list, excerpted from Hakkani-Tür et al. (2002), shows a few
of the words producible in Turkish from the rootuyu-, ’sleep’:

uyuyorum ‘I am sleeping’ uyuyorsun ‘you are sleeping’
uyuduk ‘we slept’ uyumadan ‘without sleeping’
uyuman ‘your sleeping’ uyurken ‘while (somebody) is sleeping’
uyutmak ‘to cause someone to sleep’ uyutturmak ‘to cause someone to cause another

person to sleep’

These productive word-formation processes result in a large vocabulary for these
languages. Oravecz and Dienes (2002), for example, show that a quarter-million word
corpus of English has about 19,000 different words (i.e. word types); the same size
corpus of Hungarian has almost 50,000 different words. Thisproblem continues even
with much larger corpora; note in the table below on Turkish from Hakkani-Tür et al.
(2002) that the vocabulary size of Turkish is far bigger thanthat of English and is
growing faster than English even at 10 million words.

Vocabulary Size
Corpus Size Turkish English
1M words 106,547 33,398
10M words 417,775 97,734

The large vocabulary size seems to cause a significant degradation in tagging per-
formance when the HMM algorithm is applied directly to agglutinative languages. For
example Oravecz and Dienes (2002) applied the exact same HMMsoftware (called
‘TnT’) that Brants (2000) used to achieve 96.7% on both English and German, and
achieved only 92.88% on Hungarian. The performance on knownwords (98.32%) was
comparable to English results; the problem was the performance on unknown words:
67.07% on Hungarian, compared to around 84-85% for unknown words with a compa-
rable amount of English training data. Hajič (2000) notes the same problem in a wide
variety of other languages (including Czech, Slovene, Estonian, and Romanian); the
performance of these taggers is hugely improved by adding a dictionary which essen-
tially gives a better model of unknown words. In summary, onedifficulty in tagging
highly inflected and agglutinative languages is tagging of unknown words.

A second, related issue with such languages is the vast amount of information that
is coded in the morphology of the word. In English, lots of information about syntactic
function of a word is represented by word order, or neighboring function words. In
highly inflectional languages, information such as the case(nominative, accusative,
genitive) or gender (masculine, feminine) is marked on the words themselves, and word
order plays less of a role in marking syntactic function. Since tagging is often used a
preprocessing step for other NLP algorithms such as parsingor information extraction,
this morphological information is crucial to extract. Thismeans that a part-of-speech
tagging output for Turkish or Czech needs to include information about the case and
gender of each word in order to be as useful as parts-of-speech without case or gender
are in English.

For this reason, tagsets for agglutinative and highly inflectional languages are usu-
ally much larger than the 50-100 tags we have seen for English. Tags in such enriched
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tagsets are sequences of morphological tags rather than a single primitive tag. Assign-
ing tags from such a tagset to words means that we are jointly solving the problems of
part-of-speech tagging and morphological disambiguation. Hakkani-Tür et al. (2002)
give the following example of tags from Turkish, in which theword izin has three
possible morphological/part-of-speech tags (and meanings):

1. Yerdekiizin temizlenmesi gerek. iz +Noun+A3sg+Pnon+Gen
The traceon the floor should be cleaned.

2. Üzerinde parmakizin kalmiş iz +Noun+A3sg+P2sg+Nom
Your fingerprint is left on (it).

3. Içeri girmek içinizin alman gerekiyor. izin +Noun+A3sg+Pnon+Nom
You need apermission to enter.

Using a morphological parse sequence likeNoun+A3sg+Pnon+Gen as the part-
of-speech tag greatly increases the number of parts-of-speech, of course. We can see
this clearly in the morphologically tagged MULTEXT-East corpora, in English, Czech,
Estonian, Hungarian, Romanian, and Slovene (Dimitrova et al., 1998; Erjavec, 2004).
Hajič (2000) gives the following tagset sizes for these corpora:

Language Tagset Size
English 139
Czech 970
Estonian 476
Hungarian 401
Romanian 486
Slovene 1033

With such large tagsets, it is generally necessary to perform morphological analysis
on each word to generate the list of possible morphological tag sequences (i.e. the list
of possible part-of-speech tags) for the word. The role of the tagger is then to disam-
biguate among these tags. The morphological analysis can bedone in various ways.
The Hakkani-Tür et al. (2002) model of Turkish morphological analysis is based on the
two-level morphology we introduced in Ch. 3. For Czech and the MULTEXT-East lan-
guages, Hajič (2000) and Hajič and Hladká (1998) use a fixed external dictionary for
each language which compiles out all the possible forms of each word, and lists possi-
ble tags for each wordform. The morphological parse also crucially helps address the
problem of unknown words, since morphological parsers can accept unknown stems
and still segment the affixes properly.

Given such a morphological parse, various methods for the tagging itself can be
used. The Hakkani-Tür et al. (2002) model for Turkish uses aMarkov model of tag se-
quences. The model assigns a probability to sequences of tags likeizin+Noun+A3sg+Pnon+Nom
by computing tag transition probabilities from a training set. Other models use similar
techniques to those for English. Hajič (2000) and Hajič and Hladká (1998), for ex-
ample, use a log-linear exponential tagger for the MULTEXT-East languages, Oravecz
and Dienes (2002) and Džeroski et al. (2000) use the TnT HMM tagger (Brants, 2000),
and so on.
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5.8.4 Combining Taggers

The various part-of-speech tagging algorithms we have described can also be com-
bined. The most common approach to tagger combination is to run multiple taggers
in parallel on the same sentence, and then combine their output, either by voting or
by training another classifier to choose which tagger to trust in a given context. Brill
and Wu (1998), for example, combined unigram, HMM, TBL, and maximum-entropy
taggers by voting via a higher-order classifier, and showed asmall gain over the best
of the four classifiers. In general, this kind of combinationis only useful if the taggers
have complementary errors, and so research on combination often begins by checking
to see if the errors are indeed different from different taggers. Another option is to
combine taggers in series. Hajič et al. (2001) apply this option for Czech, using the
rule-based approach to remove some of the impossible tag possibilities for each word,
and then an HMM tagger to choose the best sequence from the remaining tags.

5.9 ADVANCED: THE NOISY CHANNEL MODEL FORSPELLING

The Bayesian inference model introduced in Sec. 5.5 for tagging has another inter-
pretation: as an implementation of thenoisy channelmodel, a crucial tool in speech
recognition and machine translation.

In this section we introduce this noisy channel model and show how to apply it to
the task of correcting spelling errors. The noisy channel model is used in Microsoft
Word and in many search engines, and in general is the most widely used algorithm for
correcting any kind of single-word spelling error, includingnon-word spelling errors
and forreal-word spelling errors.

Recall that non-word spelling errors are those which are notEnglish words (like
recievefor receive), and we candetect these by simply looking for any word not in a
dictionary. We saw in Sec.?? that candidate corrections for some spelling errors could
be found by looking for words that had a smalledit distanceto the misspelled word.

The Bayesian models we have seen in this chapter, and the noisy channel model,
will give us a better way to find these corrections. Furthermore, we’ll be able to use
the noisy channel model forcontextual spell checking, which is the task of correcting
real-word spelling errors like the following:

They are leaving in about fifteenminuetsto go to her house.
The study was conducted mainlybeJohn Black.

Since these errors have real words, we can’t find them by just flagging words not in
the dictionary, and we can’t correct them just using edit distance alone. But note that
words around the candidate correctionin about fifteen minutesmake it a much more
probable word sequence than the originalin about fifteen minuets. The noisy channel
model will implement this idea viaN-gram models.

The intuition of thenoisy channelmodel (see Fig. 5.23) is to treat the misspelledNOISY CHANNEL

word as if a correctly-spelled word had been ‘distorted’ by being passed through a noisy
communication channel. This channel introduces “noise” inthe form of substitutions
or other changes to the letters which makes it hard to recognize the “true” word. Our
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noisy word

original word

noisy channel

decoder
word hyp1

word hyp2

...

word hypN 

guessed word
noisy 1
noisy 2

noisy N

Figure 5.23 In the noisy channel model, we imagine that the surface form we see is
actually a ‘distorted’ form of an original word passed through a noisy channel. The de-
coder passes each hypothesis through a model of this channeland picks the word that best
matches the surface noisy word.

goal is then to build a model of the channel. Given this model,we then find the true
word by taking every word of the language, passing each word through our model of
the noisy channel, and seeing which one comes the closest to the misspelled word.

This noisy channel model, like the HMM tagging architecturewe saw earlier, is a
special case ofBayesian inference. We see an observationO (a misspelled word) andBAYESIAN

our job is to find the wordw which generated this misspelled word. Out of all possible
words in the vocabularyV we want to find the wordw such thatP(w|O) is highest, or:V

ŵ = argmax
w∈V

P(w|O)(5.53)

As we saw for part-of-speech tagging, we will use Bayes rule to turn the problem
around (and note that, as for tagging, we can ignore the denominator):

ŵ = argmax
w∈V

P(O|w)P(w)

P(O)
= argmax

w∈V
P(O|w)P(w)(5.54)

To summarize, the noisy channel model says that we have some true underlying
wordw, and we have a noisy channel which modifies the word into some possible mis-
spelled surface form. The probability of the noisy channel producing any particular
observation sequenceO is modeled byP(O|w). The probability distribution over pos-
sible hidden words is modeled byP(w). The most probable word ˆw given that we’ve
seen some observed misspellingO can be computed by taking the product of the word
prior P(w) and the observation likelihoodP(O|w) and choosing the word for which
this product is greatest.

Let’s apply the noisy channel approach to correcting non-word spelling errors. This
approach was first suggested by Kernighan et al. (1990); their program,correct,
takes words rejected by the Unixspell program, generates a list of potential correct
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words, ranks them according to Eq. (5.54), and picks the highest-ranked one. We’ll
apply the algorithm to the example misspellingacress. The algorithm has two stages:
proposing candidate correctionsandscoring the candidates.

In order to propose candidate corrections Kernighan et al. make the reasonable
(Damerau, 1964) simplifying assumption that the correct word will differ from the mis-
spelling by a single insertion, deletion, substitution, ortransposition. The list of can-
didate words is generated from the typo by applying any single transformation which
results in a word in a large on-line dictionary. Applying allpossible transformations to
acressyields the list of candidate words in Fig. 5.24.

Transformation
Correct Error Position

Error Correction Letter Letter (Letter #) Type
acress actress t – 2 deletion
acress cress – a 0 insertion
acress caress ca ac 0 transposition
acress access c r 2 substitution
acress across o e 3 substitution
acress acres – 2 5 insertion
acress acres – 2 4 insertion

Figure 5.24 Candidate corrections for the misspellingacress, together with the trans-
formations that would have produced the error (after Kernighan et al. (1990)). “–” repre-
sents a null letter.

The second stage of the algorithm scores each correction by Equation 5.54. Lett
represent the typo (the misspelled word), and letc range over the setC of candidate
corrections. The most likely correction is then:

ĉ = argmax
c∈C

likelihood
︷ ︸︸ ︷

P(t|c)

prior
︷︸︸︷

P(c)(5.55)

The prior probability of each correctionP(c) is the language model probability
of the wordc in context; for in this section for pedagogical reasons we’ll make the
simplifying assumption that this is the unigram probability P(c), but in practice in
spelling correction this is extended to trigram or 4-gram probabilities. Let’s use the
corpus of Kernighan et al. (1990), which is the 1988 AP newswire corpus of 44 million
words. Since in this corpus the wordactressoccurs 1343 times out of 44 million,
the wordacres2879 times, and so on, the resulting unigram prior probabilities are as
follows:

c freq(c) p(c)
actress 1343 .0000315
cress 0 .000000014
caress 4 .0000001
access 2280 .000058
across 8436 .00019
acres 2879 .000065
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How can we estimateP(t|c)? It is very difficult to model the actual channel per-
fectly (i.e. computing the exact probability that a word will be mistyped) because it
would require knowing who the typist was, whether they were left-handed or right-
handed, and many other factors. Luckily, it turns out we can get a pretty reasonable
estimate ofp(t|c) just by looking at simple local context factors, because themost
important factors predicting an insertion, deletion, transposition are the identity of the
correct letter itself, how the letter was misspelled, and the surrounding context. For
example, the lettersm andn are often substituted for each other; this is partly a fact
about their identity (these two letters are pronounced similarly and they are next to each
other on the keyboard), and partly a fact about context (because they are pronounced
similarly, they occur in similar contexts). Kernighan et al. (1990) used a simple model
of this sort. They estimated e.g.p(acress|across) just using the number of times that
the letterewas substituted for the lettero in some large corpus of errors. This is repre-
sented by aconfusion matrix, a square 26×26 matrix which represents the number ofCONFUSION MATRIX

times one letter was incorrectly used instead of another. For example, the cell labeled
[o,e] in a substitution confusion matrix would give the count of times thatewas substi-
tuted foro. The cell labeled[t,s] in an insertion confusion matrix would give the count
of times thatt was inserted afters. A confusion matrix can be computed by coding
a collection of spelling errors with the correct spelling and then counting the number
of times different errors occurred (Grudin, 1983). Kernighan et al. (1990) used four
confusion matrices, one for each type of single error:

• del[x,y] contains the number of times in the training set that the charactersxy in
the correct word were typed asx.

• ins[x,y] contains the number of times in the training set that the characterx in the
correct word was typed asxy.

• sub[x,y] the number of times thatx was typed asy.

• trans[x,y] the number of times thatxy was typed asyx.

Note that they chose to condition their insertion and deletion probabilities on the
previous character; they could also have chosen to condition on the following character.
Using these matrices, they estimatedp(t|c) as follows (wherecp is thepth character of
the wordc):

P(t|c) =







































del[cp−1,cp]

count[cp−1cp]
, if deletion

ins[cp−1,tp]
count[cp−1]

, if insertion

sub[tp,cp]

count[cp]
, if substitution

trans[cp,cp+1]

count[cpcp+1]
, if transposition

(5.56)

Fig. 5.25 shows the final probabilities for each of the potential corrections; the
unigram prior is multiplied by the likelihood (computed using Equation (5.56) and the
confusion matrices). The final column shows the “normalizedpercentage”.

This implementation of the Bayesian algorithm predictsacresas the correct word
(at a total normalized percentage of 45%), andactressas the second most likely word.
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c freq(c) p(c) p(t|c) p(t|c)p(c) %

actress 1343 .0000315 .000117 3.69×10−9 37%
cress 0 .000000014 .00000144 2.02×10−14 0%
caress 4 .0000001 .00000164 1.64×10−13 0%
access 2280 .000058 .000000209 1.21×10−11 0%
across 8436 .00019 .0000093 1.77×10−9 18%
acres 2879 .000065 .0000321 2.09×10−9 21%
acres 2879 .000065 .0000342 2.22×10−9 23%

Figure 5.25 Computation of the ranking for each candidate correction. Note that the
highest ranked word is notactressbutacres(the two lines at the bottom of the table), since
acrescan be generated in two ways. Thedel[], ins[], sub[], and trans[] confusion matrices
are given in full in Kernighan et al. (1990).

Unfortunately, the algorithm was wrong here: The writer’s intention becomes clear
from the context:. . . was called a “stellar and versatileacresswhose combination of
sass and glamour has defined her. . .”. The surrounding words make it clear thatactress
and notacreswas the intended word. This is the reason that in practice we use trigram
(or larger) language models in the noisy channel model, rather thaan unigrams. Seeing
whether abigram model ofP(c) correctly solves this problem is left as Exercise 5.10
for the reader.

The algorithm as we have described it requires hand-annotated data to train the
confusion matrices. An alternative approach used by Kernighan et al. (1990) is to
compute the matrices by iteratively using this very spelling error correction algorithm
itself. The iterative algorithm first initializes the matrices with equal values; thus any
character is equally likely to be deleted, equally likely tobe substituted for any other
character, etc. Next the spelling error correction algorithm is run on a set of spelling
errors. Given the set of typos paired with their corrections, the confusion matrices can
now be recomputed, the spelling algorithm run again, and so on. This clever method
turns out to be an instance of the importantEM algorithm (Dempster et al., 1977) that
we will discuss in Ch. 6.

5.9.1 Contextual Spelling Error Correction

As we mentioned above, the noisy channel approach can also beapplied to detect and
correctreal-word spelling errors, errors that result in an actual word of English. ThisREALWORD ERROR

DETECTION

can happen from typographical errors (insertion, deletion, transposition) that acciden-
tally produce a real word (e.g.,there for three), or because the writer substituted the
wrong spelling of a homophone or near-homophone (e.g.,dessertfor desert, or piece
for peace). The task of correcting these errors is also calledcontext-sensitive spell
correction. A number of studies suggest that between of 25% and 40% of spellingCONTEXTSENSITIVE

SPELL CORRECTION
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errors are valid English words (Kukich, 1992); some of Kukich’s examples include:

They are leaving in about fifteenminuetsto go to her house.
The designanconstruction of the system will take more than a year.
Can theylavehim my messages?
The study was conducted mainlybeJohn Black.

We can extend the noisy channel model to deal with real-word spelling errors by
generating acandidate spelling setfor every word in a sentence (Mays et al., 1991).
The candidate set includes the word itself, plus every English word that would be gen-
erated from the word by either typographical modifications (letter insertion, deletion,
substitution), or from a homophone list. The algorithm thenchooses the spelling for
each word that gives the whole sentence the highest probability. That is, given a sen-
tenceW = {w1,w2, . . . ,wk, . . . ,wn}, wherewk has alternative spellingw′k, w′′k , etc., we
choose the spelling among these possible spellings that maximizesP(W), using the
N-gram grammar to computeP(W).

More recent research has focused on improving the channel model P(t|c), such
as by incorporating phonetic information, or allowing morecomplex errors (Brill and
Moore, 2000; Toutanova and Moore, 2002). The most importantimprovement to the
language modelP(c) is to use very large contexts, for example by using the very large
set of 5-grams publicly released by Google in 2006 (Franz andBrants, 2006). See
Norvig (2007) for a nice explanation and Python implementation of the noisy channel
model; the end of the chapter has further pointers.

5.10 SUMMARY

This chapter introduced the idea ofparts-of-speechandpart-of-speech tagging. The
main ideas:

• Languages generally have a relatively small set ofclosed classwords, which
are often highly frequent, generally act asfunction words, and can be very am-
biguous in their part-of-speech tags. Open class words generally include various
kinds ofnouns, verbs, adjectives. There are a number of part-of-speech coding
schemes, based ontagsetsof between 40 and 200 tags.

• Part-of-speech taggingis the process of assigning a part-of-speech label to each
of a sequence of words. Rule-based taggers use hand-writtenrules to distinguish
tag ambiguity. HMM taggers choose the tag sequence which maximizes the
product of word likelihood and tag sequence probability. Other machine learning
models used for tagging include maximum entropy and other log-linear models,
decision trees, memory-based learning, and transf̄or m̄ātion-based learning.

• The probabilities in HMM taggers are trained on hand-labeled training corpora,
combining differentN-gram levels using deleted interpolation, and using sophis-
ticated unknown word models.

• Given an HMM and an input string, the Viterbi algorithm is used to decode the
optimal tag sequence.
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• Taggers are evaluated by comparing their output from a test set to human labels
for that test set. Error analysis can help pinpoint areas where a tagger doesn’t
perform well.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The earliest implemented part-of-speech assignment algorithm may have been part of
the parser in Zellig Harris’s Transformations and Discourse Analysis Project (TDAP),
which was implemented between June 1958 and July 1959 at the University of Penn-
sylvania (Harris, 1962). Previous natural language processing systems had used dic-
tionaries with part-of-speech information for words, but have not been described as
performing part-of-speech disambiguation. As part of its parsing, TDAP did part-of-
speech disambiguation via 14 hand-written rules, whose useof part-of-speech tag se-
quences prefigures all the modern algorithms, and which wererun in an order based
on the relative frequency of tags for a word. The parser/tagger was reimplemented re-
cently and is described by Joshi and Hopely (1999) and Karttunen (1999), who note
that the parser was essentially implemented (in a very modern way) as a cascade of
finite-state transducers.

Soon after the TDAP parser was the Computational Grammar Coder (CGC) of
Klein and Simmons (1963). The CGC had three components: a lexicon, a morpholog-
ical analyzer, and a context disambiguator. The small 1500-word lexicon included ex-
ceptional words that could not be accounted for in the simplemorphological analyzer,
including function words as well as irregular nouns, verbs,and adjectives. The mor-
phological analyzer used inflectional and derivational suffixes to assign part-of-speech
classes. A word was run through the lexicon and morphological analyzer to produce a
candidate set of parts-of-speech. A set of 500 context ruleswere then used to disam-
biguate this candidate set, by relying on surrounding islands of unambiguous words.
For example, one rule said that between an ARTICLE and a VERB,the only allowable
sequences were ADJ-NOUN, NOUN-ADVERB, or NOUN-NOUN. The CGC algo-
rithm reported 90% accuracy on applying a 30-tag tagset to articles from the Scientific
American and a children’s encyclopedia.

TheTAGGIT tagger (Greene and Rubin, 1971) was based on the Klein and Simmons
(1963) system, using the same architecture but increasing the size of the dictionary and
the size of the tagset (to 87 tags). For example the followingsample rule, which states
that a wordx is unlikely to be a plural noun (NNS) before a third person singular verb
(VBZ):

x VBZ → notNNS

TAGGIT was applied to the Brown corpus and, according to Francis andKučera
(1982, p. 9), “resulted in the accurate tagging of 77% of the corpus” (the remainder of
the Brown corpus was tagged by hand).

In the 1970s the Lancaster-Oslo/Bergen (LOB) corpus was compiled as a British
English equivalent of the Brown corpus. It was tagged with the CLAWS tagger (Mar-
shall, 1983, 1987; Garside, 1987), a probabilistic algorithm which can be viewed as an
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approximation to the HMM tagging approach. The algorithm used tag bigram prob-
abilities, but instead of storing the word-likelihood of each tag, tags were marked ei-
ther asrare (P(tag|word) < .01) infrequent(P(tag|word) < .10), ornormally frequent
(P(tag|word) > .10),

The probabilisticPARTS tagger of Church (1988) was very close to a full HMM
tagger. It extended the CLAWS idea to assign full lexical probabilities to each word/tag
combination, and used Viterbi decoding to find a tag sequence. Like the CLAWS
tagger, however, it stored the probability of the tag given the word:

P(tag|word)∗P(tag|previousn tags)(5.57)

rather than using the probability of the word given the tag, as an HMM tagger does:

P(word|tag)∗P(tag|previousn tags)(5.58)

Later taggers explicitly introduced the use of the Hidden Markov Model, often with
the EM training algorithm (Kupiec, 1992; Merialdo, 1994; Weischedel et al., 1993),
including the use of variable-length Markov models (Schütze and Singer, 1994).

Most recent tagging algorithms, like the HMM and TBL approaches we have dis-
cussed, are machine-learning classifiers which estimate the best tag-sequence for a
sentence given various features such as the current word, neighboring parts-of-speech
or words, and unknown word features such as orthographic andmorphological fea-
tures. Many kinds of classifiers have been used to combine these features, includ-
ing decision trees (Jelinek et al., 1994; Magerman, 1995), maximum entropy models
(Ratnaparkhi, 1996), other log-linear models (Franz, 1996), memory-based learning
(Daelemans et al., 1996), and networks of linear separators(SNOW) (Roth and Ze-
lenko, 1998). Most machine learning models seem to achieve relatively similar per-
formance given similar features, roughly 96-97% on the Treebank 45-tag tagset on the
Wall Street Journal corpus. As of the writing of this chapter, the highest performing
published model on this WSJ Treebank task is a log-linear tagger that uses information
about neighboring words as well as tags, and a sophisticatedunknown-word model,
achieving 97.24% accuracy (Toutanova et al., 2003). Most such models are super-
vised, although there is beginning to be work on unsupervised models (Schütze, 1995;
Brill, 1997; Clark, 2000; Banko and Moore, 2004; Goldwater and Griffiths, 2007).

Readers interested in the history of parts-of-speech should consult a history of lin-
guistics such as Robins (1967) or Koerner and Asher (1995), particularly the article
by Householder (1995) in the latter. Sampson (1987) and Garside et al. (1997) give a
detailed summary of the provenance and makeup of the Brown and other tagsets. More
information on part-of-speech tagging can be found in van Halteren (1999).

Algorithms for spelling error detection and correction have existed since at least
Blair (1960). Most early algorithm were based on similaritykeys like the Soundex
algorithm discussed in the exercises on page?? (Odell and Russell, 1922; Knuth,
1973). Damerau (1964) gave a dictionary-based algorithm for error detection; most
error-detection algorithms since then have been based on dictionaries. Damerau also
gave a correction algorithm that worked for single errors. Most algorithms since then
have relied on dynamic programming, beginning with Wagner and Fischer (1974). Ku-
kich (1992) is the definitive survey article on spelling error detection and correction.
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Modern algorithms are based on statistical or machine learning algorithm, following
e.g., Kashyap and Oommen (1983) and Kernighan et al. (1990).Recent approaches
to spelling include extensions to the noisy channel model (Brill and Moore, 2000;
Toutanova and Moore, 2002) as well as many other machine learning architectures
such as Bayesian classifiers, (Gale et al., 1993; Golding, 1997; Golding and Sch-
abes, 1996), decision lists (Yarowsky, 1994), transformation based learning (Mangu
and Brill, 1997) latent semantic analysis (Jones and Martin, 1997) and Winnow (Gold-
ing and Roth, 1999). Hirst and Budanitsky (2005) explore theuse of word relatedness;
see Ch. 20. Noisy channel spelling correction is used in a number of commercial ap-
plications, including the Microsoft Word contextual spellchecker.

EXERCISES

5.1 Find one tagging error in each of the following sentences that are tagged with the
Penn Treebank tagset:

a. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN
b. Does/VBZ this/DT flight/NN serve/VB dinner/NNS
c. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP
d. What/WDT flights/NNS do/VBP you/PRP have/VB from/IN Milwaukee/NNP

to/IN Tampa/NNP
e. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN flights/NNS

5.2 Use the Penn Treebank tagset to tag each word in the followingsentences from
Damon Runyon’s short stories. You may ignore punctuation. Some of these are quite
difficult; do your best.

a. It is a nice night.
b. This crap game is over a garage in Fifty-second Street. . .
c. . . . Nobody ever takes the newspapers she sells . . .
d. He is a tall, skinny guy with a long, sad, mean-looking kisser, and a mournful

voice.
e. . . . I am sitting in Mindy’s restaurant putting on the gefillte fish, which is a dish I

am very fond of, . . .
f. When a guy and a doll get to taking peeks back and forth at eachother, why there

you are indeed.

5.3 Now compare your tags from the previous exercise with one or two friend’s an-
swers. On which words did you disagree the most? Why?

5.4 Now tag the sentences in Exercise 5.2 using the more detailedBrown tagset in
Fig. 5.7.
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5.5 Implement the TBL algorithm in Fig. 5.21. Create a small number of templates
and train the tagger on any POS-tagged training set you can find.

5.6 Implement the “most-likely tag” baseline. Find a POS-tagged training set, and
use it to compute for each word the tag which maximizesp(t|w). You will need to
implement a simple tokenizer to deal with sentence boundaries. Start by assuming all
unknown words are NN and compute your error rate on known and unknown words.
Now write at least 5 rules to do a better job of tagging unknownwords, and show the
difference in error rates.

5.7 Recall that the Church (1988) tagger is not an HMM tagger since it incorporates
the probability of the tag given the word:

P(tag|word)∗P(tag|previousn tags)(5.59)

rather than using the likelihood of the word given the tag, asan HMM tagger does:

P(word|tag)∗P(tag|previousn tags)(5.60)

As a gedanken-experiment, construct a sentence, a set of tagtransition probabilities,
and a set of lexical tag probabilities that demonstrate a wayin which the HMM tagger
can produce a better answer than the Church tagger, and another example in which the
Church tagger is better.

5.8 Build an HMM tagger. This requires (1) that you have implemented the Viterbi
algorithm from this chapter and Ch. 6, (2) that you have a dictionary with part-of-
speech information and (3) that you have either (a) a part-of-speech-tagged corpus or
(b) an implementation of the Forward Backward algorithm. Ifyou have a labeled cor-
pus, train the transition and observation probabilities ofan HMM tagger directly on
the hand-tagged data. If you have an unlabeled corpus, trainusing Forward Back-
ward.

5.9 Now run your algorithm on a small test set that you have hand-labeled. Find five
errors and analyze them.

5.10 Compute a bigram grammar on a large corpus and reestimate thespelling correc-
tion probabilities shown in Fig. 5.25 given the correct sequence. . . was called a “stellar
and versatileacresswhose combination of sass and glamour has defined her. . . ”. Does
a bigram grammar prefer the correct wordactress?

5.11 Read Norvig (2007) and implement one of the extensions he suggests to his
Python noisy channel spell checker.
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6
HIDDEN MARKOV AND
MAXIMUM ENTROPY
MODELS

Numquam ponenda est pluralitas sine necessitat
‘Plurality should never be proposed unless needed’

William of Occam

Her sister was called Tatiana.
For the first time with such a name
the tender pages of a novel,
we’ll whimsically grace.

Pushkin,Eugene Onegin, in the Nabokov translation

Alexander Pushkin’s novel in verse,Eugene Onegin, serialized in the early 19th
century, tells of the young dandy Onegin, his rejection of the love of young Tatiana,
his duel with his friend Lenski, and his later regret for bothmistakes. But the novel is
mainly beloved for its style and structure rather than its plot. Among other interesting
structural innovations, the novel is written in a form now known as theOnegin stanza,
iambic tetrameter with an unusual rhyme scheme. These elements have caused compli-
cations and controversy in its translation into other languages. Many of the translations
have been in verse, but Nabokov famously translated it strictly literally into English
prose. The issue of its translation, and the tension betweenliteral and verse transla-
tions have inspired much commentary (see for example Hofstadter (1997)).

In 1913 A. A. Markov asked a less controversial question about Pushkin’s text:
could we use frequency counts from the text to help compute the probability that the
next letter in sequence would be a vowel. In this chapter we introduce two impor-
tant classes of statistical models for processing text and speech, both descendants of
Markov’s models. One of them is theHidden Markov Model (HMM ). The other,
is theMaximum Entropy model (MaxEnt ), and particularly a Markov-related vari-
ant of MaxEnt called theMaximum Entropy Markov Model (MEMM ). All of these
aremachine learningmodels. We have already touched on some aspects of machine
learning; indeed we briefly introduced the Hidden Markov Model in the previous chap-
ter, and we have introduced theN-gram model in the chapter before. In this chapter we
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give a more complete and formal introduction to these two important models.
HMMs and MEMMs are bothsequence classifiers. A sequence classifier orse-SEQUENCE

CLASSIFIERS

quence labeleris a model whose job is to assign some label or class to each unit in a
sequence. The finite-state transducer we studied in Ch. 3 is akind of non-probabilistic
sequence classifier, for example transducing from sequences of words to sequences of
morphemes. The HMM and MEMM extend this notion by being probabilistic sequence
classifiers; given a sequence of units (words, letters, morphemes, sentences, whatever)
their job is to compute a probability distribution over possible labels and choose the
best label sequence.

We have already seen one important sequence classification task: part-of-speech
tagging, where each word in a sequence has to be assigned a part-of-speech tag. Se-
quence labeling tasks come up throughout speech and language processing, a fact that
isn’t too surprising if we consider that language consists of sequences at many represen-
tational levels. Besides part-of-speech tagging, in this book we will see the application
of these sequence models to tasks like speech recognition (Ch. 9), sentence segmenta-
tion and grapheme-to-phoneme conversion (Ch. 8), partial parsing/chunking (Ch. 13),
and named entity recognition and information extraction (Ch. 22).

This chapter is roughly divided into two sections: Hidden Markov Models followed
by Maximum Entropy Markov Models. Our discussion of the Hidden Markov Model
extends what we said about HMM part-of-speech tagging. We begin in the next sec-
tion by introducing the Markov Chain, then give a detailed overview of HMMs and
the forward and Viterbi algorithms with more formalization, and finally introduce the
important EM algorithm for unsupervised (or semi-supervised) learning of a Hidden
Markov Model.

In the second half of the chapter, we introduce Maximum Entropy Markov Models
gradually, beginning with techniques that may already be familiar to you from statis-
tics: linear regression and logistic regression. We next introduce MaxEnt. MaxEnt by
itself is not a sequence classifier; it is used to assign a class to a single element. The
name Maximum Entropy comes from the idea that the classifier finds the probabilis-
tic model which follows Occam’s Razor in being the simplest (least constrained; has
the maximum entropy) yet still consistent with some specificconstraints. The Maxi-
mum Entropy Markov Model is the extension of MaxEnt to the sequence labeling task,
adding components such as the Viterbi algorithm.

Although this chapter introduces MaxEnt, which is a classifier, we will not focus
in general on non-sequential classification. Non-sequential classification will be ad-
dressed in later chapters with the introduction of classifiers like theGaussian Mixture
Model in (Ch. 9) and theNaive Bayesanddecision listclassifiers in (Ch. 20).

6.1 MARKOV CHAINS

The Hidden Markov Model is one of the most important machine learning models in
speech and language processing. In order to define it properly, we need to first in-
troduce theMarkov chain , sometimes called theobserved Markov model. Markov
chains and Hidden Markov Models are both extensions of the finite automata of Ch. 2.
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Recall that a finite automaton is defined by a set of states, anda set of transitions be-
tween states that are taken based on the input observations.A weighted finite-stateWEIGHTED

automaton is a simple augmentation of the finite automaton in which eacharc is asso-
ciated with a probability, indicating how likely that path is to be taken. The probability
on all the arcs leaving a node must sum to 1.

A Markov chain is a special case of a weighted automaton in which the inputMARKOV CHAIN

sequence uniquely determines which states the automaton will go through. Because
it can’t represent inherently ambiguous problems, a Markovchain is only useful for
assigning probabilities to unambiguous sequences.
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Figure 6.1 A Markov chain for weather (a) and one for words (b). A Markov chain is specified by the structure,
the transition between states, and the start and end states.

Fig. 6.1a shows a Markov chain for assigning a probability toa sequence of weather
events, where the vocabulary consists ofHOT, COLD, and RAINY . Fig. 6.1b shows
another simple example of a Markov chain for assigning a probability to a sequence
of wordsw1...wn. This Markov chain should be familiar; in fact it representsa bigram
language model. Given the two models in Figure 6.1 we can assign a probability to any
sequence from our vocabulary. We’ll go over how to do this shortly.

First, let’s be more formal. We’ll view a Markov chain as a kind of probabilis-
tic graphical model; a way of representing probabilistic assumptions in a graph. A
Markov chain is specified by the following components:

Q = q1q2 . . .qN a set ofN states

A = a01a02. . .an1 . . .ann a transition probability matrix A, eachai j rep-
resenting the probability of moving from statei
to statej, s.t.∑n

j=1ai j = 1 ∀i

q0,qF a specialstart state andend (final) statewhich
are not associated with observations.

Fig. 6.1 shows that we represent the states (including startand end states) as nodes
in the graph, and the transitions as edges between nodes.

A Markov chain embodies an important assumption about theseprobabilities. In a
first-order Markov chain, the probability of a particular state is dependent only on theFIRSTORDER
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previous state:

Markov Assumption: P(qi |q1...qi−1) = P(qi|qi−1)(6.1)

Note that because eachai j expresses the probabilityp(q j |qi), the laws of probabil-
ity require that the values of the outgoing arcs from a given state must sum to 1:

n

∑
j=1

ai j = 1 ∀i(6.2)

An alternate representation that is sometimes used for Markov chains doesn’t rely
on a start or end state, instead representing the distribution over initial states and ac-
cepting states explicitly:

π = π1,π2, ...,πN an initial probability distribution over states. πi is the
probability that the Markov chain will start in statei. Some
statesj may haveπ j = 0, meaning that they cannot be initial
states. Also,∑n

i=1 πi = 1

QA= {qx,qy...} a setQA⊂Q of legalaccepting states

Thus the probability of state 1 being the first state can be represented either asa01

or asπ1. Note that because eachπi expresses the probabilityp(qi |START), all theπ
probabilities must sum to 1:

n

∑
i=1

πi = 1(6.3)

(a) (b)

Figure 6.2 Another representation of the same Markov chain for weathershown in Fig. 6.1. Instead of using
a special start state witha01 transition probabilities, we use theπ vector, which represents the distribution over
starting state probabilities. The figure in (b) shows sampleprobabilities.
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Before you go on, use the sample probabilities in Fig. 6.2b tocompute the proba-
bility of each of the following sequences:

(6.4) hot hot hot hot

(6.5) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. 6.2b?

6.2 THE HIDDEN MARKOV MODEL

A Markov chain is useful when we need to compute a probabilityfor a sequence of
events that we can observe in the world. In many cases, however, the events we are
interested in may not be directly observable in the world. For example, in part-of-
speech tagging (Ch. 5) we didn’t observe part of speech tags in the world; we saw
words, and had to infer the correct tags from the word sequence. We call the part-of-
speech tagshidden because they are not observed. The same architecture will come
up in speech recognition; in that case we’ll see acoustic events in the world, and have
to infer the presence of ‘hidden’ words that are the underlying causal source of the
acoustics. AHidden Markov Model (HMM ) allows us to talk about bothobservedHIDDEN MARKOV

MODEL

events (like words that we see in the input) andhiddenevents (like part-of-speech tags)
that we think of as causal factors in our probabilistic model.

To exemplify these models, we’ll use a task conceived of by Jason Eisner (2002).
Imagine that you are a climatologist in the year 2799 studying the history of global
warming. You cannot find any records of the weather in Baltimore, Maryland, for the
summer of 2007, but you do find Jason Eisner’s diary, which lists how many ice creams
Jason ate every day that summer. Our goal is to use these observations to estimate the
temperature every day. We’ll simplify this weather task by assuming there are only two
kinds of days: cold (C) and hot (H). So the Eisner task is as follows:

Given a sequence of observationsO, each observation an integer corre-
sponding to the number of ice creams eaten on a given day, figure out the
correct ‘hidden’ sequenceQof weather states (H or C) which caused Jason
to eat the ice cream.

Let’s begin with a formal definition of a Hidden Markov Model,focusing on how
it differs from a Markov chain. AnHMM is specified by the following components:HMM
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Q = q1q2 . . .qN a set ofN states

A = a11a12. . .an1 . . .ann a transition probability matrix A, eachai j rep-
resenting the probability of moving from statei
to statej, s.t.∑n

j=1ai j = 1 ∀i

O = o1o2 . . .oT a sequence ofT observations, each one drawn
from a vocabularyV = v1,v2, ...,vV .

B = bi(ot) a sequence ofobservation likelihoods:, also
called emission probabilities, each expressing
the probability of an observationot being gen-
erated from a statei.

q0,qF a specialstart state andend (final) statewhich
are not associated with observations, together
with transition probabilitiesa01a02..a0n out of the
start state anda1Fa2F ...anF into the end state.

As we noted for Markov chains, an alternate representation that is sometimes used
for HMMs doesn’t rely on a start or end state, instead representing the distribution over
initial and accepting states explicitly. We won’t be using theπ notation in this textbook,
but you may see it in the literature:

π = π1,π2, ...,πN an initial probability distribution over states. πi is the
probability that the Markov chain will start in statei. Some
statesj may haveπ j = 0, meaning that they cannot be initial
states. Also,∑n

i=1 πi = 1

QA= {qx,qy...} a setQA⊂Q of legalaccepting states

A first-order Hidden Markov Model instantiates two simplifying assumptions. First,
as with a first-order Markov chain, the probability of a particular state is dependent only
on the previous state:

Markov Assumption: P(qi |q1...qi−1) = P(qi|qi−1)(6.6)

Second, the probability of an output observationoi is dependent only on the state
that produced the observationqi , and not on any other states or any other observations:

Output Independence Assumption: P(oi |q1 . . .qi , . . . ,qT ,o1, . . . ,oi , . . . ,oT)= P(oi|qi)
(6.7)

Fig. 6.3 shows a sample HMM for the ice cream task. The two hidden states (H
and C) correspond to hot and cold weather, while the observations (drawn from the
alphabetO = {1,2,3}) correspond to the number of ice creams eaten by Jason on a
given day.

Notice that in the HMM in Fig. 6.3, there is a (non-zero) probability of transitioning
between any two states. Such an HMM is called afully-connectedor ergodic HMM .FULLYCONNECTED

ERGODIC HMM Sometimes, however, we have HMMs in which many of the transitions between states
have zero probability. For example, inleft-to-right (also calledBakis) HMMs, theLEFTTORIGHT

BAKIS state transitions proceed from left to right, as shown in Fig. 6.4. In a Bakis HMM,
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Figure 6.3 A Hidden Markov Model for relating numbers of ice creams eaten by Jason
(the observations) to the weather (H or C, the hidden variables). For this example we are
not using an end-state, instead allowing both states 1 and 2 to be a final (accepting) state.

there are no transitions going from a higher-numbered stateto a lower-numbered state
(or, more accurately, any transitions from a higher-numbered state to a lower-numbered
state have zero probability). Bakis HMMs are generally usedto model temporal pro-
cesses like speech; we will see more of them in Ch. 9.

Figure 6.4 Two 4-state Hidden Markov Models; a left-to-right (Bakis) HMM on the
left, and a fully-connected (ergodic) HMM on the right. In the Bakis model, all transitions
not shown have zero probability.

Now that we have seen the structure of an HMM, we turn to algorithms for com-
puting things with them. An influential tutorial by Rabiner (1989), based on tutorials
by Jack Ferguson in the 1960s, introduced the idea that Hidden Markov Models should
be characterized bythree fundamental problems:

Problem 1 (Computing Likelihood): Given an HMMλ = (A,B) and
an observation sequenceO, determine the likelihoodP(O|λ).

Problem 2 (Decoding): Given an observation sequenceOand an HMM
λ = (A,B), discover the best hidden state sequenceQ.
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Problem 3 (Learning): Given an observation sequenceO and the set
of states in the HMM, learn the HMM parametersA andB.

We already saw an example of problem (2) in Ch. 5. In the next three sections we
introduce all three problems more formally.

6.3 COMPUTING L IKELIHOOD : THE FORWARD ALGORITHM

Our first problem is to compute the likelihood of a particularobservation sequence. For
example, given the HMM in Fig. 6.2b, what is the probability of the sequence3 1 3?
More formally:

Computing Likelihood: Given an HMMλ = (A,B) and an observation
sequenceO, determine the likelihoodP(O|λ).

For a Markov chain, where the surface observations are the same as the hidden
events, we could compute the probability of3 1 3just by following the states labeled3 1
3 and multiplying the probabilities along the arcs. For a Hidden Markov Model, things
are not so simple. We want to determine the probability of an ice-cream observation
sequence like3 1 3, but we don’t know what the hidden state sequence is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather,
and wanted to predict how much ice cream Jason would eat. Thisis a useful part of
many HMM tasks. For a given hidden state sequence (e.g.hot hot cold) we can easily
compute the output likelihood of3 1 3.

Let’s see how. First, recall that for Hidden Markov Models, each hidden state pro-
duces only a single observation. Thus the sequence of hiddenstates and the sequence
of observations have the same length.1

Given this one-to-one mapping, and the Markov assumptions expressed in Eq. 6.6,
for a particular hidden state sequenceQ= q0,q1,q2, ...,qT and an observation sequence
O = o1,o2, ...,oT , the likelihood of the observation sequence is:

P(O|Q) =
T

∏
i=1

P(oi |qi)(6.8)

The computation of the forward probability for our ice-cream observation3 1 3
from one possible hidden state sequencehot hot coldis as follows (Fig. 6.5 shows a
graphic representation of this):

P(3 1 3|hot hot cold) = P(3|hot)×P(1|hot)×P(3|cold)(6.9)

But of course, we don’t actually know what the hidden state (weather) sequence
was. We’ll need to compute the probability of ice-cream events 3 1 3 instead by sum-
ming over all possible weather sequences, weighted by theirprobability. First, let’s

1 There are variants of HMMs calledsegmental HMMs(in speech recognition) orsemi-HMMs (in natural
language processing) in which this one-to-one mapping between the length of the hidden state sequence and
the length of the observation sequence does not hold.
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Figure 6.5 The computation of the observation likelihood for the ice-cream events3 1
3 given the hidden state sequencehot hot cold.

compute the joint probability of being in a particular weather sequenceQ and generat-
ing a particular sequenceO of ice-cream events. In general, this is:

P(O,Q) = P(O|Q)×P(Q) =
n

∏
i=1

P(oi |qi)×
n

∏
i=1

P(qi|qi−1)(6.10)

The computation of the joint probability of our ice-cream observation3 1 3 and
one possible hidden state sequencehot hot coldis as follows (Fig. 6.6 shows a graphic
representation of this):

P(3 1 3,hot hot cold) = P(hot|start)×P(hot|hot)×P(cold|hot)

×P(3|hot)×P(1|hot)×P(3|cold)(6.11)

Figure 6.6 The computation of the joint probability of the ice-cream events3 1 3and
the hidden state sequencehot hot cold.

Now that we know how to compute the joint probability of the observations with a
particular hidden state sequence, we can compute the total probability of the observa-
tions just by summing over all possible hidden state sequences:

P(O) = ∑
Q

P(O,Q) = ∑
Q

P(O|Q)P(Q)(6.12)

For our particular case, we would sum over the 8 three-event sequencescold cold
cold, cold cold hot, i.e.:

P(3 1 3)= P(3 1 3,cold cold cold)+P(3 1 3,cold cold hot)+P(3 1 3,hot hot cold)+ ...

(6.13)
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For an HMM withN hidden states and an observation sequence ofT observations,
there areNT possible hidden sequences. For real tasks, whereN andT are both large,
NT is a very large number, and so we cannot compute the total observation likelihood
by computing a separate observation likelihood for each hidden state sequence and then
summing them up.

Instead of using such an extremely exponential algorithm, we use an efficient
(O(N2T)) algorithm called theforward algorithm . The forward algorithm is a kindFORWARD

ALGORITHM

of dynamic programming algorithm, i.e., an algorithm that uses a table to store inter-
mediate values as it builds up the probability of the observation sequence. The forward
algorithm computes the observation probability by summingover the probabilities of
all possible hidden state paths that could generate the observation sequence, but it does
so efficiently by implicitly folding each of these paths intoa singleforward trellis .

Fig. 6.7 shows an example of the forward trellis for computing the likelihood of3
1 3 given the hidden state sequencehot hot cold.

�����
H

C

H

C

H

C

end

P(
C|
st
ar
t) 
* P
(3
|C
)

.2
 * 
.1

P(H|H) * P(1|H)

.7 * .2

P(C|C) * P(1|C)

.6 * .5

P(C|H) * P(1|C)
.3 * .5

P(H
|C)
 * P

(1|
H)

.4 *
 .2

P
(H
|s
ta
rt
)*
P
(3
|H
)

.8
 *
 .4

α
1
(2)=.32

α
1
(1) = .02

α
2
(2)= .32*.014 + .02*.08 = .00608

α
2
(1) = .32*.15 + .02*.30 = .054

start start start

t

C

H

end end endqF

q2

q1

q0

o1

3 31
o2 o3

Figure 6.7 The forward trellis for computing the total observation likelihood for the ice-cream events3 1 3.
Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions. The
figure shows the computation ofαt( j) for two states at two time steps. The computation in each cellfollows
Eq˙ 6.15: αt( j) = ∑N

i=1 αt−1(i)ai j b j (ot). The resulting probability expressed in each cell is Eq˙ 6.14: αt( j) =
P(o1,o2 . . .ot ,qt = j |λ).
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Each cell of the forward algorithm trellisαt ( j) represents the probability of being
in statej after seeing the firstt observations, given the automatonλ. The value of each
cell αt( j) is computed by summing over the probabilities of every path that could lead
us to this cell. Formally, each cell expresses the followingprobability:

αt( j) = P(o1,o2 . . .ot ,qt = j|λ)(6.14)

Hereqt = j means “the probability that thetth state in the sequence of states is state
j”. We compute this probability by summing over the extensions of all the paths that
lead to the current cell. For a given stateq j at timet, the valueαt ( j) is computed as:

αt( j) =
N

∑
i=1

αt−1(i)ai j b j(ot)(6.15)

The three factors that are multiplied in Eq˙ 6.15 in extending the previous paths to
compute the forward probability at timet are:

αt−1(i) theprevious forward path probability from the previous time step

ai j thetransition probability from previous stateqi to current stateq j

b j(ot) thestate observation likelihoodof the observation symbolot given
the current statej

Consider the computation in Fig. 6.7 ofα2(1), the forward probability of being at
time step 2 in state 1 having generated the partial observation3 1. This is computed by
extending theα probabilities from time step 1, via two paths, each extension consisting
of the three factors above:α1(1)×P(H|H)×P(1|H) andα1(2)×P(H|C)×P(1|H).

Fig. 6.8 shows another visualization of this induction stepfor computing the value
in one new cell of the trellis.

We give two formal definitions of the forward algorithm; the pseudocode in Fig. 6.9
and a statement of the definitional recursion here:

1. Initialization:

α1( j) = a0 jb j(o1) 1≤ j ≤ N(6.16)

2. Recursion (since states 0 and F are non-emitting):

αt( j) =
N

∑
i=1

αt−1(i)ai j b j(ot); 1≤ j ≤ N,1 < t ≤ T(6.17)

3. Termination:

P(O|λ) = αT(qF) =
N

∑
i=1

αT(i)aiF(6.18)
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ot-1 ot

a1j

a2j

aNj

a3j

bj(ot)

αt(j)= Σi αt-1(i) aij bj(ot) 

q1

q2

q3

qN

q1

qj

q2

q1

q2

ot+1ot-2

q1

q2

q3 q3

qN qN

αt-1(N)
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αt-1(2)

αt-1(1)

αt-2(N)

αt-2(3)

αt-2(2)

αt-2(1)

Figure 6.8 Visualizing the computation of a single elementαt(i) in the trellis by sum-
ming all the previous valuesαt−1 weighted by their transition probabilitiesa and multiply-
ing by the observation probabilitybi(ot+1). For many applications of HMMs, many of the
transition probabilities are 0, so not all previous states will contribute to the forward prob-
ability of the current state. Hidden states are in circles, observations in squares. Shaded
nodes are included in the probability computation forαt(i). Start and end states are not
shown.

function FORWARD(observationsof lenT, state-graphof lenN) returns forward-prob

create a probability matrixforward[N+2,T]
for each states from 1 to N do ;initialization step

forward[s,1]←a0,s ∗ bs(o1)
for each time stept from 2 to T do ;recursion step

for each states from 1 to N do

forward[s,t]←
N

∑
s′=1

forward[s′,t−1] ∗ as′,s ∗ bs(ot)

forward[qF ,T]←
N

∑
s=1

forward[s,T] ∗ as,qF ; termination step

return forward[qF ,T]

Figure 6.9 The forward algorithm. We’ve used the notationforward[s,t] to represent
αt(s).

6.4 DECODING: THE V ITERBI ALGORITHM

For any model, such as an HMM, that contains hidden variables, the task of determining
which sequence of variables is the underlying source of somesequence of observations
is called thedecodingtask. In the ice cream domain, given a sequence of ice creamDECODING

observations3 1 3 and an HMM, the task of thedecoder is to find the best hiddenDECODER
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weather sequence (H H H). More formally,

Decoding: Given as input an HMMλ = (A,B) and a sequence of ob-
servationsO = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .

We might propose to find the best sequence as follows: for eachpossible hidden
state sequence (HHH, HHC, HCH, etc.), we could run the forward algorithm and com-
pute the likelihood of the observation sequence given that hidden state sequence. Then
we could choose the hidden state sequence with the max observation likelihood. It
should be clear from the previous section that we cannot do this because there are an
exponentially large number of state sequences!

Instead, the most common decoding algorithms for HMMs is theViterbi algo-
rithm . Like the forward algorithm,Viterbi is a kind ofdynamic programming, andVITERBI ALGORITHM

makes uses of a dynamic programming trellis. Viterbi also strongly resembles another
dynamic programming variant, theminimum edit distancealgorithm of Ch. 3.
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Figure 6.10 The Viterbi trellis for computing the best path through the hidden state space for the ice-cream
eating events3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal
transitions. The figure shows the computation ofvt( j) for two states at two time steps. The computation in each
cell follows Eq˙ 6.20:vt( j) = max1≤i≤N−1 vt−1(i) ai j b j (ot) The resulting probability expressed in each cell is
Eq˙ 6.19:vt( j) = P(q0,q1, . . . ,qt−1,o1,o2, . . . ,ot ,qt = j |λ).
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Fig. 6.10 shows an example of the Viterbi trellis for computing the best hidden state
sequence for the observation sequence3 1 3. The idea is to process the observation se-
quence left to right, filling out the trellis. Each cell of theViterbi trellis,vt( j) represents
the probability that the HMM is in statej after seeing the firstt observations and pass-
ing through the most probable state sequenceq0,q1, ...,qt−1, given the automatonλ.
The value of each cellvt( j) is computed by recursively taking the most probable path
that could lead us to this cell. Formally, each cell expresses the following probability:

vt( j) = max
q0,q1,...,qt−1

P(q0,q1...qt−1,o1,o2 . . .ot ,qt = j|λ)(6.19)

Note that we represent the most probable path by taking the maximum over all
possible previous state sequences max

q0,q1,...,qt−1
. Like other dynamic programming algo-

rithms, Viterbi fills each cell recursively. Given that we had already computed the
probability of being in every state at timet−1, We compute the Viterbi probability by
taking the most probable of the extensions of the paths that lead to the current cell. For
a given stateq j at timet, the valuevt( j) is computed as:

vt( j) =
N

max
i=1

vt−1(i) ai j b j(ot)(6.20)

The three factors that are multiplied in Eq. 6.20 for extending the previous paths to
compute the Viterbi probability at timet are:

vt−1(i) theprevious Viterbi path probability from the previous time step

ai j thetransition probability from previous stateqi to current stateq j

b j(ot) thestate observation likelihoodof the observation symbolot given
the current statej

Fig. 6.11 shows pseudocode for the Viterbi algorithm. Note that the Viterbi algo-
rithm is identical to the forward algorithm except that it takes themax over the previous
path probabilities where the forward algorithm takes thesum. Note also that the Viterbi
algorithm has one component that the forward algorithm doesn’t have:backpointers.
This is because while the forward algorithm needs to producean observation likeli-
hood, the Viterbi algorithm must produce a probability and also the most likely state
sequence. We compute this best state sequence by keeping track of the path of hidden
states that led to each state, as suggested in Fig. 6.12, and then at the end tracing back
the best path to the beginning (the Viterbibacktrace).BACKTRACE

Finally, we can give a formal definition of the Viterbi recursion as follows:

1. Initialization:

v1( j) = a0 jb j(o1) 1≤ j ≤ N(6.21)

bt1( j) = 0(6.22)
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function V ITERBI(observationsof lenT, state-graphof lenN) returns best-path

create a path probability matrixviterbi[N+2,T]
for each states from 1 to N do ;initialization step

viterbi[s,1]←a0,s ∗ bs(o1)
backpointer[s,1]←0

for each time stept from 2 to T do ;recursion step
for each states from 1 to N do

viterbi[s,t]←
N

max
s′=1

viterbi[s′,t−1] ∗ as′,s ∗ bs(ot )

backpointer[s,t]←
N

argmax
s′=1

viterbi[s′,t−1] ∗ as′,s

viterbi[qF ,T]←
N

max
s=1

viterbi[s,T] ∗ as,qF ; termination step

backpointer[qF ,T]←
N

argmax
s=1

viterbi[s,T] ∗ as,qF ; termination step

return the backtrace path by following backpointers to states backin time from
backpointer[qF ,T]

Figure 6.11 Viterbi algorithm for finding optimal sequence of hidden states. Given an
observation sequence and an HMMλ = (A,B), the algorithm returns the state-path through
the HMM which assigns maximum likelihood to the observationsequence. Note that states
0 andqF are non-emitting.

2. Recursion(recall states 0 andqF are non-emitting):

vt( j) =
N

max
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1 < t ≤ T(6.23)

btt( j) =
N

argmax
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1 < t ≤ T(6.24)

3. Termination:

The best score:P∗= vt(qF) =
N

max
i=1

vT(i)∗ai,F(6.25)

The start of backtrace:qT∗= btT(qF) =
N

argmax
i=1

vT(i)∗ai,F(6.26)

6.5 TRAINING HMM S: THE FORWARD-BACKWARD ALGORITHM

We turn to the third problem for HMMs: learning the parameters of an HMM, i.e., the
A andB matrices. Formally,

Learning: Given an observation sequenceO and the set of possible states
in the HMM, learn the HMM parametersA andB.

The input to such a learning algorithm would be an unlabeled sequence of obser-
vationsO and a vocabulary of potential hidden statesQ. Thus for the ice cream task,
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Figure 6.12 The Viterbi backtrace. As we extend each path to a new state account for the next observation, we
keep a backpointer (shown with broken blue lines) to the bestpath that led us to this state.

we would start with a sequence of observationsO= {1,3,2, ...,}, and the set of hidden
statesH andC. For the part-of-speech tagging task we would start with a sequence of
observationsO = {w1,w2,w3 . . .} and a set of hidden statesNN, NNS, VBD, IN,...and
so on.

The standard algorithm for HMM training is theforward-backward or Baum-FORWARD
BACKWARD

Welch algorithm (Baum, 1972), a special case of theExpectation-Maximization orBAUMWELCH

EM algorithm (Dempster et al., 1977). The algorithm will let ustrain both the transi-EM

tion probabilitiesA and the emission probabilitiesB of the HMM.
Let us begin by considering the much simpler case of traininga Markov chain

rather than a Hidden Markov Model. Since the states in a Markov chain are observed,
we can run the model on the observation sequence and directlysee which path we took
through the model, and which state generated each observation symbol. A Markov
chain of course has no emission probabilitiesB (alternatively we could view a Markov
chain as a degenerate Hidden Markov Model where all theb probabilities are 1.0 for
the observed symbol and 0 for all other symbols.). Thus the only probabilities we need
to train are the transition probability matrixA.

We get the maximum likelihood estimate of the probabilityai j of a particular tran-
sition between statesi and j by counting the number of times the transition was taken,
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which we could callC(i→ j), and then normalizing by the total count of all times we
took any transition from statei:

ai j =
C(i→ j)

∑q∈QC(i→ q)
(6.27)

We can directly compute this probability in a Markov chain because we know which
states we were in. For an HMM we cannot compute these counts directly from an
observation sequence since we don’t know which path of states was taken through the
machine for a given input. The Baum-Welch algorithm uses twoneat intuitions to solve
this problem. The first idea is toiterativelyestimate the counts. We will start with an
estimate for the transition and observation probabilities, and then use these estimated
probabilities to derive better and better probabilities. The second idea is that we get
our estimated probabilities by computing the forward probability for an observation
and then dividing that probability mass among all the different paths that contributed
to this forward probability.

In order to understand the algorithm, we need to define a useful probability related
to the forward probability, called thebackward probability .BACKWARD

PROBABILITY

The backward probabilityβ is the probability of seeing the observations from time
t +1 to the end, given that we are in statei at timet (and of course given the automaton
λ):

βt(i) = P(ot+1,ot+2 . . .oT |qt = i,λ)(6.28)

It is computed inductively in a similar manner to the forwardalgorithm.

1. Initialization:

βT(i) = ai,F , 1≤ i ≤ N(6.29)

2. Recursion(again since states 0 andqF are non-emitting):

βt(i) =
N

∑
j=1

ai j b j(ot+1) βt+1( j), 1≤ i ≤ N,1≤ t < T(6.30)

3. Termination:

P(O|λ) = αT(qF) = β1(0) =
N

∑
j=1

a0 j b j(o1) β1( j)(6.31)

Fig. 6.13 illustrates the backward induction step.
We are now ready to understand how the forward and backward probabilities can

help us compute the transition probabilityai j and observation probabilitybi(ot) from
an observation sequence, even though the actual path taken through the machine is
hidden.

Let’s begin by showing how to estimate ˆai j by a variant of (6.27):

âi j =
expected number of transitions from statei to statej

expected number of transitions from statei
(6.32)
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Figure 6.13 The computation ofβt(i) by summing all the successive valuesβt+1( j)
weighted by their transition probabilitiesai j and their observation probabilitiesb j (ot+1).
Start and end states not shown.

How do we compute the numerator? Here’s the intuition. Assume we had some
estimate of the probability that a given transitioni→ j was taken at a particular point
in time t in the observation sequence. If we knew this probability foreach particular
time t, we could sum over all timest to estimate the total count for the transitioni→ j.

More formally, let’s define the probabilityξt as the probability of being in statei at
timet and statej at timet +1, given the observation sequence and of course the model:

ξt(i, j) = P(qt = i,qt+1 = j|O,λ)(6.33)

In order to computeξt , we first compute a probability which is similar toξt , but
differs in including the probability of the observation; note the different conditioning
of O from Equation (6.33):

not-quite-ξt(i, j) = P(qt = i,qt+1 = j,O|λ)(6.34)

Fig. 6.14 shows the various probabilities that go into computing not-quite-ξt : the
transition probability for the arc in question, theα probability before the arc, theβ
probability after the arc, and the observation probabilityfor the symbol just after the
arc. These four are multiplied together to producenot-quite-ξt as follows:

not-quite-ξt(i, j) = αt(i)ai j b j(ot+1)βt+1( j)(6.35)

In order to computeξt fromnot-quite-ξt , the laws of probability instruct us to divide
by P(O|λ), since:

P(X|Y,Z) =
P(X,Y|Z)

P(Y|Z)
(6.36)
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ot-1 ot

aijbj(ot+1) 

si sj

βt+1(j)

Figure 6.14 Computation of the joint probability of being in statei at timet and state
j at time t + 1. The figure shows the various probabilities that need to be combined to
produceP(qt = i,qt+1 = j ,O|λ): the α andβ probabilities, the transition probabilityai j
and the observation probabilityb j (ot+1). After Rabiner (1989).

The probability of the observation given the model is simplythe forward proba-
bility of the whole utterance, (or alternatively the backward probability of the whole
utterance!), which can thus be computed in a number of ways:

P(O|λ) = αT(N) = βT(1) =
N

∑
j=1

αt ( j)βt( j)(6.37)

So, the final equation forξt is:

ξt(i, j) =
αt (i)ai j b j(ot+1)βt+1( j)

αT(N)
(6.38)

The expected number of transitions from statei to statej is then the sum over allt
of ξ. For our estimate ofai j in (6.32), we just need one more thing: the total expected
number of transitions from statei. We can get this by summing over all transitions out
of statei. Here’s the final formula for ˆai j :

âi j =
∑T−1

t=1 ξt(i, j)

∑T−1
t=1 ∑N

j=1 ξt(i, j)
(6.39)

We also need a formula for recomputing the observation probability. This is the
probability of a given symbolvk from the observation vocabularyV, given a statej:
b̂ j(vk). We will do this by trying to compute:

b̂ j(vk) =
expected number of times in statej and observing symbolvk

expected number of times in statej
(6.40)
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For this we will need to know the probability of being in statej at timet, which we
will call γt( j):

γt( j) = P(qt = j|O,λ)(6.41)

Once again, we will compute this by including the observation sequence in the
probability:

γt( j) =
P(qt = j,O|λ)

P(O|λ)
(6.42)

ot+1

�
t(j)

o
t-1

o
t

sj

βt(j)

Figure 6.15 The computation ofγt( j), the probability of being in statej at timet. Note
that γ is really a degenerate case ofξ and hence this figure is like a version of Fig. 6.14
with statei collapsed with statej . After Rabiner (1989).

As Fig. 6.15 shows, the numerator of (6.42) is just the product of the forward prob-
ability and the backward probability:

γt( j) =
αt( j)βt ( j)

P(O|λ)
(6.43)

We are ready to computeb. For the numerator, we sumγt( j) for all time stepst in
which the observationot is the symbolvk that we are interested in. For the denominator,
we sumγt( j) over all time stepst. The result will be the percentage of the times that
we were in statej and we saw symbolvk (the notation∑T

t=1s.t.Ot =vk
means “sum over

all t for which the observation at timet wasvk”):

b̂ j(vk) =
∑T

t=1s.t.Ot=vk
γt( j)

∑T
t=1 γt( j)

(6.44)

We now have ways in (6.39) and (6.44) tore-estimatethe transitionA and observa-
tion B probabilities from an observation sequenceO assuming that we already have a
previous estimate ofA andB.
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These re-estimations form the core of the iterative forward-backward algorithm.
The forward-backward algorithm starts with some initial estimate of the HMM

parametersλ = (A,B). We then iteratively run two steps. Like other cases of the EM
(expectation-maximization) algorithm, the forward-backward algorithm has two steps:
theexpectationstep, orE-step, and themaximization step, orM-step.EXPECTATION

ESTEP

MAXIMIZATION

MSTEP

In the E-step, we compute the expected state occupancy countγ and the expected
state transition countξ, from the earlierA andB probabilities. In the M-step, we useγ
andξ to recompute newA andB probabilities.

function FORWARD-BACKWARD( observationsof len T, output vocabulary V, hidden
state set Q) returns HMM=(A,B)

initialize A andB
iterate until convergence

E-step

γt( j) =
αt( j)βt( j)

P(O|λ)
∀ t and j

ξt(i, j) =
αt(i)ai j b j(ot+1)βt+1( j)

αT(N)
∀ t, i, and j

M-step

âi j =

T−1

∑
t=1

ξt(i, j)

T−1

∑
t=1

N

∑
j=1

ξt(i, j)

b̂ j(vk) =

T

∑
t=1s.t. Ot=vk

γt( j)

T

∑
t=1

γt( j)

return A, B

Figure 6.16 The forward-backward algorithm.

Although in principle the forward-backward algorithm can do completely unsuper-
vised learning of theA andB parameters, in practice the initial conditions are very
important. For this reason the algorithm is often given extra information. For example,
for speech recognition, in practice the HMM structure is very often set by hand, and
only the emission (B) and (non-zero)A transition probabilities are trained from a set
of observation sequencesO. Sec.?? in Ch. 9 will also discuss how initialA andB
estimates are derived in speech recognition. We will also see that for speech that the
forward-backward algorithm can be extended to inputs whichare non-discrete (“con-
tinuous observation densities”).
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6.6 MAXIMUM ENTROPY MODELS: BACKGROUND

We turn now to a second probabilistic machine learning framework calledMaximum
Entropy modeling,MaxEnt for short. MaxEnt is more widely known asmultinomial
logistic regression.

Our goal in this chapter is to introduce the use of MaxEnt for sequence classifica-
tion. Recall that the task of sequence classification or sequence labelling is to assign
a label to each element in some sequence, such as assigning a part-of-speech tag to
a word. The most common MaxEnt sequence classifier is theMaximum Entropy
Markov Model or MEMM , to be introduced in Sec. 6.8. But before we see this use
of MaxEnt as a sequence classifier, we need to introduce non-sequential classification.

The task of classification is to take a single observation, extract some useful features
describing the observation, and then based on these features, toclassifythe observation
into one of a set of discrete classes. Aprobabilistic classifier does slightly more than
this; in addition to assigning a label or class, it gives theprobability of the observation
being in that class; indeed, for a given observation a probabilistic classifier gives a
probability distribution over all classes.

Such non-sequential classification tasks occur throughoutspeech and language pro-
cessing. For example, intext classificationwe might need to decide whether a par-
ticular email should be classified as spam or not. Insentiment analysiswe have to
determine whether a particular sentence or document expresses a positive or negative
opinion. In many tasks, we’ll need to know where the sentence boundaries are, and
so we’ll need to classify a period character (‘.’) as either asentence boundary or not.
We’ll see more examples of the need for classification throughout this book.

MaxEnt belongs to the family of classifiers known as theexponentialor log-linearEXPONENTIAL

LOGLINEAR classifiers. MaxEnt works by extracting some set of featuresfrom the input, combining
themlinearly (meaning that we multiply each by a weight and then add them up), and
then, for reasons we will see below, using this sum as an exponent.

Let’s flesh out this intuition just a bit more. Assume that we have some inputx
(perhaps it is a word that needs to be tagged, or a document that needs to be classified)
from which we extract some features. A feature for tagging might bethis word ends in
-ing or the previous word was ‘the’. For each such featurefi , we have some weightwi .

Given the features and weights, our goal is to choose a class (for example a part-
of-speech tag) for the word. MaxEnt does this by choosing themost probable tag; the
probability of a particular classc given the observationx is:

p(c|x) =
1
Z

exp(∑
i

wi fi)(6.45)

HereZ is a normalizing factor, used to make the probabilities correctly sum to 1;
and as usual exp(x) = ex. As we’ll see later, this is a simplified equation in various
ways; for example in the actual MaxEnt model the featuresf and weightsw are both
dependent on the classc (i.e., we’ll have different features and weights for different
classes).

In order to explain the details of the MaxEnt classifier, including the definition
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of the normalizing termZ and the intuition of the exponential function, we’ll need
to understand firstlinear regression, which lays the groundwork for prediction using
features, andlogistic regression, which is our introduction to exponential models. We
cover these areas in the next two sections. Readers who have had a grounding in
these kinds of regression may want to skip the next two sections. Then in Sec. 6.7
we introduce the details of the MaxEnt classifier. Finally inSec. 6.8 we show how
the MaxEnt classifier is used for sequence classification in the Maximum Entropy
Markov Model or MEMM .

6.6.1 Linear Regression

In statistics we use two different names for tasks that map some input features into
some output value: we use the wordregressionwhen the output is real-valued, and
classificationwhen the output is one of a discrete set of classes.

You may already be familiar with linear regression from a statistics class. The
idea is that we are given a set of observations, each observation associated with some
features, and we want to predict some real-valued outcome for each observation. Let’s
see an example from the domain of predicting housing prices.Levitt and Dubner (2005)
showed that the words used in a real estate ad can be used as a good predictor of whether
a house will sell for more or less than its asking price. They showed, for example, that
houses whose real estate ads had words likefantastic, cute, or charming, tended to sell
for lower prices, while houses whose ads had words likemapleandgranite tended to
sell for higher prices. Their hypothesis was that real estate agents used vague positive
words likefantasticto mask the lack of any specific positive qualities in the house. Just
for pedagogical purposes, we created the fake data in Fig. 6.17.

Number of vague adjectives Amount house sold over asking price
4 0
3 $1000
2 $1500
2 $6000
1 $14000
0 $18000

Figure 6.17 Some made-up data on the number of vague adjectives (fantastic, cute,
charming) in a real estate ad, and the amount the house sold for over theasking price.

Fig. 6.18 shows a graph of these points, with the feature (# ofadjectives) on the
x-axis, and the price on the y-axis. We have also plotted aregression line, which isREGRESSION LINE

the line that best fits the observed data. The equation of any line isy = mx+b; as we
show on the graph, the slope of this line ism= −4900, while the intercept is 16550.
We can think of these two parameters of this line (slopem and interceptb) as a set of
weights that we use to map from our features (in this casex, numbers of adjectives) to
our output valuey (in this case price). We can represent this linear function usingw to
refer to weights as follows:
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y = -4900x + 16550
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Figure 6.18 A plot of the (made-up) points in Fig. 6.17 and the regressionline that best
fits them, with the equationy =−4900x+16550.

price= w0 +w1∗Num Adjectives(6.46)

Thus Eq. 6.46 gives us a linear function that lets us estimatethe sales price for any
number of these adjectives. For example, how much would we expect a house whose
ad has 5 adjectives to sell for?

The true power of linear models comes when we use more than onefeature (tech-
nically we call thismultiple linear regression). For example, the final house price
probably depends on many factors such as the average mortgage rate that month, the
number of unsold houses on the market, and many other such factors. We could encode
each of these as a variable, and the importance of each factorwould be the weight on
that variable, as follows:

price= w0+w1∗Num Adjectives+w2∗Mortgage Rate+w3∗Num UnsoldHouses(6.47)

In speech and language processing, we often call each of these predictive factors
like the number of adjectives or the mortgage rate afeature. We represent each ob-FEATURE

servation (each house for sale) by a vector of these features. Suppose a house has 1
adjective in its ad, and the mortgage rate was 6.5 and there were 10,000 unsold houses
in the city. The feature vector for the house would be~f = (1,6.5,10000). Suppose the
weight vector that we had previously learned for this task was ~w = (w0,w1,w2,w3) =
(18000,−5000,−3000,−1.8). Then the predicted value for this house would be com-
puted by multiplying each feature by its weight:

price= w0 +
N

∑
i=1

wi× fi(6.48)

In general we will pretend that there is an extra featuref0 which has the value 1, an
intercept feature, which make the equations simpler with regard to that peskyw0, and
so in general we can represent a linear regression for estimating the value ofy as:
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linear regression: y =
N

∑
i=0

wi× fi(6.49)

Taking two vectors and creating a scalar by multiplying eachelement in a pairwise
fashion and summing the results is called thedot product. Recall that the dot productDOT PRODUCT

a ·b between two vectorsa andb is defined as:

dot product: a ·b=
N

∑
i=1

aibi = a1b1 +a2b2 + · · ·+anbn(6.50)

Thus Eq. 6.49 is equivalent to the dot product between the weights vector and the
feature vector:

y = w · f(6.51)

Vector dot products occur very frequently in speech and language processing; we
will often rely on the dot product notation to avoid the messysummation signs.

Learning in linear regression

How do we learn the weights for linear regression? Intuitively we’d like to choose
weights that make the estimated valuesy as close as possible to the actual values that
we saw in the training set.

Consider a particular instancex( j) from the training set (we’ll use superscripts in
parentheses to represent training instances), which has anobserved label in the training

sety( j)
obs. Our linear regression model predicts a value fory( j) as follows:

y( j)
pred=

N

∑
i=0

wi× f ( j)
i(6.52)

We’d like to choose the whole set of weightsW so as to minimize the difference

between the predicted valuey( j)
pred and the observed valuey( j)

obs, and we want this dif-

ference minimized over all theM examples in our training set. Actually we want to
minimize the absolute value of the difference (since we don’t want a negative distance
in one example to cancel out a positive difference in anotherexample), so for simplicity
(and differentiability) we minimize the square of the difference. Thus the total value
we want to minimize, which we call thesum-squared error, is this cost function ofSUMSQUARED

ERROR

the current set of weightsW:

cost(W) =
M

∑
j=0

(

y( j)
pred−y( j)

obs

)2
(6.53)

We won’t give here the details of choosing the optimal set of weights to minimize
the sum-squared error. But, briefly, it turns out that if we put the entire training set
into a single matrixX with each row in the matrix consisting of the vector of features
associated with each observationx(i), and put all the observedyvalues in a vector~y, that
there is a closed-form formula for the optimal weight valuesW which will minimize
cost(W):
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W = (XTX)−1XT
~y(6.54)

Implementations of this equation are widely available in statistical packages like
SPSS or R.

6.6.2 Logistic regression

Linear regression is what we want when we are predicting a real-valued outcome. But
somewhat more commonly in speech and language processing weare doingclassifi-
cation, in which the outputy we are trying to predict takes on one from a small set of
discrete values.

Consider the simplest case of binary classification, where we want to classify
whether some observationx is in the class (true) or not in the class (false). In other
wordsy can only take on the values 1 (true) or 0 (false), and we’d likea classifier that
can take features ofx and return true or false. Furthermore, instead of just returning
the 0 or 1 value, we’d like a model that can give us theprobability that a particular
observation is in class 0 or 1. This is important because in most real-world tasks we’re
passing the results of this classifier onto some further classifier to accomplish some
task. Since we are rarely completely certain about which class an observation falls in,
we’d prefer not to make a hard decision at this stage, ruling out all other classes. In-
stead, we’d like to pass on to the later classifier as much information as possible: the
entire set of classes, with the probability value that we assign to each class.

Could we modify our linear regression model to use it for thiskind of probabilistic
classification? Suppose we just tried to train a linear modelto predict a probability as
follows:

P(y = true|x) =
N

∑
i=0

wi × fi(6.55)

= w · f(6.56)

We could train such a model by assigning each training observation the target value
y = 1 if it was in the class (true) and the target valuey = 0 if it was not (false). Each
observationx would have a feature vectorf , and we would train the weight vectorw to
minimize the predictive error from 1 (for observations in the class) or 0 (for observa-
tions not in the class). After training, we would compute theprobability of a class given
an observation by just taking the dot product of the weight vector with the features for
that observation.

The problem with this model is that there is nothing to force the output to be a
legal probability, i.e. to lie between zero and 1. The expression∑N

i=0wi × fi produces
values from−∞ to ∞. How can we fix this problem? Suppose that we keep our linear
predictorw· f , but instead of having it predict a probability, we have it predict aratio of
two probabilities. Specifically, suppose we predict the ratio of the probability of being
in the class to the probability of not being in the class. Thisratio is called theodds. IfODDS

an event has probability .75 of occurring and probability .25 of not occurring, we say
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theoddsof occurring is.75/.25= 3. We could use the linear model to predict the odds
of y being true:

p(y = true)|x
1− p(y= true|x)

= w · f(6.57)

This last model is close: a ratio of probabilities can lie between 0 and∞. But we
need the left-hand side of the equation to lie between−∞ and∞. We can achieve this
by taking the natural log of this probability:

ln

(

p(y = true|x)
1− p(y= true|x)

)

= w · f(6.58)

Now both the left and right hand lie between−∞ and∞. This function on the left
(the log of the odds) is known as thelogit function :LOGIT FUNCTION

logit(p(x)) = ln

(

p(x)
1− p(x)

)

(6.59)

The model of regression in which we use a linear function to estimate, not the
probability, but the logit of the probability, is known aslogistic regression. If theLOGISTIC

REGRESSION

linear function is estimating the logit, what is the actual formula in logistic regression
for the probabilityP(y = true)? You should stop here and take Equation (6.58) and
apply some simple algebra to solve for the probabilityP(y = true).

Hopefully when you solved forP(y = true) you came up with a derivation some-
thing like the following:

ln

(

p(y = true|x)
1− p(y= true|x)

)

= w · f

p(y = true|x)
1− p(y= true|x)

= ew· f(6.60)

p(y = true|x) = (1− p(y= true|x))ew· f

p(y = true|x) = ew· f − p(y = true|x)ew· f

p(y = true|x)+ p(y= true|x)ew· f = ew· f

p(y = true|x)(1+ew· f ) = ew· f

p(y = true|x) =
ew· f

1+ew· f(6.61)

Once we have this probability, we can easily state the probability of the observation
not belonging to the class,p(y = f alse|x), as the two must sum to 1:

p(y = f alse|x) =
1

1+ew· f(6.62)

Here are the equations again using explicit summation notation:
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p(y = true|x) =
exp(∑N

i=0wi fi)

1+exp(∑N
i=0wi fi)

(6.63)

p(y = false|x) =
1

1+exp(∑N
i=0wi fi)

(6.64)

We can express the probabilityP(y= true|x) in a slightly different way, by dividing
the numerator and denominator in (6.61) bye−w· f :

p(y = true|x) =
ew· f

1+ew· f(6.65)

=
1

1+e−w· f(6.66)

These last equation is now in the form of what is called thelogistic function, (theLOGISTIC FUNCTION

function that gives logistic regression its name). The general form of the logistic func-
tion is:

1
1+e−x(6.67)

The logistic function maps values from−∞ and∞ to lie between 0 and 1
Again, we can expressP(y = false|x) so as to make the probabilities sum to one:

p(y = false|x) =
e−w· f

1+e−w· f(6.68)

6.6.3 Logistic regression: Classification

Given a particular observation, how do we decide which of thetwo classes (‘true’ or
‘false’) it belongs to? This is the task ofclassification, also calledinference. ClearlyCLASSIFICATION

INFERENCE the correct class is the one with the higher probability. Thus we can safely say that our
observation should be labeled ‘true’ if:

p(y = true|x) > p(y = f alse|x)

p(y = true|x)
p(y = f alse|x)

> 1

p(y = true|x)
1− p(y= true|x)

> 1

and substituting from Eq. 6.60 for the odds ratio:

ew· f
> 1

w · f > 0(6.69)
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or with the explicit sum notation:

N

∑
i=0

wi fi > 0(6.70)

Thus in order to decide if an observation is a member of the class we just need to
compute the linear function, and see if its value is positive; if so, the observation is in
the class.

A more advanced point: the equation∑N
i=0wi fi = 0 is the equation of ahyperplane

(a generalization of a line toN dimensions). The equation∑N
i=0wi fi > 0 is thus the part

of N-dimensional space above this hyperplane. Thus we can see the logistic regression
function as learning a hyperplane which separates points inspace which are in the class
(’true’) from points which are not in the class.

6.6.4 Advanced: Learning in logistic regression

In linear regression, learning consisted of choosing the weightsw which minimized the
sum-squared error on the training set. In logistic regression, by contrast, we generally
useconditional maximum likelihood estimation. What this means is that we choose

CONDITIONAL
MAXIMUM

LIKELIHOOD
ESTIMATION the parametersw which makes the probability of the observedy values in the training

data to be the highest, given the observationsx. In other words, for an individual
training observationx, we want to choose the weights as follows:

ŵ = argmax
w

P(y(i)|x(i))(6.71)

And we’d like to choose the optimal weights for the entire training set:

ŵ = argmax
w

∏
i

P(y(i)|x(i))(6.72)

We generally work with the log likelihood:

ŵ = argmax
w

∑
i

logP(y(i)|x(i))(6.73)

So, more explicitly:

ŵ = argmax
w

∑
i

log

{

P(y(i) = 1|x(i))) for y(i) = 1
P(y(i) = 0|x(i))) for y(i) = 0

(6.74)

This equation is unwieldy, and so we usually apply a convenient representational
trick. Note that ify = 0 the first term goes away, while ify = 1 the second term goes
away:

ŵ = argmax
w

∑
i

y(i) logP(y(i) = 1|x(i)))+ (1−y(i)) logP(y(i) = 0|x(i))(6.75)

Now if we substitute in (6.66) and (6.68), we get:
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ŵ = argmax
w

∑
i

y(i) log
1

1+e−w· f +(1−y(i)) log
e−w· f

1+e−w· f(6.76)

Finding the weights which result in the maximum log-likelihood according to (6.76)
is a problem in the field known asconvex optimization. Among the most com-CONVEX

OPTIMIZATION

monly used algorithms arequasi-Newtonmethods like L-BFGS, as well as gradient
ascent, conjugate gradient, and various iterative scalingalgorithms (Darroch and Rat-
cliff, 1972; Della Pietra et al., 1997; Malouf, 2002). Theselearning algorithms are
available in the various MaxEnt modeling toolkits but are too complex to define here;
interested readers should see the machine learning textbooks suggested at the end of
the chapter.

6.7 MAXIMUM ENTROPY MODELING

We showed above how logistic regression can be used to classify an observation into
one of two classes. But most of the time the kinds of classification problems that
come up in language processing involve larger numbers of classes (such as the set
of part-of-speech classes). Logistic regression can also be defined for such functions
with many discrete values. In such cases it is calledmultinomial logistic regression.

MULTINOMIAL
LOGISTIC

REGRESSION

As we mentioned above, multinomial logistic regression is calledMaxEnt in speechMAXENT

and language processing (see Sec. 6.7.1 on the intuition behind the name ‘maximum
entropy’).

The equations for computing the class probabilities for a MaxEnt classifier are a
generalization of Eqs. 6.63-6.64 above. Let’s assume that the target valuey is a random
variable which can take onC different values corresponding to the classesc1, c2,...,cC.

We said earlier in this chapter that in a MaxEnt model we estimate the probability
thaty is a particular classc as:

p(c|x) =
1
Z

exp∑
i

wi fi(6.77)

Let’s now add some details to this schematic equation. Firstwe’ll flesh out the
normalization factor Z, specify the number of features asN, and make the value of the
weight dependent on the classc. The final equation is:

p(c|x) =

exp

(

N

∑
i=0

wci fi

)

∑
c′∈C

exp

(

N

∑
i=0

wc′ i fi

)(6.78)

Note that the normalization factorZ is just used to make the exponential into a true
probability;
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Z = ∑
C

p(c|x) = ∑
c′∈C

exp

(

N

∑
i=0

wc′ i fi

)

(6.79)

We need to make one more change to see the final MaxEnt equation. So far we’ve
been assuming that the featuresfi are real-valued. It is more common in speech and
language processing, however, to use binary-valued features. A feature that only takes
on the values 0 and 1 is also called anindicator function . In general, the features weINDICATOR

FUNCTION

use are indicator functions of some property of the observation and the class we are
considering assigning. Thus in MaxEnt, instead of the notation fi , we will often use
the notationfi(c,x), meaning a featurei for a particular classc for a given observation
x.

The final equation for computing the probability ofy being of classc given x in
MaxEnt is:

p(c|x) =

exp

(

N

∑
i=0

wci fi(c,x)

)

∑
c′∈C

exp

(

N

∑
i=0

wc′ i fi(c
′
,x)

)(6.80)

To get a clearer intuition of this use of binary features, let’s look at some sample
features for the task of part-of-speech tagging. Suppose weare assigning a part-of-
speech tag to the wordrace in (6.81), repeated from (??):

(6.81) Secretariat/NNP is/BEZ expected/VBN to/TOrace/??tomorrow/

Again, for now we’re just doing classification, not sequenceclassification, so let’s
consider just this single word. We’ll discuss in Sec. 6.8 howto perform tagging for a
whole sequence of words.

We would like to know whether to assign the classVB to race (or instead assign
some other class likeNN). One useful feature, we’ll call itf1, would be the fact that the
current word israce. We can thus add a binary feature which is true if this is the case:

f1(c,x) =

{

1 if wordi = “race” & c = NN
0 otherwise

Another feature would be whether the previous word has the tag TO:

f2(c,x) =

{

1 if ti−1 = TO & c = VB
0 otherwise

Two more part-of-speech tagging features might focus on aspects of a word’s spelling
and case:

f3(c,x) =

{

1 if suffix(wordi) = “ing” & c = VBG
0 otherwise
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f4(c,x) =

{

1 if is lower case(wordi) & c = VB
0 otherwise

Since each feature is dependent on both a property of the observation and the class
being labeled, we would need to have separate feature for, e.g, the link betweenrace
and VB, or the link between a previous TO and NN:

f5(c,x) =

{

1 if wordi = ”race” & c = VB
0 otherwise

f6(c,x) =

{

1 if ti−1 = TO & c = NN
0 otherwise

Each of these features has a corresponding weight. Thus the weightw1(c,x) would
indicate how strong a cue the wordrace is for the tag VB, the weightw2(c,x) would
indicate how strong a cue the previous tagTO is for the current word being a VB, and
so on.

f1 f2 f3 f4 f5 f6
VB f 0 1 0 1 1 0
VB w .8 .01 .1

NN f 1 0 0 0 0 1
NN w .8 -1.3

Figure 6.19 Some sample feature values and weights for tagging the wordrace in
(6.81).

Let’s assume that the feature weights for the two classes VB and VN are as shown
in Fig. 6.19. Let’s call the current input observation (where the current word israce) x.
We can now computeP(NN|x) andP(VB|x), using Eq. 6.80:

P(NN|x) =
e.8e−1.3

e.8e−1.3 +e.8e.01e.1 = .20(6.82)

P(VB|x) =
e.8e.01e.1

e.8e−1.3 +e.8e.01e.1 = .80(6.83)

Notice that when we use MaxEnt to performclassification, MaxEnt naturally gives
us a probability distribution over the classes. If we want todo a hard-classification and
choose the single-best class, we can choose the class that has the highest probability,
i.e.:

ĉ = argmax
c∈C

P(c|x)(6.84)
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Classification in MaxEnt is thus a generalization of classification in (boolean) lo-
gistic regression. In boolean logistic regression, classification involves building one
linear expression which separates the observations in the class from the observations
not in the class. Classification in MaxEnt, by contrast, involves building a separate
linear expression for each ofC classes.

But as we’ll see later in Sec. 6.8, we generally don’t use MaxEnt for hard classi-
fication. Usually we want to use MaxEnt as part of sequence classification, where we
want not the best single class for one unit, but the best totalsequence. For this task,
it’s useful to exploit the entire probability distributionfor each individual unit, to help
find the best sequence. Indeed even in many non-sequence applications a probability
distribution over the classes is more useful than a hard choice.

The features we have described so far express a single binaryproperty of an obser-
vation. But it is often useful to create more complex features that express combinations
of properties of a word. Some kinds of machine learning models, like Support Vector
Machines (SVMs), can automatically model the interactionsbetween primitive proper-
ties, but in MaxEnt any kind of complex feature has to be defined by hand. For example
a word starting with a capital letter (like the wordDay) is more likely to be a proper
noun (NNP) than a common noun (for example in the expressionUnited Nations Day).
But a word which is capitalized but which occurs at the beginning of the sentence (the
previous word is<s>), as inDay after day...., is not more likely to be a proper noun.
Even if each of these properties were already a primitive feature, MaxEnt would not
model their combination, so this boolean combination of properties would need to be
encoded as a feature by hand:

f125(c,x) =

{

1 if wordi−1 = <s> & isupperfirst(wordi) & c = NNP
0 otherwise

A key to successful use of MaxEnt is thus the design of appropriate features and
feature combinations.

Learning Maximum Entropy Models

Learning a MaxEnt model can be done via a generalization of the logistic regression
learning algorithms described in Sec. 6.6.4; as we saw in (6.73), we want to find the
parametersw which maximize the log likelihood of theM training samples:

ŵ = argmax
w

∑
i

logP(y(i)|x(i))(6.85)

As with binary logistic regression, we use some convex optimization algorithm to
find the weights which maximize this function.

A brief note: one important aspect of MaxEnt training is a kind of smoothing of the
weights calledregularization. The goal of regularization is to penalize large weights;REGULARIZATION

it turns out that otherwise a MaxEnt model will learn very high weights which overfit
the training data. Regularization is implemented in training by changing the likeli-
hood function that is optimized. Instead of the optimization in (6.85), we optimize the
following:
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ŵ = argmax
w

∑
i

logP(y(i)|x(i))−αR(w)(6.86)

whereR(w) is a regularization term used to penalize large weights. It is common to
make the regularization termR(w) be a quadratic function of the weight values:

R(W) =
N

∑
j=1

w2
j(6.87)

Subtracting squares of the weights will thus result in preferring smaller weights:

ŵ = argmax
w

∑
i

logP(y(i)|x(i))−α
N

∑
j=1

w2
j(6.88)

It turns that this kind of regularization corresponds to assuming that weights are
distributed according to a Gaussian distribution with meanµ = 0. In a Gaussian or
normal distribution, the further away a value is from the mean, the lower its probability
(scaled by the varianceσ). By using a Gaussian prior on the weights, we are saying
that weights prefer to have the value zero. A Gaussian for a weight wj is:

1
√

2πσ2
j

exp

(

−
(wj −µj)

2

2σ2
j

)

(6.89)

If we multiply each weight by a Gaussian prior on the weight, we are thus maxi-
mizing the following constraint:

ŵ = argmax
w

M

∏
i

P(y(i)|x(i))×
N

∏
j=1

1
√

2πσ2
j

exp

(

−
(wj −µj)

2

2σ2
j

)

(6.90)

which in log space, withµ= 0, corresponds to

ŵ = argmax
w

∑
i

logP(y(i)|x(i))−
N

∑
j=1

w2
j

2σ2
j

(6.91)

which is in the same form as Eq. 6.88.
There is a vast literature on the details of learning in MaxEnt; see the end of the

chapter for pointers to further details.

6.7.1 Why do we call it Maximum Entropy?

Why do we refer to multinomial logistic regression models asMaxEnt or Maximum
Entropy models? Let’s give the intuition of this interpretation in the context of part-
of-speech tagging. Suppose we want to assign a tag to the wordzzfish(a word we
made up for this example). What is the probabilistic taggingmodel (the distribution
of part-of-speech tags across words) that makes the fewest assumptions, imposing no
constraints at all? Intuitively it would be the equiprobable distribution:
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NN JJ NNS VB NNP IN MD UH SYM VBG POS PRP CC CD ...
1
45

1
45

1
45

1
45

1
45

1
45

1
45

1
45

1
45

1
45

1
45

1
45

1
45

1
45 ...

Now suppose we had some training data labeled with part-of-speech tags, and from
this data we learned only one fact: the set of possible tags for zzfishare NN, JJ, NNS,
and VB (sozzfishis a word something likefish, but which can also be an adjective).
What is the tagging model which relies on this constraint, but makes no further as-
sumptions at all? Since one of these must be the correct tag, we know that

P(NN)+P(JJ)+P(NNS)+P(VB) = 1(6.92)

Since we have no further information, a model which makes no further assumptions
beyond what we know would simply assign equal probability toeach of these words:

NN JJ NNS VB NNP IN MD UH SYM VBG POS PRP CC CD ...
1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0 0 ...

In the first example, where we wanted an uninformed distribution over 45 parts-of-
speech, and in this case, where we wanted an uninformed distribution over 4 parts-of-
speech, it turns out that of all possible distributions, theequiprobable distribution has
themaximum entropy. Recall from Sec.?? that the entropy of the distribution of a
random variablex is computed as:

H(x) =−∑
x

P(x) log2P(x)(6.93)

An equiprobable distribution in which all values of the random variable have the
same probability has a higher entropy than one in which thereis more information.
Thus of all distributions over four variables the distribution { 1

4,
1
4,

1
4,

1
4} has the maxi-

mum entropy. (To have an intuition for this, use Eq. 6.93 to compute the entropy for a
few other distributions such as the distribution{ 1

4,
1
2,

1
8,

1
8}, and make sure they are all

lower than the equiprobable distribution.)
The intuition of MaxEnt modeling is that the probabilistic model we are building

should follow whatever constraints we impose on it, but beyond these constraints it
should follow Occam’s Razor, i.e., make the fewest possibleassumptions.

Let’s add some more constraints into our tagging example. Suppose we looked at
our tagged training data and noticed that 8 times out of 10,zzfishwas tagged as some
sort of common noun, either NN or NNS. We can think of this as specifying the feature
’word is zzfishandti = NN or ti = NNS’. We might now want to modify our distribution
so that we give8

10 of our probability mass to nouns, i.e. now we have 2 constraints

P(NN)+P(JJ)+P(NNS)+P(VB) = 1

P(word iszzfishandti = NN or ti = NNS) =
8
10

but make no further assumptions (keep JJ and VB equiprobable, and NN and NNS
equiprobable).
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NN JJ NNS VB NNP ...
4
10

1
10

4
10

1
10 0 ...

Now suppose we don’t have have any more information aboutzzfish. But we notice
in the training data that for all English words (not justzzfish) verbs (VB) occur as 1
word in 20. We can now add this constraint (corresponding to the featureti =VB):

P(NN)+P(JJ)+P(NNS)+P(VB) = 1

P(word iszzfishandti = NN or ti = NNS) =
8
10

P(VB) =
1
20

The resulting maximum entropy distribution is now as follows:

NN JJ NNS VB
4
10

3
20

4
10

1
20

In summary, the intuition of maximum entropy is to build a distribution by continu-
ously adding features. Each feature is an indicator function, which picks out a subset of
the training observations. For each feature we add a constraint on our total distribution,
specifying that our distribution for this subset should match the empirical distribution
we saw in our training data. We then choose the maximum entropy distribution which
otherwise accords with these constraints. Berger et al. (1996) pose the optimization
problem of finding this distribution as follows:

“To select a model from a setC of allowed probability distributions, choose
the model p∗ ∈ C with maximum entropy H(p)”:

p∗ = argmax
p∈C

H(p)(6.94)

Now we come to the important conclusion. Berger et al. (1996)show that the
solution to this optimization problem turns out to be exactly the probability distribution
of a multinomial logistic regression model whose weightsW maximize the likelihood
of the training data! Thus the exponential model for multinomial logistic regression,
when trained according to the maximum likelihood criterion, also finds the maximum
entropy distribution subject to the constraints from the feature functions.

6.8 MAXIMUM ENTROPY MARKOV MODELS

We began our discussion of MaxEnt by pointing out that the basic MaxEnt model is
not in itself a classifier for sequences. Instead, it is used to classify a single observation
into one of a set of discrete classes, as in text classification (choosing between possible
authors of an anonymous text, or classifying an email as spam), or tasks like deciding
whether a period marks the end of a sentence.
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We turn in this section to theMaximum Entropy Markov Model or MEMM ,
which is an augmentation of the basic MaxEnt classifier so that it can be applied to
assign a class to each element in a sequence, just as we do withHMMs. Why would
we want a sequence classifier built on MaxEnt? How might such aclassifier be better
than an HMM?

Consider the HMM approach to part-of-speech tagging. The HMM tagging model
is based on probabilities of the formP(tag|tag) and P(word|tag). That means that
if we want to include some source of knowledge into the tagging process, we must
find a way to encode the knowledge into one of these two probabilities. But many
knowledge sources are hard to fit into these models. For example, we saw in Sec.??
that for tagging unknown words, useful features include capitalization, the presence
of hyphens, word endings, and so on. There is no easy way to fit probabilities like
P(capitalization|tag), P(hyphen|tag), P(suffix|tag), and so on into an HMM-style model.

We gave the initial part of this intuition in the previous section, when we discussed
applying MaxEnt to part-of-speech tagging. Part-of-speech tagging is definitely a se-
quence labeling task, but we only discussed assigning a part-of-speech tag to a single
word.

How can we take this single local classifier and turn it into a general sequence
classifier? When classifying each word we can rely on features from the current word,
features from surrounding words, as well as the output of theclassifier from previous
words. For example the simplest method is to run our local classifier left-to-right, first
making a hard classification of the first word in the sentence,then the second word,
and so on. When classifying each word, we can rely on the output of the classifier from
the previous word as a feature. For example, we saw in taggingthe wordrace that a
useful feature was the tag of the previous word; a previous TOis a good indication that
race is a VB, whereas a previous DT is a good indication thatrace is a NN. Such a
strict left-to-right sliding window approach has been shown to yield surprisingly good
results across a wide range of applications.

While it is possible to perform part-of-speech tagging in this way, this simple left-
to-right classifier has an important flaw: it makes a hard decision on each word before
moving on to the next word. This means that the classifier is unable to use information
from later words to inform its decision early on. Recall thatin Hidden Markov Models,
by contrast, we didn’t have to make a hard decision at each word; we used Viterbi
decoding to find the sequence of part-of-speech tags which was optimal for the whole
sentence.

The Maximum Entropy Markov Model (or MEMM) allows us to achieve this same
advantage, by mating the Viterbi algorithm with MaxEnt. Let’s see how it works,
again looking at part-of-speech tagging. It is easiest to understand an MEMM when
comparing it to an HMM. Remember that in using an HMM to model the most probable
part-of-speech tag sequence we rely on Bayes rule, computing P(W|T)P(W) instead
of directly computingP(T|W):

T̂ = argmax
T

P(T|W)

= argmax
T

P(W|T)P(T)
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= argmax
T

∏
i

P(wordi |tagi)∏
i

P(tagi |tagi−1)(6.95)

That is, an HMM as we’ve described it is a generative model that optimizes the
likelihoodP(W|T), and we estimate the posterior by combining the likelihood and the
prior P(T).

In an MEMM, by contrast, we compute the posteriorP(T|W) directly. Because we
train the model directly to discriminate among the possibletag sequences, we call an
MEMM a discriminative model rather than a generative model. In an MEMM, weDISCRIMINATIVE

MODEL

break down the probabilities as follows:

T̂ = argmax
T

P(T|W)

= argmax
T

∏
i

P(tagi |wordi , tagi−1)(6.96)

Thus in an MEMM instead of having a separate model for likelihoods and priors,
we train a single probabilistic model to estimateP(tagi |wordi , tagi−1). We will use
MaxEnt for this last piece, estimating the probability of each local tag given the previ-
ous tag, the observed word, and, as we will see, any other features we want to include.

We can see the HMM versus MEMM intuitions of the POS tagging task in Fig. 6.20,
which repeats the HMM model of Fig.??a from Ch. 5, and adds a new model for the
MEMM. Note that the HMM model includes distinct probabilityestimates for each
transition and observation, while the MEMM gives one probability estimate per hidden
state, which is the probability of the next tag given the previous tag and the observation.

is

NNP VBZ VBN TO VB NR

Secretariat expected to race tomorrow

#

Figure 6.20 The HMM (top) and MEMM (bottom) representation of the probability
computation for the correct sequence of tags for the Secretariat sentence. Each arc would
be associated with a probability; the HMM computes two separate probabilities for the ob-
servation likelihood and the prior, while the MEMM computesa single probability function
at each state, conditioned on the previous state and currentobservation.
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Fig. 6.21 emphasizes another advantage of MEMMs over HMMs not shown in
Fig. 6.20: unlike the HMM, the MEMM can condition on any useful feature of the input
observation. In the HMM this wasn’t possible because the HMMis likelihood-based,
hence would have needed to compute the likelihood of each feature of the observation.

expectedis

NNP VBZ VBN TO VB NR

Secretariat to race tomorrow

#

Figure 6.21 An MEMM for part-of-speech tagging, augmenting the description in
Fig. 6.20 by showing that an MEMM can condition on many features of the input, such as
capitalization, morphology (ending in-s or -ed), as well as earlier words or tags. We have
shown some potential additional features for the first threedecisions, using different line
styles for each class.

More formally, in the HMM we compute the probability of the state sequence given
the observations as:

P(Q|O) =
n

∏
i=1

P(oi |qi)×
n

∏
i=1

P(qi |qi−1)(6.97)

In the MEMM, we compute the probability of the state sequencegiven the obser-
vations as:

P(Q|O) =
n

∏
i=1

P(qi |qi−1,oi)(6.98)

In practice, however, an MEMM can also condition on many morefeatures than
the HMM, so in general we condition the right-hand side on many more factors.

To estimate the individual probability of a transition froma stateq′ to a stateq
producing an observationo, we build a MaxEnt model as follows:

P(q|q′,o) =
1

Z(o,q′)
exp

(

∑
i

wi fi(o,q)

)

(6.99)

6.8.1 Decoding and Learning in MEMMs

Like HMMs, the MEMM uses the Viterbi algorithm to perform thetask of decoding
(inference). Concretely, this involves filling anN×T array with the appropriate values
for P(ti |ti−1,wordi), maintaining backpointers as we proceed. As with HMM Viterbi,
when the table is filled we simply follow pointers back from the maximum value in
the final column to retrieve the desired set of labels. The requisite changes from the
HMM-style application of Viterbi only have to do with how we fill each cell. Recall
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from Eq. 6.23 that the recursive step of the Viterbi equationcomputes the Viterbi value
of time t for statej as:

vt( j) =
N

max
i=1

vt−1(i)ai j b j(ot); 1≤ j ≤ N,1 < t ≤ T(6.100)

which is the HMM implementation of

vt( j) =
N

max
i=1

vt−1(i) P(sj |si) P(ot |sj) 1≤ j ≤ N,1 < t ≤ T(6.101)

The MEMM requires only a slight change to this latter formula, replacing thea and
b prior and likelihood probabilities with the direct posterior:

vt( j) =
N

max
i=1

vt−1(i) P(sj |si ,ot) 1≤ j ≤ N,1 < t ≤ T(6.102)

Fig. 6.22 shows an example of the Viterbi trellis for an MEMM applied to the ice-
cream task from Sec. 6.4. Recall that the task is figuring out the hidden weather (Hot
or Cold) from observed numbers of ice-creams eaten in Jason Eisner’s diary. Fig. 6.22
shows the abstract Viterbi probability calculation assuming that we have a MaxEnt
model which computesP(si |si−1,oi) for us.

Learning in MEMMs relies on the same supervised learning algorithms we pre-
sented for logistic regression and MaxEnt. Given a sequenceof observations, fea-
ture functions, and corresponding hidden states, we train the weights so as maximize
the log-likelihood of the training corpus. As with HMMs, it is also possible to train
MEMMs in semi-supervised modes, for example when the sequence of labels for the
training data is missing or incomplete in some way: a versionof the EM algorithm can
be used for this purpose.

6.9 SUMMARY

This chapter described two important models for probabilistic sequence classification:
theHidden Markov Model and theMaximum Entropy Markov Model . Both mod-
els are widely used throughout speech and language processing.

• Hidden Markov Models (HMMs ) are a way of relating a sequence ofobser-
vations to a sequence ofhidden classesor hidden stateswhich explain the
observations.
• The process of discovering the sequence of hidden states given the sequence

of observations is known asdecodingor inference. TheViterbi algorithm is
commonly used for decoding.

• The parameters of an HMM are theA transition probability matrix and theB
observation likelihood matrix. Both can be trained using the Baum-Welch or
forward-backward algorithm.
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Figure 6.22 Inference from ice-cream eating computed by an MEMM insteadof an HMM. The Viterbi trellis
for computing the best path through the hidden state space for the ice-cream eating events3 1 3, modified from
the HMM figure in Fig. 6.10.

• A MaxEnt model is a classifier which assigns aclassto anobservationby com-
puting a probability from an exponential function of aweightedset offeatures
of the observation.
• MaxEnt models can be trained using methods from the field ofconvex optimiza-

tion although we don’t give the details in this textbook.
• A Maximum Entropy Markov Model or MEMM is a sequence model aug-

mentation of MaxEnt which makes use of the Viterbi decoding algorithm.

• MEMMs can be trained by augmenting MaxEnt training with a version of EM.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

As we discussed at the end of Ch. 4, Markov chains were first used by Markov (1913,
2006), to predict whether an upcoming letter in Pushkin’sEugene Oneginwould be a
vowel or a consonant.

The Hidden Markov Model was developed by Baum and colleaguesat the Institute
for Defense Analyses in Princeton (Baum and Petrie, 1966; Baum and Eagon, 1967).

TheViterbi algorithm was first applied to speech and language processing in the
context of speech recognition by Vintsyuk (1968), but has what Kruskal (1983) calls a
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‘remarkable history of multiple independent discovery andpublication’.2 Kruskal and
others give at least the following independently-discovered variants of the algorithm
published in four separate fields:

Citation Field
Viterbi (1967) information theory
Vintsyuk (1968) speech processing
Needleman and Wunsch (1970) molecular biology
Sakoe and Chiba (1971) speech processing
Sankoff (1972) molecular biology
Reichert et al. (1973) molecular biology
Wagner and Fischer (1974) computer science

The use of the termViterbi is now standard for the application of dynamic pro-
gramming to any kind of probabilistic maximization problemin speech and language
processing. For non-probabilistic problems (such as for minimum edit distance) the
plain termdynamic programming is often used. Forney Jr. (1973) is an early survey
paper which explores the origin of the Viterbi algorithm in the context of information
and communications theory.

Our presentation of the idea that Hidden Markov Models should be characterized
by three fundamental problems was modeled after an influential tutorial by Rabiner
(1989), which was itself based on tutorials by Jack Fergusonof IDA in the 1960s.
Jelinek (1997) and Rabiner and Juang (1993) give very complete descriptions of the
forward-backward algorithm, as applied to the speech recognition problem. Jelinek
(1997) also shows the relationship between forward-backward and EM. See also the
description of HMMs in other textbooks such as Manning and Schütze (1999). Bilmes
(1997) is a tutorial on EM.

While logistic regression and other log-linear models havebeen used in many fields
since the middle of the 20th century, the use of Maximum Entropy/multinomial logistic
regression in natural language processing dates from work in the early 1990s at IBM
(Berger et al., 1996; Della Pietra et al., 1997). This early work introduced the maximum
entropy formalism, proposed a learning algorithm (improved iterative scaling), and
proposed the use of regularization. A number of applications of MaxEnt followed. For
further discussion of regularization and smoothing for maximum entropy models see
(inter alia) Chen and Rosenfeld (2000), Goodman (2004), and Dudı́k and Schapire
(2006).

Although the second part of this chapter focused on MaxEnt-style classification,
numerous other approaches to classification are used throughout speech and language
processing. Naive Bayes (Duda et al., 2000) is often employed as a good baseline
method (often yielding results that are sufficiently good for practical use); we’ll cover
naive Bayes in Ch. 20. Support Vector Machines (Vapnik, 1995) have been successfully
used in text classification and in a wide variety of sequence processing applications.
Decision lists have been widely used in word sense discrimination, and decision trees
(Breiman et al., 1984; Quinlan, 1986) have been used in many applications in speech
processing. Good references to supervised machine learning approaches to classifica-

2 Seven is pretty remarkable, but see page?? for a discussion of the prevalence of multiple discovery.
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tion include Duda et al. (2000), Hastie et al. (2001), and Witten and Frank (2005).
Maximum Entropy Markov Models (MEMMs) were introduced by Ratnaparkhi

(1996) and McCallum et al. (2000).
There are many sequence models that augment the MEMM, such asthe Condi-

tional Random Field (CRF) (Lafferty et al., 2001; Sutton and McCallum, 2006). InCONDITIONAL
RANDOM FIELD

CRF addition, there are various generalizations ofmaximum margin methods (the insights
that underlie SVM classifiers) to sequence tasks.
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7 PHONETICS

(Upon being asked by Director George Cukor to teach Rex Harrison, the star of the 1964

film ”My Fair Lady”, how to behave like a phonetician:)

“My immediate answer was, ‘I don’t have a singing butler and three maids
who sing, but I will tell you what I can as an assistant professor.’”

Peter Ladefoged, quoted in his obituary, LA Times, 2004

The debate between the “whole language” and “phonics” methods of teaching read-
ing to children seems at very glance like a purely modern educational debate. Like
many modern debates, however, this one recapitulates an important historical dialec-
tic, in this case in writing systems. The earliest independently-invented writing sys-
tems (Sumerian, Chinese, Mayan) were mainly logographic: one symbol represented
a whole word. But from the earliest stages we can find, most such systems contain
elements of syllabic or phonemic writing systems, in which symbols are used to rep-
resent the sounds that make up the words. Thus the Sumerian symbol pronouncedba
and meaning “ration” could also function purely as the sound/ba/. Even modern Chi-
nese, which remains primarily logographic, uses sound-based characters to spell out
foreign words. Purely sound-based writing systems, whether syllabic (like Japanese
hiraganaor katakana), alphabetic (like the Roman alphabet used in this book), orcon-
sonantal (like Semitic writing systems), can generally be traced back to these early
logo-syllabic systems, often as two cultures came together. Thus the Arabic, Aramaic,
Hebrew, Greek, and Roman systems all derive from a West Semitic script that is pre-
sumed to have been modified by Western Semitic mercenaries from a cursive form of
Egyptian hieroglyphs. The Japanese syllabaries were modified from a cursive form of
a set of Chinese characters which were used to represent sounds. These Chinese char-
acters themselves were used in Chinese to phonetically represent the Sanskrit in the
Buddhist scriptures that were brought to China in the Tang dynasty.

Whatever its origins, the idea implicit in a sound-based writing system, that the
spoken word is composed of smaller units of speech, is the Ur-theory that underlies
all our modern theories ofphonology. This idea of decomposing speech and words
into smaller units also underlies the modern algorithms forspeech recognition(tran-
scrbining acoustic waveforms into strings of text words) and speech synthesisor text-
to-speech(converting strings of text words into acoustic waveforms).
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In this chapter we introducephoneticsfrom a computational perspective. Phonetics
is the study of linguistic sounds, how they are produced by the articulators of the human
vocal tract, how they are realized acoustically, and how this acoustic realization can be
digitized and processed.

We begin with a key element of both speech recognition and text-to-speech sys-
tems: how words are pronounced in terms of individual speechunits calledphones. A
speech recognition system needs to have a pronunciation forevery word it can recog-
nize, and a text-to-speech system needs to have a pronunciation for every word it can
say. The first section of this chapter will introducephonetic alphabetsfor describing
these pronunciations. We then introduce the two main areas of phonetics,articulatory
phonetics, the study of how speech sounds are produced by articulatorsin the mouth,
andacoustic phonetics, the study of the acoustic analysis of speech sounds.

We also briefly touch onphonology, the area of linguistics that describes the sys-
tematic way that sounds are differently realized in different environments, and how
this system of sounds is related to the rest of the grammar. Indoing so we focus on
the crucial fact ofvariation in modeling speech; phones are pronounced differently in
different contexts.

7.1 SPEECHSOUNDS AND PHONETIC TRANSCRIPTION

The study of the pronunciation of words is part of the field ofphonetics, the study ofPHONETICS

the speech sounds used in the languages of the world. We modelthe pronunciation of a
word as a string of symbols which representphonesor segments. A phone is a speechPHONES

sound; phones are represented with phonetic symbols that bear some resemblance to a
letter in an alphabetic language like English.

This section surveys the different phones of English, particularly American En-
glish, showing how they are produced and how they are represented symbolically. We
will be using two different alphabets for describing phones. The International Pho-
netic Alphabet (IPA ) is an evolving standard originally developed by the InternationalIPA

Phonetic Association in 1888 with the goal of transcribing the sounds of all human
languages. The IPA is not just an alphabet but also a set of principles for transcription,
which differ according to the needs of the transcription, sothe same utterance can be
transcribed in different ways all according to the principles of the IPA. The ARPAbet
(Shoup, 1980) is another phonetic alphabet, but one that is specifically designed for
American English and which uses ASCII symbols; it can be thought of as a convenient
ASCII representation of an American-English subset of the IPA. ARPAbet symbols are
often used in applications where non-ASCII fonts are inconvenient, such as in on-line
pronunciation dictionaries. Because the ARPAbet is very common for computational
representations of pronunciations, we will rely on it rather than the IPA in the remain-
der of this book. Fig. 7.1 and Fig. 7.2 show the ARPAbet symbols for transcribing
consonants and vowels, respectively, together with their IPA equivalents.

1 The phone [ux] is rare in general American English and not generally used in speech systems. It is used
to represent the fronted [uw] which appeared in (at least) Western and Northern Cities dialects of Ameri-
can English starting in the late 1970s (Labov, 1994). This fronting was first called to public by imitations
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ARPAbet IPA ARPAbet
Symbol Symbol Word Transcription
[p] [p] parsley [p aa r s l iy]
[t] [t] t ea [t iy]
[k] [k] c ook [k uh k]
[b] [b] bay [b ey]
[d] [d] dill [d ih l]
[g] [g] garlic [g aa r l ix k]
[m] [m] mint [m ih n t]
[n] [n] nutmeg [n ah t m eh g]
[ng] [N] baking [b ey k ix ng]
[f] [f] f lour [f l aw axr]
[v] [v] clov e [k l ow v]
[th] [T] thick [th ih k]
[dh] [D] those [dh ow z]
[s] [s] soup [s uw p]
[z] [z] eggs [eh g z]
[sh] [S] squash [s k w aa sh]
[zh] [Z] ambrosia [ae m b r ow zh ax]
[ch] [tS] cherry [ch eh r iy]
[jh] [dZ] jar [jh aa r]
[l] [l] l icorice [l ih k axr ix sh]
[w] [w] kiw i [k iy w iy]
[r] [r] r ice [r ay s]
[y] [j] y ellow [y eh l ow]
[h] [h] honey [h ah n iy]

Less commonly used phones and allophones
[q] [P] uh-oh [q ah q ow]
[dx] [ R] butter [b ah dx axr ]
[nx] [ R̃] winner [w ih nx axr]
[el] [l

"
] table [t ey b el]

Figure 7.1 ARPAbet symbols for transcription of English consonants, with IPA equiv-
alents. Note that some rarer symbols like the flap [dx], nasalflap [nx], glottal stop [q] and
the syllabic consonants, are used mainly for narrow transcriptions.

Many of the IPA and ARPAbet symbols are equivalent to the Roman letters used
in the orthography of English and many other languages. So for example the ARPA-
bet phone[p] represents the consonant sound at the beginning ofplatypus, puma, and
pachyderm, the middle ofleopard, or the end ofantelope. In general, however, the
mapping between the letters of English orthography and phones is relativelyopaque;
a single letter can represent very different sounds in different contexts. The English
letter c corresponds to phone [k] incougar [k uw g axr], but phone [s] incell [s eh

and recordings of ‘Valley Girls’ speech by Moon Zappa (Zappaand Zappa, 1982). Nevertheless, for most
speakers [uw] is still much more common than [ux] in words like dude.
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ARPAbet IPA ARPAbet
Symbol Symbol Word Transcription
[iy] [i] lily [l ih l iy]
[ih] [I] li ly [l ih l iy]
[ey] [eI] daisy [d ey z iy]
[eh] [E] pen [p eh n]
[ae] [æ] aster [ae s t axr]
[aa] [A] poppy [p aa p iy]
[ao] [O] orchid [ao r k ix d]
[uh] [U] wood [w uh d]
[ow] [oU] lotus [l ow dx ax s]
[uw] [u] tulip [t uw l ix p]
[ah] [2] buttercup [b ah dx axr k ah p]
[er] [Ç] bird [b er d]
[ay] [aI] iris [ay r ix s]
[aw] [aU] sunflower [s ah n f l aw axr]
[oy] [oI] soil [s oy l]

Reduced and uncommon phones
[ax] [@] lotus [l ow dx ax s]
[axr] [Ä] heather [h eh dh axr]
[ix] [1] tulip [t uw l ix p]
[ux] [0] dude1 [d ux d]

Figure 7.2 ARPAbet symbols for transcription of English vowels, with IPA equivalents.
Note again the list of rarer phones and reduced vowels (see Sec. 7.2.4); for example [ax] is
the reduced vowel schwa, [ix] is the reduced vowel corresponding to [ih], and [axr] is the
reduced vowel corresponding to [er].

l]. Besides appearing asc andk, the phone [k] can appear as part ofx (fox [f aa k s]),
asck (jackal [jh ae k el] and ascc (raccoon[r ae k uw n]). Many other languages,
for example Spanish, are much moretransparent in their sound-orthography mapping
than English.

7.2 ARTICULATORY PHONETICS

The list of ARPAbet phones is useless without an understanding of how each phone
is produced. We thus turn toarticulatory phonetics, the study of how phones areARTICULATORY

PHONETICS

produced, as the various organs in the mouth, throat, and nose modify the airflow from
the lungs.

7.2.1 The Vocal Organs

Sound is produced by the rapid movement of air. Most sounds inhuman spoken lan-
guages are produced by expelling air from the lungs through the windpipe (techni-
cally thetrachea) and then out the mouth or nose. As it passes through the trachea,
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Figure 7.3 The vocal organs, shown in side view. Drawing by Laszlo Kubinyi from
Sundberg (1977),c©Scientific American, used by permission.

the air passes through thelarynx , commonly known as the Adam’s apple or voice-
box. The larynx contains two small folds of muscle, thevocal folds (often referred
to non-technically as thevocal cords) which can be moved together or apart. The
space between these two folds is called theglottis. If the folds are close together (butGLOTTIS

not tightly closed), they will vibrate as air passes throughthem; if they are far apart,
they won’t vibrate. Sounds made with the vocal folds together and vibrating are called
voiced; sounds made without this vocal cord vibration are calledunvoicedor voice-VOICED

UNVOICED less. Voiced sounds include [b], [d], [g], [v], [z], and all the English vowels, among
VOICELESS others. Unvoiced sounds include [p], [t], [k], [f], [s], andothers.

The area above the trachea is called thevocal tract, and consists of theoral tract
and thenasal tract. After the air leaves the trachea, it can exit the body through the
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mouth or the nose. Most sounds are made by air passing throughthe mouth. Sounds
made by air passing through the nose are callednasal sounds; nasal sounds use bothNASAL SOUNDS

the oral and nasal tracts as resonating cavities; English nasal sounds includem, andn,
andng.

Phones are divided into two main classes:consonantsandvowels. Both kinds ofCONSONANTS

VOWELS sounds are formed by the motion of air through the mouth, throat or nose. Consonants
are made by restricting or blocking the airflow in some way, and may be voiced or
unvoiced. Vowels have less obstruction, are usually voiced, and are generally louder
and longer-lasting than consonants. The technical use of these terms is much like the
common usage; [p], [b], [t], [d], [k], [g], [f], [v], [s], [z], [r], [l], etc., are consonants;
[aa], [ae], [ao], [ih], [aw], [ow], [uw], etc., are vowels.Semivowels(such as [y] and
[w]) have some of the properties of both; they are voiced likevowels, but they are short
and less syllabic like consonants.

7.2.2 Consonants: Place of Articulation

Because consonants are made by restricting the airflow in some way, consonants can
be distinguished by where this restriction is made: the point of maximum restriction
is called theplace of articulation of a consonant. Places of articulation, shown inPLACE

Fig. 7.4, are often used in automatic speech recognition as auseful way of grouping
phones together into equivalence classes:

dental
palatal alveolar

bilabialvelar

glottal

(nasal  tract)

Figure 7.4 Major English places of articulation.

labial: Consonants whose main restriction is formed by the two lips coming togetherLABIAL

have abilabial place of articulation. In English these include [p] as inpossum,
[b] as inbear, and [m] as inmarmot. The Englishlabiodental consonants [v]
and [f] are made by pressing the bottom lip against the upper row of teeth and
letting the air flow through the space in the upper teeth.

dental: Sounds that are made by placing the tongue against the teeth are dentals. TheDENTAL

main dentals in English are the [th] ofthing or the [dh] of though, which are
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made by placing the tongue behind the teeth with the tip slightly between the
teeth.

alveolar: The alveolar ridge is the portion of the roof of the mouth justbehind theALVEOLAR

upper teeth. Most speakers of American English make the phones [s], [z], [t],
and [d] by placing the tip of the tongue against the alveolar ridge. The word
coronal is often used to refer to both dental and alveolar.CORONAL

palatal: The roof of the mouth (thepalate) rises sharply from the back of the alveolarPALATAL

PALATE ridge. Thepalato-alveolarsounds [sh] (shrimp), [ch] (china), [zh] (Asian), and
[jh] ( jar) are made with the blade of the tongue against this rising back of the
alveolar ridge. The palatal sound [y] ofyak is made by placing the front of the
tongue up close to the palate.

velar: The velum or soft palate is a movable muscular flap at the very back of theVELAR

VELUM roof of the mouth. The sounds [k] (cuckoo), [g] (goose), and[N] (kingfisher) are
made by pressing the back of the tongue up against the velum.

glottal: The glottal stop [q] (IPA[P]) is made by closing the glottis (by bringing theGLOTTAL

vocal folds together).

7.2.3 Consonants: Manner of Articulation

Consonants are also distinguished byhowthe restriction in airflow is made, for example
whether there is a complete stoppage of air, or only a partialblockage, etc. This feature
is called themanner of articulation of a consonant. The combination of place andMANNER

manner of articulation is usually sufficient to uniquely identify a consonant. Following
are the major manners of articulation for English consonants:

A stop is a consonant in which airflow is completely blocked for a short time.STOP

This blockage is followed by an explosive sound as the air is released. The period
of blockage is called theclosureand the explosion is called therelease. English has
voiced stops like [b], [d], and [g] as well as unvoiced stops like [p], [t], and [k]. Stops
are also calledplosives. Some computational systems use a more narrow (detailed)
transcription style that has separate labels for the closure and release parts of a stop. In
one version of the ARPAbet, for example, the closure of a [p],[t], or [k] is represented
as [pcl], [tcl], or [kcl] (respectively), while the symbols[p], [t], and [k] are used to
mean only the release portion of the stop. In another versionthe symbols [pd], [td],
[kd], [bd], [dd], [gd] are used to mean unreleased stops (stops at the end of words or
phrases often are missing the explosive release), while [p], [t], [k], etc are used to mean
normal stops with a closure and a release. The IPA uses a special symbol to mark
unreleased stops:[p^], [t ^], or [k^]. We will not be using these narrow transcription
styles in this chapter; we will always use [p] to mean a full stop with both a closure and
a release.

Thenasalsounds [n], [m], and [ng] are made by lowering the velum and allowingNASAL

air to pass into the nasal cavity.
In fricatives, airflow is constricted but not cut off completely. The turbulent air-FRICATIVES

flow that results from the constriction produces a characteristic “hissing” sound. The
English labiodental fricatives [f] and [v] are produced by pressing the lower lip against
the upper teeth, allowing a restricted airflow between the upper teeth. The dental frica-
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tives [th] and [dh] allow air to flow around the tongue betweenthe teeth. The alveolar
fricatives [s] and [z] are produced with the tongue against the alveolar ridge, forcing air
over the edge of the teeth. In the palato-alveolar fricatives [sh] and [zh] the tongue is at
the back of the alveolar ridge forcing air through a groove formed in the tongue. The
higher-pitched fricatives (in English [s], [z], [sh] and [zh] are calledsibilants. StopsSIBILANTS

that are followed immediately by fricatives are calledaffricates; these include English
[ch] (chicken) and [jh] (giraffe).

In approximants, the two articulators are close together but not close enough toAPPROXIMANTS

cause turbulent airflow. In English [y] (yellow), the tongue moves close to the roof
of the mouth but not close enough to cause the turbulence thatwould characterize
a fricative. In English [w] (wood), the back of the tongue comes close to the velum.
American [r] can be formed in at least two ways; with just the tip of the tongue extended
and close to the palate or with the whole tongue bunched up near the palate. [l] is
formed with the tip of the tongue up against the alveolar ridge or the teeth, with one
or both sides of the tongue lowered to allow air to flow over it.[l] is called a lateral
sound because of the drop in the sides of the tongue.

A tap or flap [dx] (or IPA [R]) is a quick motion of the tongue against the alveolarTAP

FLAP ridge. The consonant in the middle of the wordlotus ([l ow dx ax s]) is a tap in most
dialects of American English; speakers of many UK dialects would use a [t] instead of
a tap in this word.

7.2.4 Vowels

Like consonants, vowels can be characterized by the position of the articulators as they
are made. The three most relevant parameters for vowels are what is called vowel
height, which correlates roughly with the height of the highest part of the tongue,
vowel frontness or backness, which indicates whether this high point is toward the
front or back of the oral tract, and the shape of the lips (rounded or not). Fig. 7.5
shows the position of the tongue for different vowels.

heed [iy] had [ae] who’d [uw]

nasal  tract

palate

tongue
closed
velum

Figure 7.5 Positions of the tongue for three English vowels, high front[iy], low front
[ae] and high back[uw]; tongue positions modeled after Ladefoged (1996).

In the vowel [iy], for example, the highest point of the tongue is toward the front
of the mouth. In the vowel [uw], by contrast, the high-point of the tongue is located
toward the back of the mouth. Vowels in which the tongue is raised toward the front
are calledfront vowels; those in which the tongue is raised toward the back are calledFRONT



DRAFT

Section 7.2. Articulatory Phonetics 9

back vowels. Note that while both [ih] and [eh] are front vowels, the tongue is higherBACK

for [ih] than for [eh]. Vowels in which the highest point of the tongue is comparatively
high are calledhigh vowels; vowels with mid or low values of maximum tongue heightHIGH

are calledmid vowelsor low vowels, respectively.

high

front back

ae

low

iy

ih

y uw uw

uh

aw

aa

ey
axoy

ay
eh

ow

ao
uh

Figure 7.6 Qualities of English vowels (after Ladefoged (1993)).

Fig. 7.6 shows a schematic characterization of the vowel height of different vowels.
It is schematic because the abstract propertyheight only correlates roughly with actual
tongue positions; it is in fact a more accurate reflection of acoustic facts. Note that
the chart has two kinds of vowels: those in which tongue height is represented as a
point and those in which it is represented as a vector. A vowelin which the tongue
position changes markedly during the production of the vowel is adiphthong. EnglishDIPHTHONG

is particularly rich in diphthongs.
The second important articulatory dimension for vowels is the shape of the lips.

Certain vowels are pronounced with the lips rounded (the same lip shape used for
whistling). Theserounded vowels include [uw], [ao], and [ow].ROUNDED

Syllables

Consonants and vowels combine to make asyllable. There is no completely agreed-SYLLABLE

upon definition of a syllable; roughly speaking a syllable isa vowel-like (orsonorant)
sound together with some of the surrounding consonants thatare most closely associ-
ated with it. The worddoghas one syllable, [d aa g], while the wordcatniphas two
syllables, [k ae t] and [n ih p], We call the vowel at the core ofa syllable thenucleus.NUCLEUS

The optional initial consonant or set of consonants is called theonset. If the onset hasONSET

more than one consonant (as in the wordstrike [s t r ay k]), we say it has acomplex
onset. Thecoda. is the optional consonant or sequence of consonants following theCODA

nucleus. Thus [d] is the onset ofdog, while [g] is the coda. Therime. or rhyme. is theRIME

RHYME nucleus plus coda. Fig. 7.7 shows some sample syllable structures.
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σ

Onset

h

Rime

Nucleus

ae

Coda

m

σ

Onset

g r

Rime

Nucleus

iy

Coda

n

σ

Rime

Nucleus

eh

Coda

g z

Figure 7.7 Syllable structure ofham, green, eggs. σ=syllable.

The task of automatically breaking up a word into syllables is calledsyllabifica-
tion, and will be discussed in Sec.??.SYLLABIFICATION

Syllable structure is also closely related to thephonotacticsof a language. The
termphonotacticsmeans the constraints on which phones can follow each other in aPHONOTACTICS

language. For example, English has strong constraints on what kinds of consonants
can appear together in an onset; the sequence [zdr], for example, cannot be a legal
English syllable onset. Phonotactics can be represented bylisting constraints on fillers
of syllable positions, or by creating a finite-state model ofpossible phone sequences.
It is also possible to create a probabilistic phonotactics,by trainingN-gram grammars
on phone sequences.

Lexical Stress and Schwa

In a natural sentence of American English, certain syllables are moreprominent than
others. These are calledaccentedsyllables, and the linguistic marker associated withACCENTED

this prominence is called apitch accent. Words or syllables which are prominentPITCH ACCENT

are said tobear (be associated with) a pitch accent. Pitch accent is also sometimesBEAR

referred to assentence stress, although sentence stress can instead refer to only the
most prominent accent in a sentence.

Accented syllables may be prominent by being louder, longer, by being associ-
ated with a pitch movement, or by any combination of the above. Since accent plays
important roles in meaning, understanding exactly why a speaker chooses to accent a
particular syllable is very complex, and we will return to this in detail in Sec.??. But
one important factor in accent is often represented in pronunciation dictionaries. This
factor is calledlexical stress. The syllable that has lexical stress is the one that will beLEXICAL STRESS

louder or longer if the word is accented. For example the wordparsleyis stressed in
its first syllable, not its second. Thus if the wordparsleyreceives a pitch accent in a
sentence, it is the first syllable that will be stronger.

In IPA we write the symbol["] before a syllable to indicate that it has lexical stress
(e.g. ["par.sli]). This difference in lexical stress can affect the meaning of a word. For
example the wordcontentcan be a noun or an adjective. When pronounced in isolation
the two senses are pronounced differently since they have different stressed syllables
(the noun is pronounced["kAn.tEnt] and the adjective[k@n."tEnt]).

Vowels which are unstressed can be weakened even further toreduced vowels. TheREDUCED VOWELS

most common reduced vowel isschwa([ax]). Reduced vowels in English don’t haveSCHWA

their full form; the articulatory gesture isn’t as completeas for a full vowel. As a result
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the shape of the mouth is somewhat neutral; the tongue is neither particularly high nor
particularly low. For example the second vowel inparakeetis a schwa: [p ae r ax k iy
t].

While schwa is the most common reduced vowel, it is not the only one, at least not
in some dialects. Bolinger (1981) proposed that American English had three reduced
vowels: a reduced mid vowel[@], a reduced front vowel[1], and a reduced rounded
vowel [8]. The full ARPAbet includes two of these, the schwa [ax] and [ix] ([1]), as
well as [axr] which is an r-colored schwa (often calledschwar), although [ix] is gener-
ally dropped in computational applications (Miller, 1998), and [ax] and [ix] are falling
together in many dialects of English Wells (1982, p. 167–168).

Not all unstressed vowels are reduced; any vowel, and diphthongs in particular can
retain their full quality even in unstressed position. For example the vowel [iy] can
appear in stressed position as in the wordeat[iy t] or in unstressed position in the word
carry [k ae r iy].

Some computational ARPAbet lexicons mark reduced vowels like schwa explic-
itly. But in general predicting reduction requires knowledge of things outside the lex-
icon (the prosodic context, rate of speech, etc, as we will see the next section). Thus
other ARPAbet versions mark stress but don’t mark how stressaffects reduction. The
CMU dictionary (CMU, 1993), for example, marks each vowel with the number 0 (un-
stressed) 1 (stressed), or 2 (secondary stress). Thus the word counteris listed as [K
AW1 N T ER0], and the wordtableas [T EY1 B AH0 L].Secondary stressis definedSECONDARY STRESS

as a level of stress lower than primary stress, but higher than an unstressed vowel, as in
the worddictionary[D IH1 K SH AH0 N EH2 R IY0]

We have mentioned a number of potential levels ofprominence: accented, stressed,PROMINENCE

secondary stress, full vowel, and reduced vowel. It is stillan open research question
exactly how many levels are appropriate. Very few computational systems make use of
all five of these levels, most using between one and three. We return to this discussion
when we introduce prosody in more detail in Sec.??.

7.3 PHONOLOGICAL CATEGORIES ANDPRONUNCIATION VARIATION

’Scuse me, while I kiss the sky
Jimi Hendrix,Purple Haze

’Scuse me, while I kiss this guy
Common mis-hearing of same lyrics

If each word was pronounced with a fixed string of phones, eachof which was
pronounced the same in all contexts and by all speakers, the speech recognition and
speech synthesis tasks would be really easy. Alas, the realization of words and phones
varies massively depending on many factors. Fig. 7.8 shows asample of the wide
variation in pronunciation in the wordsbecauseandaboutfrom the hand-transcribed
Switchboard corpus of American English telephone conversations (Greenberg et al.,
1996).

How can we model and predict this extensive variation? One useful tool is the
assumption that what is mentally represented in the speaker’s mind are abstract cate-
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because about
ARPAbet % ARPAbet % ARPAbet % ARPAbet %
b iy k ah z 27% k s 2% ax b aw 32% b ae 3%
b ix k ah z 14% k ix z 2% ax b aw t 16% b aw t 3%
k ah z 7% k ih z 2% b aw 9% ax b aw dx 3%
k ax z 5% b iy k ah zh 2% ix b aw 8% ax b ae 3%
b ix k ax z 4% b iy k ah s 2% ix b aw t 5% b aa 3%
b ih k ah z 3% b iy k ah 2% ix b ae 4% b ae dx 3%
b ax k ah z 3% b iy k aa z 2% ax b ae dx 3% ix b aw dx 2%
k uh z 2% ax z 2% b aw dx 3% ix b aa t 2%

Figure 7.8 The 16 most common pronunciations ofbecauseandaboutfrom the hand-
transcribed Switchboard corpus of American English conversational telephone speech
(Godfrey et al., 1992; Greenberg et al., 1996).

gories rather than phones in all their gory phonetic detail.For example consider the
different pronunciations of [t] in the wordstunafishandstarfish. The [t] of tunafish
is aspirated. Aspiration is a period of voicelessness after a stop closure and before
the onset of voicing of the following vowel. Since the vocal cords are not vibrating,
aspiration sounds like a puff of air after the [t] and before the vowel. By contrast, a
[t] following an initial [s] is unaspirated; thus the [t] instarfish([s t aa r f ih sh])UNASPIRATED

has no period of voicelessness after the [t] closure. This variation in the realization of
[t] is predictable: whenever a [t] begins a word or unreducedsyllable in English, it is
aspirated. The same variation occurs for [k]; the [k] ofskyis often mis-heard as [g] in
Jimi Hendrix’s lyrics because [k] and [g] are both unaspirated.2

There are other contextual variants of [t]. For example, when [t] occurs between
two vowels, particularly when the first is stressed, it is often pronounced as atap.
Recall that a tap is a voiced sound in which the top of the tongue is curled up and
back and struck quickly against the alveolar ridge. Thus theword buttercupis usually
pronounced [b ah dx axr k uh p] rather than [b ah t axr k uh p]. Another variant of
[t] occurs before the dental consonant [th]. Here the [t] becomes dentalized (IPA[t”]).
That is, instead of the tongue forming a closure against the alveolar ridge, the tongue
touches the back of the teeth.

In both linguistics and in speech processing, we use abstract classes to capture the
similarity among all these [t]s. The simplest abstract class is called thephoneme, andPHONEME

its different surface realizations in different contexts are calledallophones. We tradi-ALLOPHONES

tionally write phonemes inside slashes. So in the above examples,/t/ is a phoneme
whose allophones include (in IPA)[th], [R], and [t”]. Fig. 7.9 summarizes a number
of allophones of /t/. In speech synthesis and recognition, we use phonesets like the
ARPAbet to approximate this idea of abstract phoneme units,and represent pronuncia-
tion lexicons using ARPAbet phones. For this reason, the allophones listed in Fig. 7.1
tend to be used for narrow transcriptions for analysis purposes, and less often used in
speech recognition or synthesis systems.

2 The ARPAbet does not have a way of marking aspiration; in the IPA aspiration is marked as[h], so in IPA
the wordtunafishwould be transcribed[thun@fIS].
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IPA ARPABet Description Environment Example
th [t] aspirated in initial position toucan
t unaspirated after [s] or in reduced syllables starfish
P [q] glottal stop word-finally or after vowel before [n] kitten
Pt [qt] glottal stop t sometimes word-finally cat
R [dx] tap between vowels butter
t ^ [tcl] unreleased t before consonants or word-finally fruitcake
t” dental t before dental consonants ([T]) eighth

deleted t sometimes word-finally past

Figure 7.9 Some allophones of /t/ in General American English.

Variation is even more common than Fig. 7.9 suggests. One factor influencing vari-
ation is that the more natural and colloquial speech becomes, and the faster the speaker
talks, the more the sounds are shortened, reduced and generally run together. This phe-
nomena is known asreduction or hypoarticulation . For exampleassimilation is theREDUCTION

HYPOARTICULATION

ASSIMILATION

change in a segment to make it more like a neighboring segment. The dentalization
of [t] to ([t”]) before the dental consonant[T] is an example of assimilation. A com-
mon type of assimilation cross-linguistically ispalatalization, when the constrictionPALATALIZATION

for a segment moves closer to the palate than it normally would, because the following
segment is palatal or alveolo-palatal. In the most common cases, /s/ becomes [sh], /z/
becomes [zh], /t/ becomes [ch] and /d/ becomes [jh], We saw one case of palatalization
in Fig. 7.8 in the pronunciation ofbecauseas [b iy k ah zh], because the following
word wasyou’ve. The lemmayou(you, your, you’ve, andyou’d) is extremely likely to
cause palatalization in the Switchboard corpus.

Deletion is quite common in English speech. We saw examples of deletion of finalDELETION

/t/ above, in the wordsaboutand it. Deletion of final /t/ and /d/ has been extensively
studied./d/ is more likely to be deleted than/t/, and both are more likely to be deleted
before a consonant (Labov, 1972). Fig. 7.10 shows examples of palatalization and final
t/d deletion from the Switchboard corpus.

Palatalization Final t/d Deletion
Phrase Lexical Reduced Phrase Lexical Reduced

set your s eh t y ow r s eh ch er find him f ay n d h ih m f ay n ix m
not yet n aa t y eh t n aa ch eh t and we ae n d w iy eh n w iy
did you d ih d y uw d ih jh y ah draft the d r ae f t dh iy d r ae f dh iy

Figure 7.10 Examples of palatalization and final t/d/ deletion from the Switchboard
corpus. Some of the t/d examples may have glottalization instead of being completely
deleted.

7.3.1 Phonetic Features

The phoneme gives us only a very gross way to model contextualeffects. Many of
the phonetic processes like assimilation and deletion are best modeled by more fine-
grained articulatory facts about the neighboring context.Fig. 7.10 showed that /t/ and
/d/ were deleted before [h], [dh], and [w]; rather than list all the possible following
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phones which could influence deletion, we’d like to generalize that /t/ often deletes
“before consonants”. Similarly, flapping can be viewed as a kind of voicing assimi-
lation, in which unvoiced /t/ becomes a voiced tap [dx] in between voiced vowels or
glides. Rather than list every possible vowel or glide, we’dlike to say that flapping hap-
pens ‘near vowels or voiced segments’. Finally, vowels thatprecede nasal sounds [n],
[m], and [ng], often acquire some of the nasal quality of the following vowel. In each of
these cases, a phone is influenced by the articulation of the neighboring phones (nasal,
consonantal, voiced). The reason these changes happen is that the movement of the
speech articulators (tongue, lips, velum) during speech production is continuous and is
subject to physical constraints like momentum. Thus an articulator may start moving
during one phone to get into place in time for the next phone. When the realization
of a phone is influenced by the articulatory movement of neighboring phones, we say
it is influenced bycoarticulation. Coarticulation is the movement of articulators toCOARTICULATION

anticipate the next sound, or perseverating movement from the last sound.
We can capture generalizations about the different phones that cause coarticulation

by usingdistinctive features. Features are (generally) binary variables which expressDISTINCTIVE
FEATURES

some generalizations about groups of phonemes. For examplethe feature [voice] is true
of the voiced sounds (vowels, [n], [v], [b], etc); we say theyare [+voice] while unvoiced
sounds are [-voice]. These articulatory features can draw on the articulatory ideas of
placeandmanner that we described earlier. Commonplacefeatures include [+labial]
([p, b, m]), [+coronal] ([ch d dh jh l n r s sh t th z zh]), and [+dorsal]. Manner features
include [+consonantal] (or alternatively [+vocalic]), [+continuant], [+sonorant]. For
vowels, features include [+high], [+low], [+back], [+round] and so on. Distinctive fea-
tures are used to represent each phoneme as a matrix of feature values. Many different
sets of distinctive features exist; probably any of these are perfectly adequate for most
computational purposes. Fig. 7.11 shows the values for somephones from one partial
set of features.

syl son cons strident nasal high back round tense voice labial coronal dorsal
b - - + - - - - + + + + - -
p - - + - - - - - + - + - -
iy + + - - - + - - - + - - -

Figure 7.11 Some partial feature matrices for phones, values simplifiedfrom Chomsky
and Halle (1968).Syl is short for syllabic;sonfor sonorant, andconsfor consonantal.

One main use of these distinctive features is in capturing natural articulatory classes
of phones. In both synthesis and recognition, as we will see,we often need to build
models of how a phone behaves in a certain context. But we rarely have enough data
to model the interaction of every possible left and right context phone on the behavior
of a phone. For this reason we can use the relevant feature ([voice], [nasal], etc) as
a useful model of the context; the feature functions as a kindof backoff model of the
phone. Another use in speech recognition is to build articulatory feature detectors and
use them to help in the task of phone detection; for example Kirchhoff et al. (2002)
built neural-net detectors for the following set of multi-valued articulatory features and
used them to improve the detection of phones in German speechrecognition:
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Feature Values Feature Value
voicing +voice, -voice, silence manner stop, vowel, lateral, nasal, fricative, silence
cplace labial, coronal, palatal, velarvplace glottal, high, mid, low, silence
front-back front, back, nil, silence rounding +round, -round, nil, silence

7.3.2 Predicting Phonetic Variation

For speech synthesis as well as recognition, we need to be able to represent the rela-
tion between the abstract category and its surface appearance, and predict the surface
appearance from the abstract category and the context of theutterance. In early work
in phonology, the relationship between a phoneme and its allophones was captured by
writing a phonological rule. Here is the phonological rule for flapping in the tradi-
tional notation of Chomsky and Halle (1968):

/{

t
d

}/

→ [dx] / V́ V(7.1)

In this notation, the surface allophone appears to the rightof the arrow, and the pho-
netic environment is indicated by the symbols surrounding the underbar ( ). Simple
rules like these are used in both speech recognition and synthesis when we want to
generate many pronunciations for a word; in speech recognition this is often used as a
first step toward picking the most likely single pronunciation for a word (see Sec.??).

In general, however, there are two reasons why these simple ‘Chomsky-Halle’-type
rules don’t do well at telling uswhena given surface variant is likely to be used. First,
variation is a stochastic process; flapping sometimes occurs, and sometimes doesn’t,
even in the same environment. Second, many factors that are not related to the phonetic
environment are important to this prediction task. Thus linguistic research and speech
recognition/synthesis both rely on statistical tools to predict the surface form of a word
by showing which factors cause, e.g., a particular /t/ to flapin a particular context.

7.3.3 Factors Influencing Phonetic Variation

One important factor that influences phonetic variation is the rate of speech, gener-RATE OF SPEECH

ally measured in syllables per second. Rate of speech variesboth across and within
speakers. Many kinds of phonetic reduction processes are much more common in fast
speech, including flapping, is vowel reduction, and final /t/and /d/ deletion (Wolfram,
1969). Measuring syllables per second (or words per second)can be done with a tran-
scription (by counting the number of words or syllables in the transcription of a region
and dividing by the number of seconds), or by using signal-processing metrics (Morgan
and Fosler-Lussier, 1989). Another factor affecting variation is word frequency or pre-
dictability. Final /t/ and /d/ deletion is particularly likely to happen in words which are
very frequent likeandandjust (Labov, 1975; Neu, 1980). Deletion is also more likely
when the two words surrounding the segment are a collocation(Bybee, 2000; Gregory
et al., 1999; Zwicky, 1972). The phone [t] is more likely to bepalatalized in frequent
words and phrases. Words with higher conditional probability given the previous word
are more likely to have reduced vowels, deleted consonants,and flapping (Bell et al.,
2003; Gregory et al., 1999).
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Other phonetic, phonological, and morphological factors affect variation as well.
For example /t/ is much more likely to flap than /d/; and there are complicated inter-
actions with syllable, foot, and word boundaries (Rhodes, 1992). As we will discuss
in Ch. 8, speech is broken up into units calledintonation phrasesor breath groups.
Words at the beginning or end of intonation phrases are longer and less likely to be
reduced. As for morphology, it turns out that deletion is less likely if the word-final
/t/ or /d/ is the English past tense ending (Guy, 1980). For example in Switchboard,
deletion is more likely in the wordaround(73% /d/-deletion) than in the wordturned
(30% /d/-deletion) even though the two words have similar frequencies.

Variation is also affected by the speaker’s state of mind. For example the wordthe
can be pronounced with a full vowel [dh iy] or reduced vowel [dh ax]. It is more likely
to be pronounced with the full vowel [iy] when the speaker is disfluent and having
“planning problems”; in general speakers are more likely touse a full vowel than a
reduced one if they don’t know what they are going to say next (Fox Tree and Clark,
1997; Bell et al., 2003; Keating et al., 1994).

Sociolinguistic factors like gender, class, anddialect also affect pronunciationSOCIOLINGUISTIC

DIALECT variation. North American English is often divided into eight dialect regions (North-
ern, Southern, New England, New York/Mid-Atlantic, North Midlands, South Mid-
lands, Western, Canadian). Southern dialect speakers use amonophthong or near-
monophthong [aa] or [ae] instead of a diphthong in some wordswith the vowel [ay].
In these dialectsrice is pronounced [r aa s].African-American Vernacular EnglishAFRICANAMERICAN

VERNACULAR
ENGLISH

(AAVE) shares many vowels with Southern American English, and also has individual
words with specific pronunciations such as [b ih d n ih s] forbusinessand [ae k s] for
ask. For older speakers or those not from the American West or Midwest, the words
caughtandcothave different vowels ([k ao t] and [k aa t] respectively). Young Ameri-
can speakers or those from the West pronounce the two wordscotandcaughtthe same;
the vowels [ao] and [aa] are usually not distinguished in these dialects except before
[r]. For speakers of most non-American and some American dialects of English (for
example Australian English), the wordsMary ([m ey r iy]), marry ([m ae r iy]) and
merry([m eh r iy]) are all pronounced differently. Most American speakers pronounce
all three of these words identically as ([m eh r iy]).

Other sociolinguistic differences are due toregister or style; a speaker might pro-REGISTER

STYLE nounce the same word differently depending on who they were talking to or what the
social situation is. One of the most well-studied examples of style-variation is the suf-
fix -ing (as in something), which can be pronounced [ih ng] or [ih n] (this is often
writtensomethin’). Most speakers use both forms; as Labov (1966) shows, they use [ih
ng] when they are being more formal, and [ih n] when more casual. Wald and Shopen
(1981) found that men are more likely to use the non-standardform [ih n] than women,
that both men and women are more likely to use more of the standard form [ih ng]
when the addressee is a women, and that men (but not women) tend to switch to [ih n]
when they are talking with friends.

Many of these results on predicting variation rely on logistic regression on phonetically-
transcribed corpora, a technique with a long history in the analysis of phonetic variation
(Cedergren and Sankoff, 1974), particularly using the VARBRUL and GOLDVARB
software (Rand and Sankoff, 1990).

Finally, the detailed acoustic realization of a particularphone is very strongly in-
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fluenced bycoarticulation with its neighboring phones. We will return to these fine-
grained phonetic details in the following chapters (Sec.??and Sec.??) after we intro-
duce acoustic phonetics.

7.4 ACOUSTICPHONETICS AND SIGNALS

We will begin with a brief introduction to the acoustic waveform and how it is digitized,
summarize the idea of frequency analysis and spectra. This will be an extremely brief
overview; the interested reader is encouraged to consult the references at the end of the
chapter.

7.4.1 Waves

Acoustic analysis is based on the sine and cosine functions.Fig. 7.12 shows a plot of a
sine wave, in particular the function:

y = A∗ sin(2π f t)(7.2)

where we have set the amplitude A to 1 and the frequencyf to 10 cycles per second.

Time (s)
0 0.5

–0.99

0.99

0

0 0.1 0.2 0.3 0.4 0.5

Figure 7.12 A sine wave with a frequency of 10 Hz and an amplitude of 1.

Recall from basic mathematics that two important characteristics of a wave are its
frequencyandamplitude. The frequency is the number of times a second that a waveFREQUENCY

AMPLITUDE repeats itself, i.e. the number ofcycles. We usually measure frequency incycles per
second. The signal in Fig. 7.12 repeats itself 5 times in .5 seconds,hence 10 cyclesCYCLES PER

SECOND

per second. Cycles per second are usually calledHertz (shortened toHz), so theHERTZ

frequency in Fig. 7.12 would be described as 10 Hz. Theamplitude A of a sine wave
is the maximum value on the Y axis.

Theperiod T of the wave is defined as the time it takes for one cycle to complete,PERIOD

defined as

T =
1
f

(7.3)

In Fig. 7.12 we can see that each cycle lasts a tenth of a second, henceT = .1
seconds.



DRAFT

18 Chapter 7. Phonetics

7.4.2 Speech Sound Waves

Let’s turn from hypothetical waves to sound waves. The inputto a speech recognizer,
like the input to the human ear, is a complex series of changesin air pressure. These
changes in air pressure obviously originate with the speaker, and are caused by the spe-
cific way that air passes through the glottis and out the oral or nasal cavities. We repre-
sent sound waves by plotting the change in air pressure over time. One metaphor which
sometimes helps in understanding these graphs is to imaginea vertical plate which is
blocking the air pressure waves (perhaps in a microphone in front of a speaker’s mouth,
or the eardrum in a hearer’s ear). The graph measures the amount of compressionor
rarefaction (uncompression) of the air molecules at this plate. Fig. 7.13 shows a short
segment of a waveform taken from the Switchboard corpus of telephone speech of the
vowel [iy] from someone saying “she just had a baby”.

Time (s)
0 0.03875

–0.01697

0.02283

0

Figure 7.13 A waveform of the vowel [iy] from an utterance to be shown in Fig. 7.17. They-axis shows the
level of air pressure above and below normal atmospheric pressure. Thex-axis shows time. Notice that the wave
repeats regularly.

Let’s explore how the digital representation of the sound wave shown in Fig. 7.13
would be constructed. The first step in processing speech is to convert the analog rep-
resentations (first air pressure, and then analog electric signals in a microphone), into a
digital signal. This process ofanalog-to-digital conversionhas two steps:samplingSAMPLING

andquantization. A signal is sampled by measuring its amplitude at a particular time;
thesampling rate is the number of samples taken per second. In order to accuratelySAMPLING RATE

measure a wave, it is necessary to have at least two samples ineach cycle: one mea-
suring the positive part of the wave and one measuring the negative part. More than
two samples per cycle increases the amplitude accuracy, butless than two samples
will cause the frequency of the wave to be completely missed.Thus the maximum
frequency wave that can be measured is one whose frequency ishalf the sample rate
(since every cycle needs two samples). This maximum frequency for a given sampling
rate is called theNyquist frequency. Most information in human speech is in frequen-NYQUIST

FREQUENCY

cies below 10,000 Hz; thus a 20,000 Hz sampling rate would be necessary for complete
accuracy. But telephone speech is filtered by the switching network, and only frequen-
cies less than 4,000 Hz are transmitted by telephones. Thus an 8,000 Hz sampling rate
is sufficient fortelephone-bandwidthspeech like the Switchboard corpus. A 16,000TELEPHONE

BANDWIDTH

Hz sampling rate (sometimes calledwideband) is often used for microphone speech.WIDEBAND

Even an 8,000 Hz sampling rate requires 8000 amplitude measurements for each
second of speech, and so it is important to store the amplitude measurement efficiently.
They are usually stored as integers, either 8-bit (values from -128–127) or 16 bit (values
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from -32768–32767). This process of representing real-valued numbers as integers is
calledquantization because there is a minimum granularity (the quantum size) and allQUANTIZATION

values which are closer together than this quantum size are represented identically.
Once data is quantized, it is stored in various formats. One parameter of these

formats is the sample rate and sample size discussed above; telephone speech is often
sampled at 8 kHz and stored as 8-bit samples, while microphone data is often sampled
at 16 kHz and stored as 16-bit samples. Another parameter of these formats is the
number ofchannels. For stereo data, or for two-party conversations, we can store bothCHANNELS

channels in the same file, or we can store them in separate files. A final parameter
is whether each sample is stored linearly or whether it is compressed. One common
compression format used for telephone speech isµ-law (often written u-law but still
pronounced mu-law). The intuition of log compression algorithms like µ-law is that
human hearing is more sensitive at small intensities than large ones; the log represents
small values with more faithfulness at the expense of more error on large values. The
linear (unlogged) values are generally referred to aslinear PCM values (PCM standsPCM

for Pulse Code Modulation, but never mind that). Here’s the equation for compressing
a linear PCM sample valuex to 8-bitµ-law, (whereµ=255 for 8 bits):

F(x) =
sgn(s) log(1+µ|s|)

log(1+µ)
(7.4)

There are a number of standard file formats for storing the resulting digitized wave-
file, such as Microsoft’s WAV, Apple AIFF and Sun AU, all of which have special
headers; simple headerless ‘raw’ files are also used. For example the .wav format is a
subset of Microsoft’s RIFF format for multimedia files; RIFFis a general format that
can represent a series of nested chunks of data and control information. Fig. 7.14 shows
a simple .wav file with a single data chunk together with its format chunk:

Figure 7.14 Microsoft wavefile header format, assuming simple file with one chunk.
Following this 44-byte header would be the data chunk.

7.4.3 Frequency and Amplitude; Pitch and Loudness

Sound waves, like all waves, can be described in terms of frequency, amplitude and
the other characteristics that we introduced earlier for pure sine waves. In sound waves
these are not quite as simple to measure as they were for sine waves. Let’s consider
frequency. Note in Fig. 7.13 that although not exactly a sine, that the wave is nonethe-
less periodic, and that there are 10 repetitions of the wave in the 38.75 milliseconds
(.03875 seconds) we have captured in the figure. Thus the frequency of this segment
of the wave is 10/.03875 or 258 Hz.
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Where does this periodic 258Hz wave come from? It comes from the speed of
vibration of the vocal folds; since the waveform in Fig. 7.13is from the vowel [iy], it
is voiced. Recall that voicing is caused by regular openingsand closing of the vocal
folds. When the vocal folds are open, air is pushing up through the lungs, creating a
region of high pressure. When the folds are closed, there is no pressure from the longs.
Thus when the vocal folds are vibrating, we expect to see regular peaks in amplitude of
the kind we see in Fig. 7.13, each major peak corresponding toan opening of the vocal
folds. The frequency of the vocal fold vibration, or the frequency of the complex wave,
is called thefundamental frequencyof the waveform, often abbreviatedF0. We canFUNDAMENTAL

FREQUENCY

F0 plot F0 over time in apitch track . Fig. 7.15 shows the pitch track of a short question,
PITCH TRACK “Three o’clock?” represented below the waveform. Note the rise inF0 at the end of the

question.

three o’clock

Time (s)
0 0.544375

0 Hz

500 Hz

Figure 7.15 Pitch track of the question “Three o’clock?”, shown below the wavefile.
Note the rise in F0 at the end of the question. Note the lack of pitch trace during the very
quiet part (the “o’” of “o’clock”; automatic pitch trackingis based on counting the pulses
in the voiced regions, and doesn’t work if there is no voicing(or insufficient sound at all).

The vertical axis in Fig. 7.13 measures the amount of air pressure variation; pres-
sure is force per unit area, measured in Pascals (Pa). A high value on the vertical axis
(a high amplitude) indicates that there is more air pressureat that point in time, a zero
value means there is normal (atmospheric) air pressure, while a negative value means
there is lower than normal air pressure (rarefaction).

In addition to this value of the amplitude at any point in time, we also often need
to know the average amplitude over some time range, to give ussome idea of how
great the average displacement of air pressure is. But we can’t just take the average
of the amplitude values over a range; the positive and negative values would (mostly)
cancel out, leaving us with a number close to zero. Instead, we generally use the RMS
(root-mean-square) amplitude, which squares each number before averaging (making
it positive), and then takes the square root at the end.
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RMS amplitudeNi=1 =

√

N

∑
i=1

x2
i

N
(7.5)

Thepower of the signal is related to the square of the amplitude. If thenumber ofPOWER

samples of a sound isN, the power is

Power=
1
N

n

∑
i=1

x[i]2(7.6)

Rather than power, we more often refer to theintensity of the sound, which nor-INTENSITY

malizes the power to the human auditory threshold, and is measured in dB. IfP0 is the
auditory threshold pressure = 2×10−5Pa then intensity is defined as follows:

Intensity= 10log10
1

NP0

n

∑
i=1

x2
i(7.7)

Fig. 7.16 shows an intensity plot for the sentence “Is it a long movie?” from the
CallHome corpus, again shown below the waveform plot.

is it a long movie?

Time (s)
0 1.1675

Figure 7.16 Intensity plot for the sentence “Is it a long movie?”. Note the intensity
peaks at each vowel, and the especially high peak for the wordlong.

Two important perceptual properties,pitch andloudness, are related to frequency
and intensity. Thepitch of a sound is the mental sensation or perceptual correlate ofPITCH

fundamental frequency; in general if a sound has a higher fundamental frequency we
perceive it as having a higher pitch. We say “in general” because the relationship is not
linear, since human hearing has different acuities for different frequencies. Roughly
speaking, human pitch perception is most accurate between 100Hz and 1000Hz, and in
this range pitch correlates linearly with frequency. Humanhearing represents frequen-
cies above 1000 Hz less accurately and above this range pitchcorrelates logarithmically
with frequency. Logarithmic representation means that thedifferences between high
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frequencies are compressed, and hence not as accurately perceived. There are various
psychoacoustic models of pitch perception scales. One common model is themel scaleMEL

(Stevens et al., 1937; Stevens and Volkmann, 1940). A mel is aunit of pitch defined
so that pairs of sounds which are perceptually equidistant in pitch are separated by an
equal number of mels. The mel frequencym can be computed from the raw acoustic
frequency as follows:

m= 1127ln(1+
f

700
)(7.8)

We will return to the mel scale in Ch. 9 when we introduce the MFCC representa-
tion of speech used in speech recognition.

The loudnessof a sound is the perceptual correlate of thepower. So sounds with
higher amplitudes are perceived as louder, but again the relationship is not linear. First
of all, as we mentioned above when we definedµ-law compression, humans have
greater resolution in the low power range; the ear is more sensitive to small power
differences. Second, it turns out that there is a complex relationship between power,
frequency, and perceived loudness; sounds in certain frequency ranges are perceived as
being louder than those in other frequency ranges.

Various algorithms exist for automatically extracting F0. In a slight abuse of ter-
minology these are calledpitch extraction algorithms. The autocorrelation method ofPITCH EXTRACTION

pitch extraction, for example, correlates the signal with itself, at various offsets. The
offset that gives the highest correlation gives the period of the signal. Other methods
for pitch extraction are based on the cepstral features we will return to in Ch. 9. There
are various publicly available pitch extraction toolkits;for example an augmented au-
tocorrelation pitch tracker is provided withPraat (Boersma and Weenink, 2005).

7.4.4 Interpreting Phones from a Waveform

Much can be learned from a visual inspection of a waveform. For example, vowels
are pretty easy to spot. Recall that vowels are voiced; another property of vowels is
that they tend to be long, and are relatively loud (as we can see in the intensity plot
in Fig. 7.16). Length in time manifests itself directly on the x-axis, while loudness
is related to (the square of) amplitude on the y-axis. We saw in the previous section
that voicing is realized by regular peaks in amplitude of thekind we saw in Fig. 7.13,
each major peak corresponding to an opening of the vocal folds. Fig. 7.17 shows the
waveform of the short phrase ‘she just had a baby’. We have labeled this waveform
with word and phone labels. Notice that each of the six vowelsin Fig. 7.17, [iy], [ax],
[ae], [ax], [ey], [iy], all have regular amplitude peaks indicating voicing.

For a stop consonant, which consists of a closure followed bya release, we can
often see a period of silence or near silence followed by a slight burst of amplitude. We
can see this for both of the [b]’s inbabyin Fig. 7.17.

Another phone that is often quite recognizable in a waveformis a fricative. Recall
that fricatives, especially very strident fricatives like[sh], are made when a narrow
channel for airflow causes noisy, turbulent air. The resulting hissy sounds have a very
noisy, irregular waveform. This can be seen somewhat in Fig.7.17; it’s even clearer in
Fig. 7.18, where we’ve magnified just the first wordshe.
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she just had a baby

sh iy j ax s h ae dx ax b ey b iy

Time (s)
0 1.059

Figure 7.17 A waveform of the sentence “She just had a baby” from the Switchboard corpus (conversation
4325). The speaker is female, was 20 years old in 1991, which is approximately when the recording was made,
and speaks the South Midlands dialect of American English.

she

sh iy

Time (s)
0 0.257

Figure 7.18 A more detailed view of the first word “she” extracted from thewavefile in Fig. 7.17. Notice the
difference between the random noise of the fricative [sh] and the regular voicing of the vowel [iy].

7.4.5 Spectra and the Frequency Domain

While some broad phonetic features (such as energy, pitch, and the presence of voic-
ing, stop closures, or fricatives) can be interpreted directly from the waveform, most
computational applications such as speech recognition (aswell as human auditory pro-
cessing) are based on a different representation of the sound in terms of its component
frequencies. The insight ofFourier analysis is that every complex wave can be repre-
sented as a sum of many sine waves of different frequencies. Consider the waveform
in Fig. 7.19. This waveform was created (inPraat) by summing two sine waveforms,
one of frequency 10 Hz and one of frequency 100 Hz.

We can represent these two component frequencies with aspectrum. The spectrumSPECTRUM

of a signal is a representation of each of its frequency components and their amplitudes.
Fig. 7.20 shows the spectrum of Fig. 7.19. Frequency in Hz is on the x-axis and ampli-
tude on the y-axis. Note that there are two spikes in the figure, one at 10 Hz and one
at 100 Hz. Thus the spectrum is an alternative representation of the original waveform,
and we use the spectrum as a tool to study the component frequencies of a soundwave
at a particular time point.

Let’s look now at the frequency components of a speech waveform. Fig. 7.21 shows
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Time (s)
0 0.5
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1

0

Figure 7.19 A waveform created by summing two sine waveforms, one of frequency
10 Hz (note the 5 repetitions in the half-second window) and one of frequency 100 Hz,
both with amplitude 1.
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Figure 7.20 The spectrum of the waveform in Fig. 7.19.

part of the waveform for the vowel [ae] of the wordhad, cut out from the sentence
shown in Fig. 7.17.

Time (s)
0 0.04275

–0.05554

0.04968

0

Figure 7.21 The waveform of part of the vowel [ae] from the wordhad cut out from
the waveform shown in Fig. 7.17.

Note that there is a complex wave which repeats about ten times in the figure; but
there is also a smaller repeated wave which repeats four times for every larger pattern
(notice the four small peaks inside each repeated wave). Thecomplex wave has a
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frequency of about 234 Hz (we can figure this out since it repeats roughly 10 times in
.0427 seconds, and 10 cycles/.0427 seconds = 234 Hz).

The smaller wave then should have a frequency of roughly fourtimes the frequency
of the larger wave, or roughly 936 Hz. Then if you look carefully you can see two little
waves on the peak of many of the 936 Hz waves. The frequency of this tiniest wave
must be roughly twice that of the 936 Hz wave, hence 1872 Hz.

Fig. 7.22 shows a smoothed spectrum for the waveform in Fig. 7.21, computed via
a Discrete Fourier Transform (DFT).
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Figure 7.22 A spectrum for the vowel [ae] from the wordhad in the waveform ofShe
just had a babyin Fig. 7.17.

Thex-axis of a spectrum shows frequency while they-axis shows some measure of
the magnitude of each frequency component (in decibels (dB), a logarithmic measure
of amplitude that we saw earlier). Thus Fig. 7.22 shows that there are significant fre-
quency components at around 930 Hz, 1860 Hz, and 3020 Hz, along with many other
lower-magnitude frequency components. These first two components are just what we
noticed in the time domain by looking at the wave in Fig. 7.21!

Why is a spectrum useful? It turns out that these spectral peaks that are easily visi-
ble in a spectrum are very characteristic of different phones; phones have characteristic
spectral “signatures”. Just as chemical elements give off different wavelengths of light
when they burn, allowing us to detect elements in stars looking at the spectrum of the
light, we can detect the characteristic signature of the different phones by looking at the
spectrum of a waveform. This use of spectral information is essential to both human
and machine speech recognition. In human audition, the function of thecochleaorCOCHLEA

inner ear is to compute a spectrum of the incoming waveform. Similarly, the variousINNER EAR

kinds of acoustic features used in speech recognition as theHMM observation are all
different representations of spectral information.

Let’s look at the spectrum of different vowels. Since some vowels change over
time, we’ll use a different kind of plot called aspectrogram. While a spectrum shows
the frequency components of a wave at one point in time, aspectrogram is a way ofSPECTROGRAM

envisioning how the different frequencies that make up a waveform change over time.
Thex-axis shows time, as it did for the waveform, but they-axis now shows frequencies
in Hertz. The darkness of a point on a spectrogram corresponding to the amplitude of
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the frequency component. Very dark points have high amplitude, light points have low
amplitude. Thus the spectrogram is a useful way of visualizing the three dimensions
(time x frequency x amplitude).

Fig. 7.23 shows spectrograms of 3 American English vowels, [ih], [ae], and [ah].
Note that each vowel has a set of dark bars at various frequency bands, slightly different
bands for each vowel. Each of these represents the same kind of spectral peak that we
saw in Fig. 7.21.
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Figure 7.23 Spectrograms for three American English vowels, [ih], [ae], and [uh], spo-
ken by the first author.

Each dark bar (or spectral peak) is called aformant . As we will discuss below, aFORMANT

formant is a frequency band that is particularly amplified bythe vocal tract. Since dif-
ferent vowels are produced with the vocal tract in differentpositions, they will produce
different kinds of amplifications or resonances. Let’s lookat the first two formants,
called F1 and F2. Note that F1, the dark bar closest to the bottom is in different posi-
tion for the 3 vowels; it’s low for [ih] (centered at about 470Hz) and somewhat higher
for [ae] and [ah] (somewhere around 800Hz) By contrast F2, the second dark bar from
the bottom, is highest for [ih], in the middle for [ae], and lowest for [ah].

We can see the same formants in running speech, although the reduction and coar-
ticulation processes make them somewhat harder to see. Fig.7.24 shows the spectro-
gram of ‘she just had a baby’ whose waveform was shown in Fig. 7.17. F1 and F2 (and
also F3) are pretty clear for the [ax] ofjust, the [ae] ofhad, and the [ey] ofbaby.

What specific clues can spectral representations give for phone identification? First,
since different vowels have their formants at characteristic places, the spectrum can
be used to distinguish vowels from each other. We’ve seen that [ae] in the sample
waveform had formants at 930 Hz, 1860 Hz, and 3020 Hz. Consider the vowel [iy],
at the beginning of the utterance in Fig. 7.17. The spectrum for this vowel is shown
in Fig. 7.25. The first formant of [iy] is 540 Hz; much lower than the first formant for
[ae], while the second formant (2581 Hz) is much higher than the second formant for
[ae]. If you look carefully you can see these formants as darkbars in Fig. 7.24 just
around 0.5 seconds.

The location of the first two formants (called F1 and F2) playsa large role in de-
termining vowel identity, although the formants still differ from speaker to speaker.
Higher formants tend to be caused more by general characteristic of the speakers vocal
tract rather than by individual vowels. Formants also can beused to identify the nasal
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she just had a baby

sh iy j ax s h ae dx ax b ey b iy

Time (s)
0 1.059

Figure 7.24 A spectrogram of the sentence “She just had a baby” whose waveform was shown in Fig. 7.17.
We can think of a spectrogram is as a collection of spectra (time-slices) like Fig. 7.22 placed end to end. Note
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Figure 7.25 A smoothed (LPC) spectrum for the vowel [iy] at the start ofShe just had
a baby. Note that the first formant (540 Hz) is much lower than the first formant for [ae]
shown in Fig. 7.22, while the second formant (2581 Hz) is muchhigher than the second
formant for [ae].

phones [n], [m], and [ng], and the liquids [l] and [r].

7.4.6 The Source-Filter Model

Why do different vowels have different spectral signatures? As we briefly mentioned
above, the formants are caused by the resonant cavities of the mouth. Thesource-filterSOURCEFILTER

model is a way of explaining the acoustics of a sound by modeling how the pulses
produced by the glottis (thesource) are shaped by the vocal tract (thefilter ).

Let’s see how this works. Whenever we have a wave such as the vibration in air
caused by the glottal pulse, the wave also hasharmonics. A harmonic is another waveHARMONICS

whose frequency is a multiple of the fundamental wave. Thus for example a 115 Hz
glottal fold vibration leads to harmonics (other waves) of 230 Hz, 345 Hz, 460 Hz, and
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so on on. In general each of these waves will be weaker, i.e. have much less amplitude
than the wave at the fundamental frequency.

It turns out, however, that the vocal tract acts as a kind of filter or amplifier; indeed
any cavity such as a tube causes waves of certain frequenciesto be amplified, and others
to be damped. This amplification process is caused by the shape of the cavity; a given
shape will cause sounds of a certain frequency to resonate and hence be amplified. Thus
by changing the shape of the cavity we can cause different frequencies to be amplified.

Now when we produce particular vowels, we are essentially changing the shape
of the vocal tract cavity by placing the tongue and the other articulators in particular
positions. The result is that different vowels cause different harmonics to be amplified.

So a wave of the same fundamental frequency passed through different vocal tract
positions will result in different harmonics being amplified.

We can see the result of this amplification by looking at the relationship between the
shape of the oral tract and the corresponding spectrum. Fig.7.26 shows the vocal tract
position for three vowels and a typical resulting spectrum.The formants are places in
the spectrum where the vocal tract happens to amplify particular harmonic frequencies.

[iy]  (tea) [ae] (cat) [uw]  (moo)
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Figure 7.26 Visualizing the vocal tract position as a filter: the tongue positions for three English vowels and
the resulting smoothed spectra showing F1 and F2. Tongue positions modeled after Ladefoged (1996).

7.5 PHONETIC RESOURCES

A wide variety of phonetic resources can be drawn on for computational work. One
key set of resources arepronunciation dictionaries. Such on-line phonetic dictio-PRONUNCIATION

DICTIONARIES

naries give phonetic transcriptions for each word. Three commonly used on-line dic-
tionaries for English are the CELEX, CMUdict, and PRONLEX lexicons; for other
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languages, the LDC has released pronunciation dictionaries for Egyptian Arabic, Ger-
man, Japanese, Korean, Mandarin, and Spanish. All these dictionaries can be used for
both speech recognition and synthesis work.

The CELEX dictionary (Baayen et al., 1995) is the most richlyannotated of the dic-
tionaries. It includes all the words in the Oxford Advanced Learner’s Dictionary (1974)
(41,000 lemmata) and the Longman Dictionary of Contemporary English (1978) (53,000
lemmata), in total it has pronunciations for 160,595 wordforms. Its (British rather than
American) pronunciations are transcribed using an ASCII version of the IPA called
SAM. In addition to basic phonetic information like phone strings, syllabification, and
stress level for each syllable, each word is also annotated with morphological, part of
speech, syntactic, and frequency information. CELEX (as well as CMU and PRON-
LEX) represent three levels of stress: primary stress, secondary stress, and no stress.
For example, some of the CELEX information for the worddictionaryincludes multi-
ple pronunciations (’dIk-S@n-rI and ’dIk-S@-n@-rI, corresponding to ARPABET [d
ih k sh ax n r ih] and [d ih k sh ax n ax r ih] respectively), together with the CV-
skelata for each one ([CVC][CVC][CV] and [CVC][CV][CV][CV]), the frequency of
the word, the fact that it is a noun, and its morphological structure (diction+ary).

The free CMU Pronouncing Dictionary (CMU, 1993) has pronunciations for about
125,000 wordforms. It uses an 39-phone ARPAbet-derived phoneme set. Transcrip-
tions are phonemic, and thus instead of marking any kind of surface reduction like
flapping or reduced vowels, it marks each vowel with the number 0 (unstressed) 1
(stressed), or 2 (secondary stress). Thus the wordtiger is listed as [T AY1 G ER0] the
word tableas [T EY1 B AH0 L], and the worddictionaryas [D IH1 K SH AH0 N EH2
R IY0]. The dictionary is not syllabified, although the nucleus is implicitly marked by
the (numbered) vowel.

The PRONLEX dictionary (LDC, 1995) was designed for speech recognition and
contains pronunciations for 90,694 wordforms. It covers all the words used in many
years of the Wall Street Journal, as well as the Switchboard Corpus. PRONLEX has the
advantage that it includes many proper names (20,000, whereCELEX only has about
1000). Names are important for practical applications, andthey are both frequent and
difficult; we return to a discussion of deriving name pronunciations in Ch. 8.

Another useful resource is aphonetically annotated corpus, in which a collection
of waveforms is hand-labeled with the corresponding stringof phones. Two important
phonetic corpora in English are the TIMIT corpus and the Switchboard Transcription
Project corpus.

The TIMIT corpus (NIST, 1990) was collected as a joint project between Texas
Instruments (TI), MIT, and SRI. It is a corpus of 6300 read sentences, where 10 sen-
tences each from 630 speakers. The 6300 sentences were drawnfrom a set of 2342 pre-
designed sentences, some selected to have particular dialect shibboleths, others to max-
imize phonetic diphone coverage. Each sentence in the corpus was phonetically hand-
labeled, the sequence of phones was automatically aligned with the sentence wavefile,
and then the automatic phone boundaries were manually hand-corrected (Seneff and
Zue, 1988). The result is atime-aligned transcription; a transcription in which eachTIMEALIGNED

TRANSCRIPTION

phone in the transcript is associated with a start and end time in the waveform; we
showed a graphical example of a time-aligned transcriptionin Fig. 7.17.

The phoneset for TIMIT, and for the Switchboard Transcription Project corpus be-
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low, is a more detailed one than the minimal phonemic versionof the ARPAbet. In par-
ticular, these phonetic transcriptions make use of the various reduced and rare phones
mentioned in Fig. 7.1 and Fig. 7.2; the flap [dx], glottal stop[q], reduced vowels [ax],
[ix], [axr], voiced allophone of [h] ([hv]), and separate phones for stop closure ([dcl],
[tcl], etc) and release ([d], [t], etc). An example transcription is shown in Fig. 7.27.

she had your dark suit in greasy wash water all year
sh iy hv ae dcl jh axr dcl d aa r kcl s ux q en gcl g r iy s ix w aa sh q w aa dx axr q aa l y ix axr

Figure 7.27 Phonetic transcription from the TIMIT corpus. Note palatalization of [d] in had, unreleased final
stop indark, glottalization of final [t] insuit to [q], and flap of [t] inwater. The TIMIT corpus also includes
time-alignments for each phone (not shown).

Where TIMIT is based on read speech, the more recent Switchboard Transcrip-
tion Project corpus is based on the Switchboard corpus of conversational speech. This
phonetically-annotated portion consists of approximately 3.5 hours of sentences ex-
tracted from various conversations (Greenberg et al., 1996). As with TIMIT, each
annotated utterance contains a time-aligned transcription. The Switchboard transcripts
are time-aligned at the syllable level rather than at the phone level; thus a transcript
consists of a sequence of syllables with the start and end time of each syllables in the
corresponding wavefile. Fig. 7.28 shows an example from the Switchboard Transcrip-
tion Project, for the phrasethey’re kind of in between right now:

0.470 0.640 0.720 0.900 0.953 1.279 1.410 1.630
dh er k aa n ax v ih m b ix t w iy n r ay n aw

Figure 7.28 Phonetic transcription of the Switchboard phrasethey’re kind of in between
right now. Note vowel reduction inthey’re andof, coda deletion inkind and right, and
resyllabification (the [v] ofof attaches as the onset ofin). Time is given in number of
seconds from beginning of sentence to start of each syllable.

Phonetically transcribed corpora are also available for other languages; the Kiel
corpus of German is commonly used, as are various Mandarin corpora transcribed by
the Chinese Academy of Social Sciences (Li et al., 2000).

In addition to resources like dictionaries and corpora, there are many useful pho-
netic software tools. One of the most versatile is the free Praat package (Boersma and
Weenink, 2005), which includes spectrum and spectrogram analysis, pitch extraction
and formant analysis, and an embedded scripting language for automation. It is avail-
able on Microsoft, Macintosh, and UNIX environments.

7.6 ADVANCED: ARTICULATORY AND GESTURAL PHONOLOGY

We saw in Sec. 7.3.1 that we could usedistinctive featuresto capture generalizations
across phone class. These generalizations were mainly articulatory (although some,
like [strident] and the vowel height features, are primarily acoustic).
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This idea that articulation underlies phonetic productionis used in a more sophis-
ticated way inarticulatory phonology, in which thearticulatory gesture is the un-ARTICULATORY

PHONOLOGY

ARTICULATORY
GESTURE

derlying phonological abstraction (Browman and Goldstein, 1986, 1992). Articulatory
gestures are defined as parameterizeddynamical systems. Since speech production
requires the coordinated actions of tongue, lips, glottis,etc, articulatory phonology
represents a speech utterances as a sequence of potentiallyoverlapping articulatory
gestures. Fig. 7.29 shows the sequent of gestures (orgestural score) required for theGESTURAL SCORE

production of the wordpawn[p aa n]. The lips first close, then the glottis opens, then
the tongue body moves back toward the pharynx wall for the vowel [aa], the velum
drops for the nasal sounds, and finally the tongue tip closes against the alveolar ridge.
The lines in the diagram indicate gestures which are phased with respect to each other.
With such a gestural representation, the nasality in the [aa] vowel is explained by the
timing of the gestures; the velum drops before the tongue tiphas quite closed.

Figure 7.29 The gestural score for the wordpawnas pronounced [p aa n], after Brow-
man and Goldstein (1989) and Browman and Goldstein (1995).

The intuition behind articulatory phonology is that the gestural score is likely to be
much better as a set of hidden states at capturing the continuous nature of speech than a
discrete sequence of phones. In addition, using articulatory gestures as a basic unit can
help in modeling the fine-grained effects of coarticulationof neighboring gestures that
we will explore further when we introducediphones(Sec.??) andtriphones (Sec.??).

Computational implementations of articulatory phonologyhave recently appeared
in speech recognition, using articulatory gestures ratherthan phones as the underlying
representation or hidden variable. Since multiple articulators (tongue, lips, etc) can
move simultaneously, using gestures as the hidden variableimplies a multi-tier hidden
representation. Fig. 7.30 shows the articulatory feature set used in the work of Livescu
and Glass (2004) and Livescu (2005); Fig. 7.31 shows examples of how phones are
mapped onto this feature set.
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Feature Description value = meaning

LIP-LOC position of lips LAB = labial (neutral position); PRO = protruded (rounded);DEN = dental
LIP-OPEN degree of opening of

lips
CL = closed; CR = critical (labial/labio-dental fricative); NA = narrow (e.g., [w], [uw]);
WI = wide (all other sounds)

TT-LOC location of tongue
tip

DEN = inter-dental ([th], [dh]); ALV = alveolar ([t], [n]); P-A = palato-alveolar ([sh]);
RET = retroflex ([r])

TT-OPEN degree of opening of
tongue tip

CL = closed (stop); CR = critical (fricative); NA = narrow ([r], alveolar glide);
M-N = medium-narrow;MID = medium;WI = wide

TB-LOC location of tongue
body

PAL = palatal (e.g. [sh], [y]); VEL = velar (e.g., [k], [ng]);
UVU = uvular (neutral position); PHA = pharyngeal (e.g. [aa])

TB-OPEN degree of opening of
tongue body

CL = closed (stop); CR = critical (e.g. fricated [g] in ”legal”); NA = narrow (e.g. [y]);
M-N = medium-narrow; MID = medium; WI = wide

VEL state of the velum CL = closed (non-nasal); OP = open (nasal)
GLOT state of the glottis CL = closed (glottal stop); CR = critical (voiced); OP = open (voiceless)

Figure 7.30 Articulatory-phonology-based feature set from Livescu (2005).

phone LIP-LOC LIP-OPEN TT-LOC TT-OPEN TB-LOC TB-OPEN VEL GLOT
aa LAB W ALV W PHA M-N CL(.9),OP(.1) CR
ae LAB W ALV W VEL W CL(.9),OP(.1) CR
b LAB CR ALV M UVU W CL CR
f DEN CR ALV M VEL M CL OP
n LAB W ALV CL UVU M OP CR
s LAB W ALV CR UVU M CL OP
uw PRO N P-A W VEL N CL(.9),OP(.1) CR

Figure 7.31 Livescu (2005): sample of mapping from phones to underylingtarget articulatory feature values.
Note that some values are probabilistic.

7.7 SUMMARY

This chapter has introduced many of the important concepts of phonetics and compu-
tational phonetics.

• We can represent the pronunciation of words in terms of unitscalledphones.
The standard system for representing phones is theInternational Phonetic Al-
phabet or IPA . The most common computational system for transcription of
English is theARPAbet, which conveniently uses ASCII symbols.

• Phones can be described by how they are producedarticulatorily by the vocal
organs; consonants are defined in terms of theirplaceandmannerof articulation
andvoicing, vowels by theirheight, backness, androundness.

• A phonemeis a generalization or abstraction over different phoneticrealizations.
Allophonic rules express how a phoneme is realized in a given context.

• Speech sounds can also be describedacoustically. Sound waves can be de-
scribed in terms offrequency, amplitude, or their perceptual correlates,pitch
andloudness.

• Thespectrum of a sound describes its different frequency components. While
some phonetic properties are recognizable from the waveform, both humans and
machines rely on spectral analysis for phone detection.
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• A spectrogramis a plot of a spectrum over time. Vowels are described by char-
acteristic harmonics calledformants.

• Pronunciation dictionariesare widely available, and used for both speech recog-
nition and speech synthesis, including the CMU dictionary for English and CELEX
dictionaries for English, German, and Dutch. Other dictionaries are available
from the LDC.

• Phonetically transcribed corpora are a useful resource forbuilding computational
models of phone variation and reduction in natural speech.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The major insights of articulatory phonetics date to the linguists of 800–150B.C. In-
dia. They invented the concepts of place and manner of articulation, worked out the
glottal mechanism of voicing, and understood the concept ofassimilation. European
science did not catch up with the Indian phoneticians until over 2000 years later, in the
late 19th century. The Greeks did have some rudimentary phonetic knowledge; by the
time of Plato’sTheaetetusandCratylus, for example, they distinguished vowels from
consonants, and stop consonants from continuants. The Stoics developed the idea of
the syllable and were aware of phonotactic constraints on possible words. An unknown
Icelandic scholar of the twelfth century exploited the concept of the phoneme, proposed
a phonemic writing system for Icelandic, including diacritics for length and nasality.
But his text remained unpublished until 1818 and even then was largely unknown out-
side Scandinavia (Robins, 1967). The modern era of phonetics is usually said to have
begun with Sweet, who proposed what is essentially the phoneme in hisHandbook
of Phonetics(1877). He also devised an alphabet for transcription and distinguished
betweenbroad andnarrow transcription, proposing many ideas that were eventually
incorporated into the IPA. Sweet was considered the best practicing phonetician of his
time; he made the first scientific recordings of languages forphonetic purposes, and
advanced the state of the art of articulatory description. He was also infamously diffi-
cult to get along with, a trait that is well captured in Henry Higgins, the stage character
that George Bernard Shaw modeled after him. The phoneme was first named by the
Polish scholar Baudouin de Courtenay, who published his theories in 1894.

Students with further interest in transcription and articulatory phonetics should con-
sult an introductory phonetics textbook such as Ladefoged (1993) or Clark and Yallop
(1995). Pullum and Ladusaw (1996) is a comprehensive guide to each of the symbols
and diacritics of the IPA. A good resource for details about reduction and other pho-
netic processes in spoken English is Shockey (2003). Wells (1982) is the definitive
3-volume source on dialects of English.

Many of the classic insights in acoustic phonetics had been developed by the late
1950’s or early 1960’s; just a few highlights include techniques like the sound spectro-
graph (Koenig et al., 1946), theoretical insights like the working out of the source-filter
theory and other issues in the mapping between articulationand acoustics (Fant, 1970;
Stevens et al., 1953; Stevens and House, 1955; Heinz and Stevens, 1961; Stevens and
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House, 1961), the F1xF2 space of vowel formants Peterson andBarney (1952), the
understanding of the phonetic nature of stress and and the use of duration and intensity
as cues (Fry, 1955), and a basic understanding of issues in phone perception Miller and
Nicely (1955), Liberman et al. (1952). Lehiste (1967) is a collection of classic papers
on acoustic phonetics.

Excellent textbooks on acoustic phonetics include Johnson(2003) and (Ladefoged,
1996). (Coleman, 2005) includes an introduction to computational processing of acous-
tics as well as other speech processing issues, from a linguistic perspective. (Stevens,
1998) lays out an influential theory of speech sound production. There are a wide va-
riety of books that address speech from a signal processing and electrical engineering
perspective. The ones with the greatest coverage of computational phonetics issues in-
clude (Huang et al., 2001), (O’Shaughnessy, 2000), and (Gold and Morgan, 1999). An
excellent textbook on digital signal processing is Lyons (2004).

There are a number of software packages for acoustic phonetic analysis. Probably
the most widely-used one is Praat (Boersma and Weenink, 2005).

Many phonetics papers of computational interest are to be found in theJournal of
the Acoustical Society of America (JASA), Computer Speech and Language, andSpeech
Communication.

EXERCISES

7.1 Find the mistakes in the ARPAbet transcriptions of the following words:

a. “three” [dh r i] d. “study” [s t uh d i] g. “slight” [s l iy t]
b. “sing” [s ih n g] e. “though” [th ow]
c. “eyes” [ay s] f. “planning” [p pl aa n ih ng]

7.2 Translate the pronunciations of the following color words from the IPA into the
ARPAbet (and make a note if you think you pronounce them differently than this!):

a. [rEd] e. [blæk] i. [pjus]
b. [blu] f. [waIt] j. [toUp]
c. [grin] g. ["OrIndZ]
d. ["jEloU] h. ["pÇpl

"
]

7.3 Ira Gershwin’s lyric forLet’s Call the Whole Thing Offtalks about two pronunci-
ations of the word “either” (in addition to the tomato and potato example given at the
beginning of the chapter. Transcribe Ira Gershwin’s two pronunciations of “either” in
the ARPAbet.

7.4 Transcribe the following words in the ARPAbet:

a. dark
b. suit
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c. greasy

d. wash

e. water

7.5 Take a wavefile of your choice. Some examples are on the textbook website.
Download thePRAAT software, and use it to transcribe the wavefiles at the word level,
and into ARPAbet phones, using Praat to help you play pieces of each wavfile, and to
look at the wavefile and the spectrogram.

7.6 Record yourself saying five of the English vowels: [aa], [eh], [ae], [iy], [uw].
Find F1 and F2 for each of your vowels.
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8 SPEECH SYNTHESIS

And computers are getting smarter all the time: Scientists tell us
that soon they will be able to talk to us. (By ‘they’ I mean ‘comput-
ers’: I doubt scientists will ever be able to talk to us.)

Dave Barry

In Vienna in 1769, Wolfgang von Kempelen built for the Empress Maria Theresa
the famous Mechanical Turk, a chess-playing automaton consisting of a wooden box
filled with gears, and a robot mannequin sitting behind the box who played chess by
moving pieces with his mechanical arm. The Turk toured Europe and the Americas
for decades, defeating Napolean Bonaparte and even playingCharles Babbage. The
Mechanical Turk might have been one of the early successes ofartificial intelligence
if it were not for the fact that it was, alas, a hoax, powered bya human chessplayer
hidden inside the box.

What is perhaps less well-known is that von Kempelen, an extraordinarily prolific
inventor, also built between 1769 and 1790 what is definitelynot a hoax: the first
full-sentence speech synthesizer. His device consisted ofa bellows to simulate the
lungs, a rubber mouthpiece and a nose aperature, a reed to simulate the vocal folds,
various whistles for each of the fricatives. and a small auxiliary bellows to provide
the puff of air for plosives. By moving levers with both hands, opening and closing
various openings, and adjusting the flexible leather ‘vocaltract’, different consonants
and vowels could be produced.

More than two centuries later, we no longer build our speech synthesizers out of
wood, leather, and rubber, nor do we need trained human operators. The modern task
of speech synthesis, also calledtext-to-speechor TTS, is to produce speech (acousticSPEECH SYNTHESIS

TEXTTOSPEECH

TTS

waveforms) from text input.
Modern speech synthesis has a wide variety of applications.Synthesizers are used,

together with speech recognizers, in telephone-based conversational agents that con-
duct dialogues with people (see Ch. 23). Synthesizer are also important in non-
conversational applications that speakto people, such as in devices that read out loud
for the blind, or in video games or children’s toys. Finally,speech synthesis can be used
to speakfor sufferers of neurological disorders, such as astrophysicist Steven Hawking
who, having lost the use of his voice due to ALS, speaks by typing to a speech synthe-
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sizer and having the synthesizer speak out the words. State of the art systems in speech
synthesis can achieve remarkably natural speech for a very wide variety of input situa-
tions, although even the best systems still tend to sound wooden and are limited in the
voices they use.

The task of speech synthesis is to map a text like the following:

(8.1) PG&E will file schedules on April 20.

to a waveform like the following:

Speech synthesis systems perform this mapping in two steps,first converting the
input text into aphonemic internal representationand then converting this internal
representation into a waveform. We will call the first steptext analysisand the secondTEXT ANALYSIS

stepwaveform synthesis(although other names are also used for these steps).WAVEFORM
SYNTHESIS

A sample of the internal representation for this sentence isshown in Fig. 8.1. Note
that the acronymPG&Eis expanded into the words P G AND E, the number20 is
expanded intotwentieth, a phone sequence is given for each of the words, and there is
also prosodic and phrasing information (the *’s) which we will define later.

* * * L-L%
P G AND E WILL FILE SCHEDULES ON APRIL TWENTIETH

p iy jh iy ae n d iy w ih l f ay l s k eh jh ax l z aa n ey p r ih l t w eh n t iy ax th

Figure 8.1 Intermediate output for a unit selection synthesizer for the sentencePG&E will file schedules on
April 20.. The numbers and acronyms have been expanded, words have been converted into phones, and prosodic
features have been assigned.

While text analysis algorithms are relatively standard, there are three widely differ-
ent paradigms for waveform synthesis:concatenative synthesis, formant synthesis,
andarticulatory synthesis. The architecture of most modern commercial TTS sys-
tems is based on concatenative synthesis, in which samples of speech are chopped up,
stored in a database, and combined and reconfigured to createnew sentences. Thus we
will focus on concatenative synthesis for most of this chapter, although we will briefly
introduce formant and articulatory synthesis at the end of the chapter.

Fig. 8.2 shows the TTS architecture for concatenative unit selection synthesis, using
the two-stephourglass metaphorof Taylor (2008). In the following sections, we’llHOURGLASS

METAPHOR

examine each of the components in this architecture.

8.1 TEXT NORMALIZATION

In order to generate a phonemic internal representation, raw text first needs to be pre-
processed ornormalized in a variety of ways. We’ll need to break the input text intoNORMALIZED
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Text
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Waveform 
Synthesis

PG&E will file schedules on April 20. 

p iy jh iy ae n d ...

Text Normalization

Phonetic Analysis

Prosodic Analysis

Unit
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Unit 
Selection

    

Phonemic
Internal

 Represenation

Figure 8.2 Architecture for the unit selection (concatenative) architecture for speech
synthesis.

sentences, and deal with the idiosyncracies of abbreviations, numbers, and so on. Con-
sider the difficulties in the following text drawn from the Enron corpus (Klimt and
Yang, 2004):

He said the increase in credit limits helped B.C. Hydro achieve record net income
of about $1 billion during the year ending March 31. This figure does not include
any write-downs that may occur if Powerex determines that any of its customer
accounts are not collectible. Cousins, however, was insistent that all debts will
be collected: “We continue to pursue monies owing and we expect to be paid for
electricity we have sold.”

The first task in text normalization issentence tokenization. In order to segmentSENTENCE
TOKENIZATION

this paragraph into separate utterances for synthesis, we need to know that the first
sentence ends at the period afterMarch 31, not at the period ofB.C.. We also need
to know that there is a sentence ending at the wordcollected, despite the punctuation
being a colon rather than a period. The second normalizationtask is dealing withnon-
standard words. Non-standard words include number, acronyms, abbreviations, and
so on. For example,March 31needs to be pronouncedMarch thirty-first, not March
three one; $1 billion needs to be pronouncedone billion dollars, with the worddollars
appearing after the wordbillion.
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8.1.1 Sentence Tokenization

We saw two examples above where sentence tokenization is difficult because sentence
boundaries are not always indicated by periods, and can sometimes be indicated by
punctuation like colons. An additional problem occurs whenan abbreviation ends a
sentence, in which case the abbreviation-final period is playing a dual role:

(8.2) He said the increase in credit limits helped B.C. Hydro achieve record net income of about $1
billion during the year ending March 31.

(8.3) Cousins, however, was insistent that all debts will be collected: “We continue to pursue monies
owing and we expect to be paid for electricity we have sold.”

(8.4) The group included Dr. J. M. Freeman and T. Boone Pickens Jr.

A key part of sentence tokenization is thus period disambiguation; we’ve seen a
simple perl script for period disambiguation in Ch. 3. Most sentence tokenization al-
gorithms are slightly more complex than this deterministicalgorithm, and in particular
are trained by machine learning methods rather than being hand-built. We do this by
hand-labeling a training set with sentence boundaries, andthen using any supervised
machine learning method (decision trees, logistic regression, SVM, etc) to train a clas-
sifier to mark the sentence boundary decisions.

More specifically, we could start by tokenizing the input text into tokens separated
by whitespace, and then select any token containing one of the three characters! , . or
? (or possibly also: ). After hand-labeling a corpus of such tokens, then we traina
classifier to make a binary decision (EOS (end-of-sentence)versus not-EOS) on these
potential sentence boundary characters inside these tokens.

The success of such a classifier depends on the features that are extracted for the
classification. Let’s consider some feature templates we might use to disambiguate
thesecandidatesentence boundary characters, assuming we have a small amount of
training data, labeled for sentence boundaries:

• the prefix (the portion of the candidate token preceding the candidate)
• the suffix (the portion of the candidate token following the candidate)
• whether the prefix or suffix is an abbreviation (from a list)
• the word preceding the candidate
• the word following the candidate
• whether the word preceding the candidate is an abbreviation
• whether the word following the candidate is an abbreviation

Consider the following example:

(8.5) ANLP Corp. chairman Dr. Smith resigned.

Given these feature templates, the feature values for the period . in the wordCorp.
in (8.5) would be:

PreviousWord = ANLP NextWord = chairman
Prefix = Corp Suffix = NULL
PreviousWordAbbreviation = 1 NextWordAbbreviation = 0

If our training set is large enough, we can also look for lexical cues about sen-
tence boundaries. For example, certain words may tend to occur sentence-initially, or
sentence-finally. We can thus add the following features:
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• Probability[candidate occurs at end of sentence]
• Probability[word following candidate occurs at beginningof sentence]

Finally, while most of the above features are relatively language-independent, we
can use language-specific features. For example, in English, sentences usually begin
with capital letters, suggesting features like the following:

• case of candidate: Upper, Lower, AllCap, Numbers
• case of word following candidate: Upper, Lower, AllCap, Numbers

Similary, we can have specific subclasses of abbreviations,such as honorifics or
titles (e.g., Dr., Mr., Gen.), corporate designators (e.g., Corp., Inc.), or month-names
(e.g., Jan., Feb.).

Any machine learning method can be applied to train EOS classifiers. Logistic
regression and decision trees are two very common methods; logistic regression may
have somewhat higher accuracy, although we have instead shown an example of a
decision tree in Fig. 8.3 because it is easier for the reader to see how the features are
used.

Figure 8.3 A decision tree for predicting whether a period ’.’ is an end of sentence
(YES) or not an end-of-sentence (NO), using features like the log likelihood of the cur-
rent word being the beginning of a sentence (bprob ), the previous word being an end
of sentence (eprob ), the capitalization of the next word, and the abbreviationsubclass
(company, state, unit of measurement). After slides by Richard Sproat.

8.1.2 Non-Standard Words

The second step in text normalization is normalizingnon-standard words. Non-NONSTANDARD
WORDS

standard words are tokens like numbers or abbreviations, which need to be expanded
into sequences of English words before they can be pronounced.

What is difficult about these non-standard words is that theyare often very am-
biguous. For example, the number1750can be spoken in at least three different ways,
depending on the context:
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seventeen fifty: (in ‘The European economy in 1750’)
one seven five zero: (in ‘The password is 1750’)
seventeen hundred and fifty: (in ‘1750 dollars’)
one thousand, seven hundred, and fifty: (in ‘1750 dollars’)

Similar ambiguities occur for Roman numerals likeIV, (which can be pronounced
four , fourth , or as the lettersI V (meaning ‘intravenous’)), or2/3, which can be
two thirds or February third or two slash three .

In addition to numbers, various non-standard words are composed of letters. Three
types non-standard words includeabbreviations, letter sequences, andacronyms.
Abbreviations are generally pronounced byexpandingthem; thusJan 1is pronounced
January first , andWedis pronouncedWednesday . Letter sequenceslike UN,
DVD, PC,andIBM are pronounced by pronouncing each letter in a sequence (IBMis
thus pronounceday b iy eh m). Acronyms like IKEA, MoMA, NASA, andUNICEF
are pronounced as if they were words;MoMA is pronouncedm ow m ax. Ambiguity
occurs here as well; shouldJanbe read as a word (the nameJan ) or expanded as the
monthJanuary ?

These different types of numeric and alphabetic non-standard words can be sum-
marized in Fig. 8.4. Each of the types has a particular realization (or realizations). For
example, a yearNYER is generally read in thepaired method, in which each pair ofPAIRED

digits is pronounced as an integer (e.g.,seventeen fifty for 1750), while a U.S.
zip codeNZIP is generally read in theserial method, as a sequence of single digitsSERIAL

(e.g.,nine four one one zero for 94110). The typeBMONEY deals with the
idiosyncracies of expressions like$3.2 billion, which must be read out with the word
dollars at the end, asthree point two billion dollars .

For the alphabetic NSWs, we have the class EXPN for abbreviations like N.Y.
which are expanded, LSEQ for acronyms pronounced as letter sequences, and ASWD
for acronyms pronounced as if they were words.

Dealing with non-standard words requires at least three steps: tokenization to sep-
arate out and identify potential non-standard words,classificationto label them with a
type from Fig. 8.4, andexpansionto convert each type into a string of standard words.

In the tokenization step, we can tokenize the input by whitespace, and then assume
that any word which is not in the pronunciation dictionary isa non-standard word.
More sophisticated tokenization algorithms would also deal with the fact that some
dictionaries already contain some abbreviations. The CMU dictionary, for example,
contains abbreviated (and hence incorrect) pronunciations for st, mr, mrs, as well as
day and month abbreviations likemon, tues, nov, dec, etc. Thus in addition to unseen
words, we also need to label any of these acronyms and also single-character token as
potential non-standard words. Tokenization algorithms also need to split words which
are combinations of two tokens, like2-car or RVing. Words can be split by simple
heuristics, such as splitting at dashes, or at changes from lower-case to upper-case.

The next step is assigning a NSW type; many types can be detected with simple
regular expressions. For example,NYER could be detected by the following regular
expression:

/(1[89][0-9][0-9])|(20[0-9][0-9]/

Other classes might be harder to write rules for, and so a morepowerful option is
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A
L

P
H

A EXPN abbreviation adv, N.Y., mph, gov’t
LSEQ letter sequence DVD, D.C., PC, UN, IBM,
ASWD read as word IKEA, unknown words/names

N
U

M
B

E
R

S
NUM number (cardinal) 12, 45, 1/2, 0.6
NORD number (ordinal) May 7, 3rd, Bill Gates III
NTEL telephone (or part of) 212-555-4523
NDIG number as digits Room 101
NIDE identifier 747, 386, I5, pc110, 3A
NADDR number as street address 747, 386, I5, pc110, 3A
NZIP zip code or PO Box 91020
NTIME a (compound) time 3.20, 11:45
NDATE a (compound) date 2/28/05, 28/02/05
NYER year(s) 1998, 80s, 1900s, 2008
MONEY money (US or other) $3.45, HK$300, Y20,200,$200K
BMONEY money tr/m/billions $3.45 billion
PRCT percentage 75% 3.4%

Figure 8.4 Some types of non-standard words in text normalization, selected from Ta-
ble 1 of Sproat et al. (2001); not listed are types for URLs, emails, and some complex uses
of punctuation.

to use a machine learning classifier with many features.
To distinguish between the alphabeticASWD, LSEQandEXPN classes, for example

we might want features over the component letters. Thus short, all-capital words (IBM,
US) might be LSEQ, longer all-lowercase words with a single-quote (gov’t, cap’n)
might beEXPN, and all-capital words with multiple vowels (NASA, IKEA) might be
more likely to beASWD.

Another very useful features is the identity of neighboringwords. Consider am-
biguous strings like3/4, which can be anNDATE march third or anumthree-fourths .
NDATE might be preceded by the wordon, followed by the wordof, or have the word
Mondaysomewhere in the surrounding words. By contrast,NUM examples might be
preceded by another number, or followed by words likemile andinch. Similarly, Ro-
man numerals likeVII tend to beNORD (seven) when preceded byChapter, part, or
Act, butNUM (seventh) when the wordskingor Popeoccur in the neighborhood. These
context words can be chosen as features by hand, or can be learned by machine learning
techniques like thedecision listalgorithm of Ch. 8.

We can achieve the most power by building a single machine learning classifier
which combines all of the above ideas. For example, the NSW classifier of (Sproat
et al., 2001) uses 136 features, including letter-based features like ‘all-upper-case’,
‘has-two-vowels’, ‘contains-slash’, and ‘token-length’, as well as binary features for
the presence of certain words likeChapter, on, or king in the surrounding context.
Sproat et al. (2001) also included a rough-draft rule-basedclassifier, which used hand-
written regular expression to classify many of the number NSWs. The output of this
rough-draft classifier was used as just another feature in the main classifier.

In order to build such a main classifier, we need a hand-labeled training set, in
which each token has been labeled with its NSW category; one such hand-labeled
data-base was produced by Sproat et al. (2001). Given such a labeled training set, we
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can use any supervised machine learning algorithm to build the classifier.
Formally, we can model this task as the goal of producing the tag sequenceT which

is most probable given the observation sequence:

T∗ = argmax
T

P(T|O)(8.6)

One way to estimate this probability is via decision trees. For example, for each
observed tokenoi , and for each possible NSW tagt j , the decision tree produces the
posterior probabilityP(t j |oi). If we make the incorrect but simplifying assumption
that each tagging decision is independent of its neighbors,we can predict the best tag
sequencêT = argmaxTP(T|O) using the tree:

T̂ = argmax
T

P(T|O)

≈
m

∏
i=1

argmax
t

P(t|oi)(8.7)

The third step in dealing with NSWs is expansion into ordinary words. One NSW
type,EXPN, is quite difficult to expand. These are the abbreviations and acronyms like
NY. Generally these must be expanded by using an abbreviation dictionary, with any
ambiguities dealt with by the homonym disambiguation algorithms discussed in the
next section.

Expansion of the other NSW types is generally deterministic. Many expansions
are trivial; for example,LSEQ expands to a sequence of words, one for each letter,
ASWD expands to itself,NUM expands to a sequence of words representing the cardinal
number,NORD expands to a sequence of words representing the ordinal number, and
NDIG andNZIP both expand to a sequence of words, one for each digit.

Other types are slightly more complex;NYER expands to two pairs of digits, unless
the year ends in00, in which case the four years are pronounced as a cardinal number
(2000 as two thousand ) or in the hundreds method (e.g., 1800 aseighteenHUNDREDS

hundred ). NTEL can be expanded just as a sequence of digits; alternatively,the last
four digits can be read aspaired digits, in which each pair is read as an integer. It is
also possible to read them in a form known astrailing unit , in which the digits are readTRAILING UNIT

serially until the last nonzero digit, which is pronounced followed by the appropriate
unit (e.g.,876-5000aseight seven six five thousand ). The expansion of
NDATE, MONEY, andNTIME is left as exercises (8.1)-(8.4) for the reader.

Of course many of these expansions are dialect-specific. In Australian English,
the sequence33 in a telephone number is generally readdouble three . Other
languages also present additional difficulties in non-standard word normalization. In
French or German, for example, in addition to the above issues, normalization may
depend on morphological properties. In French, the phrase1 fille (‘one girl’) is nor-
malized toune fille , but 1 garçon(‘one boy’) is normalized toun garcçon .
Similarly, in GermanHeinrich IV(‘Henry IV’) can be normalized toHeinrich der
Vierte , Heinrich des Vierten , Heinrich dem Vierten , orHeinrich
den Vierten depending on the grammatical case of the noun (Demberg, 2006).
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8.1.3 Homograph Disambiguation

The goal of our NSW algorithms in the previous section was to determine which se-
quence of standard words to pronounce for each NSW. But sometimes determining
how to pronounce even standard words is difficult. This is particularly true forhomo-
graphs, which are words with the same spelling but different pronunciations. Here areHOMOGRAPHS

some examples of the English homographsuse, live, andbass:

(8.8) It’s no use(/y uw s/)to ask to use(/y uw z/) the telephone.

(8.9) Do you live(/l ih v/) near a zoo with live(/l ay v/) animals?

(8.10) I prefer bass(/b ae s/)fishing to playing the bass(/b ey s/)guitar.

French homographs includefils (which has two pronunciations [fis] ‘son’ versus
[fil] ‘thread]), or the multiple pronunciations forfier (‘proud’ or ‘to trust’), andest(‘is’
or ‘East’) (Divay and Vitale, 1997).

Luckily for the task of homograph disambiguation, the two forms of homographs in
English (as well as in similar languages like French and German) tend to have different
parts of speech.For example, the two forms ofuseabove are (respectively) a noun and
a verb, while the two forms oflive are (respectively) a verb and a noun. Fig. 8.5 shows
some interesting systematic relations between the pronunciation of some noun-verb
and adj-verb homographs.

Final voicing Stress shift -ate final vowel
N (/s/) V (/z/) N (init. stress) V (fin. stress) N/A (final /ax/) V (final /ey/)

use y uw s y uw z record r eh1 k axr0 d r ix0 k ao1 r d estimate eh s t ih m ax t eh s t ih m ey t
close k l ow s k l ow z insult ih1 n s ax0 l t ix0 n s ah1 l t separate s eh p ax r ax t s eh p ax r ey t
house h aw s h aw z object aa1 b j eh0 k t ax0 b j eh1 k t moderate m aa d ax r ax t m aa d ax r ey t

Figure 8.5 Some systematic relationships between homographs: final consonant (noun /s/ versus verb /z/),
stress shift (noun initial versus verb final stress), and final vowel weakening in-atenoun/adjs.

Indeed, Liberman and Church (1992) showed that many of the most frequent ho-
mographs in 44 million words of AP newswire are disambiguatable just by using part-
of-speech (the most frequent 15 homographs in order are:use, increase, close, record,
house, contract, lead, live, lives, protest, survey, project, separate, present, read).

Thus because knowledge of part-of-speech is sufficient to disambiguate many ho-
mographs, in practice we perform homograph disambiguationby storing distinct pro-
nunciations for these homographs labeled by part-of-speech, and then running a part-
of-speech tagger to choose the pronunciation for a given homograph in context.

There are a number of homographs, however, where both pronunciations have the
same part-of-speech. We saw two pronunciations forbass(fish versus instrument)
above. Other examples of these includelead (because there are two noun pronuncia-
tions, /l iy d/ (a leash or restraint) and /l eh d/ (a metal)). We can also think of the task
of disambiguating certain abbreviations (mentioned earlyas NSW disambiguation) as
homograph disambiguation. For example,Dr. is ambiguous betweendoctor and
drive , andSt. betweenSaint or street . Finally, there are some words that dif-
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fer in capitalizations likepolish/Polish, which are homographs only in situations like
sentence beginnings or all-capitalized text.

In practice, these latter classes of homographs that cannotbe resolved using part-
of-speech are often ignored in TTS systems. Alternatively,we can attempt to resolve
them using the word sense disambiguation algorithms that wewill introduce in Ch. 20,
like thedecision-listalgorithm of Yarowsky (1997).

8.2 PHONETIC ANALYSIS

The next stage in synthesis is to take the normalized word strings from text analysis
and produce a pronunciation for each word. The most important component here is a
large pronunciation dictionary. Dictionaries alone turn out to be insufficient, because
running text always contains words that don’t appear in the dictionary. For example
Black et al. (1998) used a British English dictionary, the OALD lexicon on the first
section of the Penn Wall Street Journal Treebank. Of the 39923 words (tokens) in this
section, 1775 word tokens (4.6%) were not in the dictionary,of which 943 are unique
(i.e. 943 types). The distributions of these unseen word tokens was as follows:

names unknown typos and other
1360 351 64
76.6% 19.8% 3.6%

Thus the two main areas where dictionaries need to be augmented is in dealing with
names and with other unknown words. We’ll discuss dictionaries in the next section,
followed by names, and then turn to grapheme-to-phoneme rules for dealing with other
unknown words.

8.2.1 Dictionary Lookup

Phonetic dictionaries were introduced in Sec.??of Ch. 8. One of the most widely-used
for TTS is the freely available CMU Pronouncing Dictionary (CMU, 1993), which has
pronunciations for about 120,000 words. The pronunciations are roughly phonemic,
from a 39-phone ARPAbet-derived phoneme set. Phonemic transcriptions means that
instead of marking surface reductions like the reduced vowels [ax] or [ix], CMUdict
marks each vowel with a stress tag, 0 (unstressed), 1 (stressed), or 2 (secondary stress).
Thus (non-diphthong) vowels with 0 stress generally correspond to [ax] or [ix]. Most
words have only a single pronunciation, but about 8,000 of the words have two or even
three pronunciations, and so some kinds of phonetic reductions are marked in these
pronunciations. The dictionary is not syllabified, although the nucleus is implicitly
marked by the (numbered) vowel. Fig. 8.6 shows some sample pronunciations.

The CMU dictionary was designed for speech recognition rather than synthesis
uses; thus it does not specify which of the multiple pronunciations to use for synthesis,
does not mark syllable boundaries, and because it capitalizes the dictionary headwords,
does not distinguish between e.g.,USandus(the formUShas the two pronunciations
[AH1 S] and [Y UW1 EH1 S].
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ANTECEDENTS AE2 N T IH0 S IY1 D AH0 N T S PAKISTANI P AE2 K IH0 S T AE1 N IY0
CHANG CH AE1 NG TABLE T EY1 B AH0 L
DICTIONARY D IH1 K SH AH0 N EH2 R IY0 TROTSKY T R AA1 T S K IY2
DINNER D IH1 N ER0 WALTER W AO1 L T ER0
LUNCH L AH1 N CH WALTZING W AO1 L T S IH0 NG
MCFARLAND M AH0 K F AA1 R L AH0 N D WALTZING(2) W AO1 L S IH0 NG

Figure 8.6 Some sample pronunciations from the CMU Pronouncing Dictionary.

The 110,000 word UNISYN dictionary, freely available for research purposes, re-
solves many of these issues as it was designed specifically for synthesis (Fitt, 2002).
UNISYN gives syllabifications, stress, and some morphological boundaries. Further-
more, pronunciations in UNISYN can also be read off in any of dozens of dialects of
English, including General American, RP British, Australia, and so on. The UNISYN
uses a slightly different phone set; here are some examples:

going: { g * ou }.> i ng >
antecedents: { * a n . tˆ i . s ˜ ii . d n! t }> s >
dictionary: { d * i k . sh @ . n ˜ e . r ii }

8.2.2 Names

As the error analysis above indicated, names are an important issue in speech synthe-
sis. The many types can be categorized into personal names (first names and surnames),
geographical names (city, street, and other place names), and commercial names (com-
pany and product names). For personal names alone, Spiegel (2003) gives an estimate
from Donnelly and other household lists of about two milliondifferent surnames and
100,000 first names just for the United States. Two million isa very large number; an
order of magnitude more than the entire size of the CMU dictionary. For this reason,
most large-scale TTS systems include a large name pronunciation dictionary. As we
saw in Fig. 8.6 the CMU dictionary itself contains a wide variety of names; in partic-
ular it includes the pronunciations of the most frequent 50,000 surnames from an old
Bell Lab estimate of US personal name frequency, as well as 6,000 first names.

How many names are sufficient? Liberman and Church (1992) found that a dic-
tionary of 50,000 names covered 70% of the name tokens in 44 million words of AP
newswire. Interestingly, many of the remaining names (up to97.43% of the tokens in
their corpus) could be accounted for by simple modificationsof these 50,000 names.
For example, some name pronunciations can be created by adding simple stress-neutral
suffixes likes or ville to names in the 50,000, producing new names as follows:

walters = walter+s lucasville = lucas+ville abelson = abel+ son

Other pronunciations might be created by rhyme analogy. If we have the pronunci-
ation for the nameTrotsky, but not the namePlotsky, we can replace the initial /tr/ from
Trotskywith initial /pl/ to derive a pronunciation forPlotsky.

Techniques such as this, including morphological decomposition, analogical for-
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mation, and mapping unseen names to spelling variants already in the dictionary (Fack-
rell and Skut, 2004), have achieved some success in name pronunciation. In general,
however, name pronunciation is still difficult. Many modernsystems deal with un-
known names via the grapheme-to-phoneme methods describedin the next section, of-
ten by building two predictive systems, one for names and onefor non-names. Spiegel
(2003, 2002) summarizes many more issues in proper name pronunciation.

8.2.3 Grapheme-to-Phoneme

Once we have expanded non-standard words and looked them allup in a pronuncia-
tion dictionary, we need to pronounce the remaining, unknown words. The process
of converting a sequence of letters into a sequence of phonesis calledgrapheme-to-
phonemeconversion, sometimes shortenedg2p. The job of a grapheme-to-phonemeGRAPHEMETO

PHONEME

algorithm is thus to convert a letter string likecakeinto a phone string like[K EY K] .
The earliest algorithms for grapheme-to-phoneme conversion were rules written by

hand using the Chomsky-Halle phonological rewrite rule format of Eq.?? in Ch. 7.
These are often calledletter-to-sound or LTS rules, and they are still used in someLETTERTOSOUND

systems. LTS rules are applied in order, with later (default) rules only applying if the
context for earlier rules are not applicable. A simple pair of rules for pronouncing the
letterc might be as follows:

c → [k] / {a,o}V ; context-dependent(8.11)

c → [s] ; context-independent(8.12)

Actual rules must be much more complicated (for examplec can also be pro-
nounced [ch] incello or concerto). Even more complex are rules for assigning stress,
which are famously difficult for English. Consider just one of the many stress rules
from Allen et al. (1987), where the symbolX represents all possible syllable onsets:

(8.13) V → [+stress] /X C* {VshortC C?|V} {VshortC*|V}

This rule represents the following two situations:
1. Assign 1-stress to the vowel in a syllable preceding a weaksyllable followed by a morpheme-

final syllable containing a short vowel and 0 or more consonants (e.g.difficult)

2. Assign 1-stress to the vowel in a syllable preceding a weaksyllable followed by a morpheme-
final vowel (e.g.oregano)

While some modern systems still use such complex hand-written rules, most sys-
tems achieve higher accuracy by relying instead on automatic or semi-automatic meth-
ods based on machine learning. This modern probabilistic grapheme-to-phonemeprob-
lem was first formalized by Lucassen and Mercer (1984). Givena letter sequenceL,
we are searching for the most probable phone sequenceP:

P̂ = argmax
P

P(P|L)(8.14)

The probabilistic method assumes a training set and a test set; both sets are lists of
words from a dictionary, with a spelling and a pronunciationfor each word. The next
subsections show how the populardecision treemodel for estimating this probability
P(P|L) can be trained and applied to produce the pronunciation for an unseen word.
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Finding a letter-to-phone alignment for the training set

Most letter-to-phone algorithms assume that we have analignment, which tells us
which phones align with each letter. We’ll need this alignment for each word in the
training set. Some letters might align to multiple phones (e.g.,x often aligns tok s ),
while other letters might align with no phones at all, like the final letter ofcakein the
following alignment:

L: c a k e
| | | |

P: K EY K ε
One method for finding such a letter-to-phone alignment is the semi-automatic

method of (Black et al., 1998). Their algorithm is semi-automatic because it relies
on a hand-written list of theallowable phones that can realize each letter. Here are
allowables lists for the lettersc ande:

c: k ch s sh t-s ε
e: ih iy er ax ah eh ey uw ay ow y-uw oy aa ε

In order to produce an alignment for each word in the trainingset, we take this
allowables list for all the letters, and for each word in the training set, we find all
alignments between the pronunciation and the spelling thatconform to the allowables
list. From this large list of alignments, we compute, by summing over all alignments
for all words, the total count for each letter being aligned to each phone (or multi-
phone orε). From these counts we can normalize to get for each phonepi and letterl j

a probabilityP(pi |l j):

P(pi |l j) =
count(pi , l j)

count(l j )
(8.15)

We can now take these probabilities and realign the letters to the phones, using
the Viterbi algorithm to produce the best (Viterbi) alignment for each word, where
the probability of each alignment is just the product of all the individual phone/letter
alignments.

In this way we can produce a single good alignmentA for each particular pair(P,L)
in our training set.

Choosing the best phone string for the test set

Given a new wordw, we now need to map its letters into a phone string. To do this,
we’ll first train a machine learning classifier, like a decision tree, on the aligned training
set. The job of the classifier will be to look at a letter of the word and generate the most
probable phone.

What features should we use in this decision tree besides thealigned letterl i itself?
Obviously we can do a better job of predicting the phone if we look at a window
of surrounding letters; for example consider the lettera. In the wordcat, the a is
pronounceAE. But in our wordcake, a is pronouncedEY, becausecakehas a finale;
thus knowing whether there is a finale is a useful feature. Typically we look at thek
previous letters and thek following letters.

Another useful feature would be the correct identity of the previous phone. Know-
ing this would allow us to get some phonotactic information into our probability model.
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Of course, we can’t know the true identity of the previous phone, but we can approxi-
mate this by looking at the previous phone that was predictedby our model. In order to
do this, we’ll need to run our decision tree left to right, generating phones one by one.

In summary, in the most common decision tree model, the probability of each phone
pi is estimated from a window ofk previous andk following letters, as well as the most
recentk phones that were previously produced.

Fig. 8.7 shows a sketch of this left-to-right process, indicating the features that a
decision tree would use to decide the letter corresponding to the letters in the word
Jurafsky. As this figure indicates, we can integrate stress prediction into phone pre-
diction by augmenting our set of phones with stress information. We can do this by
having two copies of each vowel (e.g.,AEandAE1), or possibly even the three levels
of stressAE0, AE1, andAE2, that we saw in the CMU lexicon. We’ll also want to add
other features into the decision tree, including the part-of-speech tag of the word (most
part-of-speech taggers provide an estimate of the part-of-speech tag even for unknown
words) and facts such as whether the previous vowel was stressed.

In addition, grapheme-to-phoneme decision trees can also include other more so-
phisticated features. For example, we can use classes of letters (corresponding roughly
to consonants, vowels, liquids, and so on). In addition, forsome languages, we need to
know features about the following word. For example French has a phenomenon called
liaison, in which the realization of the final phone of some words depends on whetherLIAISON

there is a next word, and whether it starts with a consonant ora vowel. For example
the French wordsix can be pronounced [sis] (inj’en veux six‘I want six’), [siz] (six
enfants‘six children’), [si] (six filles‘six girls’).

Finally, most synthesis systems build two separate grapheme-to-phoneme decision
trees, one for unknown personal names and one for other unknown words. For pro-
nouncing personal names it turns out to be helpful to use additional features that in-
dicate which foreign language the names originally come from. Such features could
be the output of a foreign-language classifier based on letter sequences (different lan-
guages have characteristic letterN-gram sequences).

The decision tree is a conditional classifier, computing thephoneme string that
has the highest conditional probability given the graphemesequence. More recent
grapheme-to-phoneme conversion makes use of a joint classifier, in which the hidden
state is a combination of phone and grapheme called agraphone; see the end of the
chapter for references.

8.3 PROSODICANALYSIS

The final stage of linguistic analysis is prosodic analysis.In poetry, the wordprosodyPROSODY

refers to the study of the metrical structure of verse. In linguistics and language pro-
cessing, however, we use the termprosody to mean the study of the intonational and
rhythmic aspects of language. More technically, prosody has been defined by Ladd
(1996) as the ‘use of suprasegmental features to convey sentence-level pragmatic mean-
ings’. The termsuprasegmentalmeans above and beyond the level of the segment orSUPRASEGMENTAL

phone, and refers especially to the uses of acoustic features like F0 duration, and
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# # J u r a f s k y # #

  JH _ AXR AE1 F ?     

g2p 
Classifier

a

li-3 li-2 li-1

pi-3 pi-2 pi-1

LANG=Russian
POS=NNP

li li+1 li+2 li+3

Figure 8.7 The process of converting graphemes to phonemes, showing the left-to-right
process making a decision for the letters. The features used by the decision tree are shown
in blue. We have shown the context windowk = 3; in real TTS systems the window size
is likely to be 5 or even larger.

energy independently of the phone string.
By sentence-level pragmatic meaning, Ladd is referring to a number of kinds

of meaning that have to do with the relation between a sentence and its discourse
or external context. For example, prosody can be used to markdiscourse structure
or function , like the difference between statements and questions, or the way that a
conversation is structured into segments or subdialogs. Prosody is also used to mark
saliency, such as indicating that a particular word or phrase is important or salient. Fi-
nally, prosody is heavily used for affective and emotional meaning, such as expressing
happiness, surprise, or anger.

In the next sections we will introduce the three aspects of prosody, each of which is
important for speech synthesis:prosodic prominence, prosodic structure andtune.
Prosodic analysis generally proceeds in two parts. First, we compute an abstract repre-
sentation of the prosodic prominence, structure and tune ofthe text. For unit selection
synthesis, this is all we need to do in the text analysis component. For diphone and
HMM synthesis, we have one further step, which is to predictduration andF0 values
from these prosodic structures.

8.3.1 Prosodic Structure

Spoken sentences have prosodic structure in the sense that some words seem to group
naturally together and some words seem to have a noticeable break or disjuncture be-
tween them. Often prosodic structure is described in terms of prosodic phrasing,PROSODIC

PHRASING

meaning that an utterance has a prosodic phrase structure ina similar way to it having
a syntactic phrase structure. For example, in the sentenceI wanted to go to London, but
could only get tickets for Francethere seems to be two mainintonation phrases, theirINTONATION

PHRASES

boundary occurring at the comma. Furthermore, in the first phrase, there seems to be
another set of lesser prosodic phrase boundaries (often called intermediate phrases)INTERMEDIATE

PHRASE

that split up the words as followsI wanted| to go| to London.
Prosodic phrasing has many implications for speech synthesis; the final vowel of a
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phrase is longer than usual, we often insert a pause after an intonation phrases, and, as
we will discuss in Sec. 8.3.6, there is often a slight drop in F0 from the beginning of an
intonation phrase to its end, which resets at the beginning of a new intonation phrase.

Practical phrase boundary prediction is generally treatedas a binary classification
task, where we are given a word and we have to decide whether ornot to put a prosodic
boundary after it. A simple model for boundary prediction can be based on determinis-
tic rules. A very high-precision rule is the one we saw for sentence segmentation: insert
a boundary after punctuation. Another commonly used rule inserts a phrase boundary
before a function word following a content word.

More sophisticated models are based on machine learning classifiers. To create
a training set for classifiers, we first choose a corpus, and then mark every prosodic
boundaries in the corpus. One way to do this prosodic boundary labeling is to use
an intonational model like ToBI or Tilt (see Sec. 8.3.4), have human labelers listen to
speech and label the transcript with the boundary events defined by the theory. Because
prosodic labeling is extremely time-consuming, however, atext-only alternative is of-
ten used. In this method, a human labeler looks only at the text of the training corpus,
ignoring the speech. The labeler marks any juncture betweenwords where they feel a
prosodic boundary might legitimately occur if the utterance were spoken.

Given a labeled training corpus, we can train a decision treeor other classifier to
make a binary (boundary vs. no boundary) decision at every juncture between words
(Wang and Hirschberg, 1992; Ostendorf and Veilleux, 1994; Taylor and Black, 1998).

Features that are commonly used in classification include:

• Length features: phrases tend to be of roughly equal length, and so we can
use various feature that hint at phrase length (Bachenko andFitzpatrick, 1990;
Grosjean et al., 1979; Gee and Grosjean, 1983).

– The total number of words and syllables in utterance
– The distance of the juncture from the beginning and end of thesentence (in

words or syllables)
– The distance in words from the last punctuation mark

• Neighboring part-of-speech and punctuation:

– The part-of-speech tags for a window of words around the juncture. Gen-
erally the two words before and after the juncture are used.

– The type of following punctuation

There is also a correlation between prosodic structure and thesyntactic structure
that will be introduced in Ch. 12, Ch. 13, and Ch. 14 (Price et al., 1991). Thus robust
parsers like Collins (1997) can be used to label the sentencewith rough syntactic in-
formation, from which we can extract syntactic features such as the size of the biggest
syntactic phrase that ends with this word (Ostendorf and Veilleux, 1994; Koehn et al.,
2000).

8.3.2 Prosodic prominence

In any spoken utterance, some words sound moreprominent than others. ProminentPROMINENT

words are perceptually more salient to the listener; speakers make a word more salient
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in English by saying it louder, saying it slower (so it has a longer duration), or by
varying F0 during the word, making it higher or more variable.

We generally capture the core notion of prominence by associating a linguistic
marker with prominent words, a marker calledpitch accent. Words which are promi-PITCH ACCENT

nent are said tobear (be associated with) a pitch accent. Pitch accent is thus part of theBEAR

phonological description of a word in context in a spoken utterance.
Pitch accent is related tostress, which we discussed in Ch. 7. The stressed syllable

of a word is where pitch accent is realized. In other words, ifa speaker decides to
highlight a word by giving it a pitch accent, the accent will appear on the stressed
syllable of the word.

The following example shows accented words in capital letters, with the stressed
syllable bearing the accent (the louder, longer, syllable)in boldface:

(8.16) I’m a little SURPRISED to hear itCHARACTERIZED as UPBEAT .

Note that the function words tend not to bear pitch accent, while most of the content
words are accented. This is a special case of the more generalfact that very informative
words (content words, and especially those that are new or unexpected) tend to bear
accent (Ladd, 1996; Bolinger, 1972).

We’ve talked so far as if we only need to make a binary distinction between ac-
cented and unaccented words. In fact we generally need to make more fine-grained
distinctions. For example the last accent in a phrase generally is perceived as being
more prominent than the other accents. This prominent last accent is called thenu-
clear accent. Emphatic accents like nuclear accent are generally used for semanticNUCLEAR ACCENT

purposes, for example to indicate that a word is thesemantic focusof the sentence
(see Ch. 21) or that a word is contrastive or otherwise important in some way. Such
emphatic words are the kind that are often written IN CAPITALLETTERS or with
**STARS** around them in SMS or email orAlice in Wonderland; here’s an example
from the latter:

(8.17) ‘I know SOMETHING interesting is sure to happen,’ she said toherself,

Another way that accent can be more complex than just binary is that some words
can belessprominent than usual. We introduced in Ch. 7 the idea that function words
are often phonetically veryreduced.

A final complication is that accents can differ according to thetune associated with
them; for example accents with particularly high pitch havedifferent functions than
those with particularly low pitch; we’ll see how this is modeled in the ToBI model in
Sec. 8.3.4.

Ignoring tune for the moment, we can summarize by saying thatspeech synthesis
systems can use as many as four levels of prominence:emphatic accent, pitch accent,
unaccented, andreduced. In practice, however, many implemented systems make do
with a subset of only two or three of these levels.

Let’s see how a 2-level system would work. With two-levels, pitch accent predic-
tion is a binary classification task, where we are given a wordand we have to decide
whether it is accented or not.

Since content words are very often accented, and function words are very rarely
accented, the simplest accent prediction system is just to accent all content words and
no function words. In most cases better models are necessary.



DRAFT

18 Chapter 8. Speech Synthesis

In principle accent prediction requires sophisticated semantic knowledge, for ex-
ample to understand if a word is new or old in the discourse, whether it is being used
contrastively, and how much new information a word contains. Early models made use
of sophisticated linguistic models of all of this information (Hirschberg, 1993). But
Hirschberg and others showed better prediction by using simple, robust features that
correlate with these sophisticated semantics.

For example, the fact that new or unpredictable informationtends to be accented
can be modeled by using robust features likeN-grams or TF*IDF (Pan and Hirschberg,
2000; Pan and McKeown, 1999). The unigram probability of a word P(wi) and its
bigram probabilityP(wi |wi−1), both correlate with accent; the more probable a word,
the less likely it is to be accented. Similarly, an information-retrieval measure known as
TF*IDF (Term-Frequency/Inverse-DocumentFrequency; see Ch. 23)is a useful accentTF*IDF

predictor. TF*IDF captures the semantic importance of a word in a particular document
d, by downgrading words that tend to appear in lots of different documents in some
large background corpus withN documents. There are various versions of TF*IDF;
one version can be expressed formally as follows, assumingNw is the frequency ofw
in the documentd, andk is the total number of documents in the corpus that containw:

TF*IDF(w) = Nw× log(
N
k

)(8.18)

For words which have been seen enough times in a training set,the accent ratioACCENT RATIO

feature can be used, which models a word’s individual probability of being accented.
The accent ratio of a word is equal to the estimated probability of the word being ac-
cented if this probability is significantly different from 0.5, and equal to 0.5 otherwise.
More formally,

AccentRatio(w) =

{

k
N if B(k,N,0.5) ≤ 0.05

0.5 otherwise

whereN is the total number of times the wordw occurred in the training set,k is the
number of times it was accented, andB(k,n,0.5) is the probability (under a binomial
distribution) that there arek successes inn trials if the probability of success and failure
is equal (Nenkova et al., 2007; Yuan et al., 2005).

Features like part-of-speech,N-grams, TF*IDF, and accent ratio can then be com-
bined in a decision tree to predict accents. While these robust features work relatively
well, a number of problems in accent prediction still remainthe subject of research.

For example, it is difficult to predict which of the two words should be accented
in adjective-noun or noun-noun compounds. Some regularities do exist; for example
adjective-noun combinations likenew truckare likely to have accent on the right word
(new TRUCK), while noun-noun compounds likeTREE surgeonare likely to have ac-
cent on the left. But the many exceptions to these rules make accent prediction in noun
compounds quite complex. For example the noun-noun compound APPLE cakehas
the accent on the first word while the noun-noun compoundapple PIEor city HALL
both have the accent on the second word (Liberman and Sproat,1992; Sproat, 1994,
1998a).

Another complication has to do with rhythm; in general speakers avoid putting
accents too close together (a phenomenon known asclash) or too far apart (lapse).CLASH

LAPSE
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Thuscity HALLandPARKING lotcombine asCITY hall PARKING lotwith the accent
on HALL shifting forward toCITY to avoid the clash with the accent onPARKING
(Liberman and Prince, 1977),

Some of these rhythmic constraints can be modeled by using machine learning
techniques that are more appropriate for sequence modeling. This can be done by
running a decision tree classifier left to right through a sentence, and using the output
of the previous word as a feature, or by using more sophisticated machine learning
models like Conditional Random Fields (CRFs) (Gregory and Altun, 2004).

8.3.3 Tune

Two utterances with the same prominence and phrasing patterns can still differ prosod-
ically by having differenttunes. The tune of an utterance is the rise and fall of itsTUNE

F0 over time. A very obvious example of tune is the differencebetween statements
and yes-no questions in English. The same sentence can be said with a final rise in F0
to indicate a yes-no-question, or a final fall in F0 to indicate a declarative intonation.
Fig. 8.8 shows the F0 track of the same words spoken as a question or a statement.
Note that the question rises at the end; this is often called aquestion rise. The fallingQUESTION RISE

intonation of the statement is called afinal fall .FINAL FALL
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Figure 8.8 The same text read as the statementYou know what I mean. (on the left) and as a questionYou know
what I mean?(on the right). Notice that yes-no-question intonation in English has a sharp final rise in F0.

It turns out that English makes very wide use of tune to express meaning. Besides
this well known rise for yes-no questions, an English phrasecontaining a list of nouns
separated by commas often has a short rise called acontinuation rise after each noun.CONTINUATION RISE

English also has characteristic contours to express contradiction, to express surprise,
and many more.

The mapping between meaning and tune in English is extremelycomplex, and
linguistic theories of intonation like ToBI have only begunto develop sophisticated
models of this mapping.

In practice, therefore, most synthesis systems just distinguish two or three tunes,
such as thecontinuation rise (at commas), thequestion rise(at question mark if the
question is a yes-no question), and afinal fall otherwise.

8.3.4 More sophisticated models: ToBI

While current synthesis systems generally use simple models of prosody like the ones
discussed above, recent research focuses on the development of much more sophisti-
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cated models. We’ll very briefly discuss theToBI , andTilt models here.

ToBI

One of the most widely used linguistic models of prosody is theToBI (Tone and BreakTOBI

Indices) model (Silverman et al., 1992; Beckman and Hirschberg, 1994; Pierrehumbert,
1980; Pitrelli et al., 1994). ToBI is a phonological theory of intonation which models
prominence, tune, and boundaries. ToBI’s model of prominence and tunes is based on
the 5pitch accentsand 4boundary tonesshown in Fig. 8.9.

Pitch Accents Boundary Tones
H* peak accent L-L% “final fall”: “declarative contour” of American En-

glish”
L* low accent L-H% continuation rise
L*+H scooped accent H-H% “question rise”: cantonical yes-no question con-

tour
L+H* rising peak accent H-L% final level plateau (plateau because H- causes “up-

step” of following)
H+!H* step down

Figure 8.9 The accent and boundary tones labels from the ToBI transcription system
for American English intonation (Beckman and Ayers, 1997; Beckman and Hirschberg,
1994).

An utterance in ToBI consists of a sequence of intonational phrases, each of which
ends in one of the fourboundary tones. The boundary tones are used to represent theBOUNDARY TONES

utterance final aspects of tune discussed in Sec. 8.3.3. Eachword in the utterances can
optionally be associated with one of the five types of pitch accents.

Each intonational phrase consists of one or moreintermediate phrase. These
phrases can also be marked with kinds of boundary tone, including the%H high ini-
tial boundary tone, which is used to mark a phrase which is particularly high in the
speakers’ pitch range, as well as final phrase accentsH- andL- .

In addition to accents and boundary tones, ToBI distinguishes four levels of phras-
ing, which are labeled on a separatebreak index tier. The largest levels of phrasingBREAK INDEX

are the intonational phrase (break index4) and the intermediate phrase (break index
3), and were discussed above. Break index2 is used to mark a disjuncture or pause
between words that is smaller than an intermediate phrase, while 1 is used for normal
phrase-medial word boundaries.

Fig. 8.10 shows the tone, orthographic, and phrasingtiers of a ToBI transcription,TIERS

using thepraat program. We see the same sentence read with two different intonation
patterns. In (a), the wordMarianna is spoken with a high H* accent, and the sentence
has the declarative boundary tone L-L%. In (b), the wordMarianna is spoken with
a low L* accent and the yes-no question boundary tone H-H%. One goal of ToBI is
to express different meanings to the different type of accents. Thus, for example, the
L* accent adds a meaning ofsurpriseto the sentence (i.e., with a connotation like ‘Are
you really saying it was Marianna?’). (Hirschberg and Pierrehumbert, 1986; Steedman,
2003).
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H* L–L

<SIL> marianna made the marmalade <SIL>

1 1 1 4

Time (s)
0 1.3

L* H–H

marianna made the marmalade

1 1 1 4

Time (s)
0 1.49

Figure 8.10 The same sentence read by Mary Beckman with two different intonation patterns and transcribed
in ToBI. (a) shows an H* accent and the typical American English declarative final fall L-L%. (b) shows the L*
accent, with the typical American English yes-no question rise H-H%.

ToBI models have been proposed for many languages, such as the J TOBI system
for Japanese (Venditti, 2005); see Jun (2005).

Other Intonation models

The Tilt model (Taylor, 2000) resembles ToBI in using sequences of intonationalTILT

events like accents and boundary tones. But Tilt does not useToBI-style discrete
phonemic classes for accents. Instead, each event is modeled by continuous param-
eters that represent the F0 shape of the accent.

a a a b

s s s s s s s s s s s s

Figure 8.11 Schematic view of events in the Tilt model (Taylor, 2000). Each pitch
accent (a) and boundary tone (b) is aligned with a syllable nucleuss.

Instead of giving each event a category label, as in ToBI, each Tilt prosodic event is
characterized by a set of three acoustic parameters: the duration, the amplitude, and the
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tilt parameter. These acoustic parameters are trained on a corpus which has been hand-TILT

labeled for pitch accents (a) and boundary tones (b). The human labeling specifies
the syllable which bears the accent or tone; the acoustic parameters are then trained
automatically from the wavefile. Fig. 8.11 shows a sample of aTilt representation.
Each accent in Tilt is viewed as having a (possibly zero)rise componentup to peak,
followed by a (possible zero)fall component. An automatic accent detector finds
the start, peak, and end point of each accent in the wavefile, which determines the
duration and amplitude of the rise and fall components. The tilt parameter is an abstract
description of the F0 slope of an event, calculated by comparing the relative sizes of
the rise and fall for an event. A tilt value of 1.0 indicates a rise, tilt of -1.0 a fall, 0
equal rise and fall, -0.5 is an accent with a rise and a larger fall, and so on:

tilt =
tilt amp+ tiltdur

2

=
|Arise|− |Afall|

|Arise|+ |Afall|
+

Drise−Dfall
Drise+Dfall

(8.19)

See the end of the chapter for pointers to a wide variety of other intonational mod-
els.

8.3.5 Computing duration from prosodic labels

The results of the text analysis processes described so far is a string of phonemes,
annotated with words, with pitch accent marked on relevant words, and appropriate
boundary tones marked. For theunit selectionsynthesis approaches that we will de-
scribe in Sec. 8.5, this is a sufficient output from the text analysis component.

Fordiphone synthesis, as well as other approaches like formant synthesis, we also
need to specify theduration and theF0 values of each segment.

Phones vary quite a bit in duration. Some of the duration is inherent to the identity
of the phone itself. Vowels, for example, are generally muchlonger than consonants;
in the Switchboard corpus of telephone speech, the phone [aa] averages 118 millisec-
onds, while [d] averages 68 milliseconds. But phone duration is also affected by a
wide variety of contextual factors, which can be modeled by rule-based or statistical
methods.

The most well-known of the rule-based methods is the method of Klatt (1979),
which uses rules to model how the the average or ‘context-neutral’ duration of a phone
d̄ is lengthened or shortened by context, while staying above aminimum durationdmin.
Each rule is associated with a duration multiplicative factor; some examples:

Prepasual Lengthening: The vowel or syllabic consonant in the syllable before a pause is
lengthened by 1.4.

Non-phrase-final Shortening: Segments which are not phrase-final are shortened by 0.6.
Phrase-final postvocalic liquids and nasals are lengthenedby 1.4.

Unstressed Shortening:Unstressed segments are more compressible, so their minimum dura-
tion dmin is halved, and are shortened by .7 for most phone types.

Lengthening for Accent: A vowel which bears accent is lengthened by 1.4
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Shortening in Clusters: A consonant followed by a consonant is shortened by 0.5.

Pre-voiceless shortening:Vowels are shortened before a voiceless plosive by 0.7

Given the set ofN factor weightsf , the Klatt formula for the duration of a phone
is:

d = dmin+
N

∏
i=1

fi × (d̄−dmin)(8.20)

More recent machine-learning systems use the Klatt hand-written rules as the basis
for defining features, for example using features such as thefollowing:

• identity of the left and right context phone

• lexical stress and accent values of current phone

• position in syllable, word, phrase

• following pause

We can then train machine learning classifiers like decisiontrees or thesum-of-
products model (van Santen, 1994, 1997, 1998), to combine the features to predict theSUMOFPRODUCTS

final duration of the segment.

8.3.6 Computing F0 from prosodic labels

For diphone, articulatory, HMM, and formant synthesis we also need to specify the F0
values of each segment. For the tone sequence models like ToBI or Tilt, this F0 gener-
ation can be done by specifying F0target points for each pitch accent and boundaryTARGET POINTS

tone; the F0 contour for the whole sentence can be created by interpolating among
these targets (Anderson et al., 1984).

In order to specify a target point we need to describe what it is (the F0 value)
and when it occurs (the exact time at which this peak or troughoccurs in the sylla-
ble). The F0 values of the target points are generally not specified in absolute terms of
Hertz. Instead, they are defined relative topitch range. A speaker’spitch range is thePITCH RANGE

range between the lowest frequency they use in a particular utterance (thebaseline fre-
quency) and the the highest frequency in the utterance (thetopline). In some models,BASELINE

FREQUENCY

TOPLINE target points are specified relative to a line in between called thereference line.
REFERENCE LINE For example, we might write a rule specifying that the very beginning of an utter-

ance have a target point of 50% (halfway between the baselineand topline). In the
rule-based system of Jilka et al. (1999) the target point foran H* accent is at 100% (the
topline) and for an L* accent at 0% (at the baseline). L+H* accents have two target
points, at 20% and 100%. Final boundary tones H-H% and L-L% are extra-high and
extra-low at 120% and -20% respectively.

Second, we must also specify exactly where in the accented syllable the targets
apply; this is known as accentalignment. In the rule-based system of Jilka et al.ALIGNMENT

(1999), again, H* accents are aligned 60% of the way through the voiced part of the
accent syllable (although IP-initial accents are aligned somewhat later in the syllable,
while IP-final accents are aligned somewhat earlier).

Instead of writing these rules by hand, the mapping from pitch accent sequence
to F0 value may be learned automatically. For example Black and Hunt (1996) used
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linear regression to assign target values to each syllable.For each syllable with a pitch
accent or boundary tone, they predicted three target values, at the beginning, middle,
and end of the syllable. They trained three separate linear regression models, one for
each of the three positions in the syllable. Features included:

• accent type on the current syllable as well as two previous and two following
syllables

• lexical stress of this syllable and surrounding syllables

• number of syllables to start of phrase and to end of phrase

• number of accented syllables to end of phrase

Such machine learning models require a training set that is labeled for accent; a
number of such prosodically-labeled corpora exist, although it is not clear how well
these models generalize to unseen corpora.

Finally, F0 computation models must model the fact that pitch tends to decline
through a sentence; this subtle drop in pitch across an utterance is calleddeclination;DECLINATION

an example is shown in Fig. 8.12.
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Figure 8.12 F0 declination in the sentence ‘I was pretty goofy for about twenty-four
hours afterwards’.

The exact nature of declination is a subject of much research; in some models, it
is treated by allowing the baseline (or both baseline and top-line) to decrease slowly
over the utterance. In ToBI-like models, this downdrift in F0 is modeled by two sepa-
rate components; in addition to declination, certain high tones are marked as carrying
downstep. Each downstepped high accent causes the pitch range to be compressed,DOWNSTEP

resulting in a lowered topline for each such accent.

8.3.7 Final result of text analysis: Internal Representation

The final output of text analysis is what we called theinternal representation of the
input text sentence. For unit selection synthesis, the internal representation can be as
simple as a phone string together with indications of prosodic boundaries and promi-
nent syllables, as shown in Fig. 8.1. For diphone synthesis as well as non-concatenative
synthesis algorithms the internal representation must also include a duration and an F0
value for each phone.

Fig. 8.13 shows some sample TTS output from the FESTIVAL (Black et al., 1999)
diphone speech synthesis system for the sentenceDo you really want to see all of
it?. This output, together with the F0 values shown in Fig. 8.14 would be the input
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to thewaveform synthesiscomponent described in Sec. 8.4. The durations here are
computed by a CART-style decision tree (Riley, 1992).

H* L* L- H%
do you really want to see all of it

d uw y uw r ih l iy w aa n t t ax s iy ao l ah v ih t
110 110 50 50 75 64 57 82 57 50 72 41 43 47 54 130 76 90 44 62 46 220

Figure 8.13 Output of the FESTIVAL (Black et al., 1999) generator for thesentenceDo you really want to see
all of it?, together with the F0 contour shown in Fig. 8.14. Figure thanks to Paul Taylor.

do you really want to see all of it

H*
H%

L-
L*

Figure 8.14 The F0 contour for the sample sentence generated by the
FESTIVAL synthesis system in Fig. 8.13, thanks to Paul Taylor.

As was suggested above, determining the proper prosodic pattern for a sentence is
difficult, as real-world knowledge and semantic information is needed to know which
syllables to accent, and which tune to apply. This sort of information is difficult to ex-
tract from the text and hence prosody modules often aim to produce a “neutral declara-
tive” version of the input text, which assume the sentence should be spoken in a default
way with no reference to discourse history or real-world events. This is one of the main
reasons why intonation in TTS often sounds “wooden”.

8.4 DIPHONE WAVEFORM SYNTHESIS

We are now ready to see how the internal representation can beturned into a wave-
form. We will present two kinds ofconcatentativesynthesis:diphone synthesisin
this section, andunit selection synthesisin the next section.

Recall that for diphone synthesis, our internal representation is as shown in Fig. 8.13
and Fig. 8.14, consisting of a list of phones, each phone associated with a duration and
a set of F0 targets.

The diphone concatenative synthesis model generates a waveform from a sequence
of phones by selecting and concatenating units from a prerecorded database ofdi-
phones. A diphone is a phone-like unit going from roughly the middleof one phone toDIPHONES
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the middle of the following phone. Diphone concatenative synthesis can be character-
ized by the following steps:

Training:

1. Record a single speaker saying an example of each diphone.
2. Cut each diphone out from the speech and store all diphonesin a diphone

database.

Synthesis:

1. Take from the database a sequence of diphones that corresponds to the
desired phone sequence.

2. Concatenate the diphones, doing some slight signal processing at the bound-
aries

3. Use signal processing to change the prosody (f0, duration) of the diphone
sequence to the desired prosody.

We tend to use diphones rather than phones for concatenativesynthesis because of
the phenomenon ofcoarticulation. In Ch. 7 we definedcoarticulation as the move-COARTICULATION

ment of articulators to anticipate the next sound, or perseverating movement from the
last sound. Because of coarticulation, each phone differs slightly depending on the
previous and following phone. This if we just concatenated phones together, we would
have very large discontinuities at the boundaries.

In a diphone, we model this coarticulation by including the transition to the next
phone inside the unit. The diphone [w-eh], for example, includes the transition from
the [w] phone to the [eh] phone. Because a diphone is defined from the middle of one
phone to the middle of the next, when we concatenate the diphones, we are concate-
nating the middle of phones, and the middle of phones tend to be less influenced by the
context. Fig.?? shows the intuition that the beginning and end of the vowel [eh] have
much more movement than the center.

w eh d b eh n

Time (s)
0 0.63

Figure 8.15 The vowel [eh] in different surrounding contexts, in the words wedand
Ben. Notice the differences in the second formants (F2) at the beginning and end of the
[eh], but the relatively steady state portion in the middle at the blue line.
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8.4.1 Building a diphone database

There are six steps in building a diphone database:

1. Create adiphone inventory
2. Recruit a speaker

3. Create a text for the speaker to read for each diphone

4. Record the speaker reading each diphone

5. Segment, label, and pitch-mark the diphones

6. Excise the diphones

What is the inventory of diphones that we need for a system? Ifwe have 43 phones
(like the AT&T diphone system of Olive et al. (1998)), there are 432 = 1849 hypo-
thetically possible diphone combinations. Not all of thesediphones can actually occur.
For example, the rules of Englishphonotacticsrules out some combinations; phones
like [h], [y], and [w] can only occur before vowels. In addition, some diphone systems
don’t bother storing diphones if there is no possible coarticulation between the phones,
such as across the silence between successive voiceless stops. The 43-phone system
of Olive et al. (1998) thus has only 1162 diphones rather thanthe 1849 hypothetically
possible set.

Next we recruit our speaker, often called avoice talent. The database of diphonesVOICE TALENT

for this speaker is called avoice; commercial systems often have multiple voices, suchVOICE

as one male and one female voice.
We’ll now create a text for the voice talent to say, and recordeach diphone. The

most important thing in recording diphones is to keep them asconsistent as possible;
if possible, they should have constant pitch, energy, and duration, so they are easy to
paste together without noticeable breaks. We do this by enclosing each diphone to be
recorded in acarrier phrase. By putting the diphone in the middle of other phones,CARRIER PHRASE

we keep utterance-final lengthening or initial phone effects from making any diphone
louder or quieter than the others. We’ll need different carrier phrases for consonant-
vowel, vowel-consonant, phone-silence, and silence-phone sequences. For example, a
consonant vowel sequence like [b aa] or [b ae] could be embedded between the sylla-
bles [t aa] and [m aa]:

pause t aa b aa m aa pause
pause t aa b ae m aa pause
pause t aa b eh m aa pause
...

If we have an earlier synthesizer voice lying around, we usually use that voice to
read the prompts out loud, and have our voice talent repeat after the prompts. This
is another way to keep the pronunciation of each diphone consistent. It is also very
important to use a a high quality microphone and a quiet room or, better, a studio
sound booth.

Once we have recorded the speech, we need to label and segmentthe two phones
that make up each diphone. This is usually done by running a speech recognizer in
forced alignment mode. In forced alignment mode, a speech recognition is told ex-
actly what the phone sequence is; its job is just to find the exact phone boundaries
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in the waveform. Speech recognizers are not completely accurate at finding phone
boundaries, and so usually the automatic phone segmentation is hand-corrected.

We now have the two phones (for example [b aa]) with hand-corrected boundaries.
There are two ways we can create the /b-aa/ diphone for the database. One method is to
use rules to decide how far into the phone to place the diphoneboundary. For example,
for stops, we put place the diphone boundary 30% of the way into the phone. For most
other phones, we place the diphone boundary 50% into the phone.

A more sophisticated way to find diphone boundaries is to store the entire two
phones, and wait to excise the diphones until we are know whatphone we are about
to concatenate with. In this method, known asoptimal coupling, we take the twoOPTIMAL COUPLING

(complete, uncut) diphones we need to concatenate, and we check every possible cut-
ting point for each diphones, choosing the two cutting points that would make the final
frame of the first diphone acoustically most similar to the end frame of the next diphone
(Taylor and Isard, 1991; Conkie and Isard, 1996). Acoustical similar can be measured
by usingcepstral similarity , to be defined in Sec.??.

8.4.2 Diphone concatenation and TD-PSOLA for prosodic adjust-
ment

We are now ready to see the remaining steps for synthesizing an individual utterance.
Assume that we have completed text analysis for the utterance, and hence arrived at a
sequence of diphones and prosodic targets, and that we have also grabbed the appro-
priate sequence of diphones from the diphone database. Nextwe need to concatenate
the diphones together and then adjust the prosody (pitch, energy, and duration) of the
diphone sequence to match the prosodic requirements from the intermediate represen-
tation.

Given two diphones, what do we need to do to concatenate them successfully?
If the waveforms of the two diphones edges across the juncture are very different,
a perceptibleclick will result. Thus we need to apply a windowing function to theCLICK

edge of both diphones so that the samples at the juncture havelow or zero amplitude.
Furthermore, if both diphones are voiced, we need to insure that the two diphones are
joinedpitch-synchronously. This means that the pitch periods at the end of the firstPITCH

SYNCHRONOUSLY

diphone must line up with the pitch periods at the beginning of the second diphone;
otherwise the resulting single irregular pitch period at the juncture is perceptible as
well.

Now given our sequence of concatenated diphones, how do we modify the pitch
and duration to meet our prosodic requirements? It turns outthere is a very sim-
ple algorithm for doing this calledTD-PSOLA (Time-Domain Pitch-SynchronousTDPSOLA

OverLap-and-Add).
As we just said, apitch-synchronousalgorithm is one in which we do something

at each pitch period orepoch. For such algorithms it is important to have very accurate
pitch markings: measurements of exactly where each pitch pulse orepochoccurs. An
epoch can be defined by the instant of maximum glottal pressure, or alternatively by
the instant of glottal closure. Note the distinction between pitch marking or epochPITCH MARKING

detectionandpitch tracking . Pitch tracking gives the value of F0 (the average cyclesPITCH TRACKING

per second of the glottis) at each particular point in time, averaged over a neighborhood.
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Pitch marking finds the exact point in time at each vibratory cycle at which the vocal
folds reach some specific point (epoch).

Epoch-labeling can be done in two ways. The traditional way,and still the most
accurate, is to use anelectroglottograph or EGG (electroglottograph) (often alsoELECTROGLOTTO

GRAPH
EGG (ELECTROGLOT

TOGRAPH)
called alaryngograph or Lx (laryngograph) ). An EGG is a device which straps onto

LARYNGOGRAPH

LX (LARYNGOGRAPH)

the (outside of the) speaker’s neck near the larynx and sendsa small current through
the Adam’s apple. A transducer detects whether the glottis is open or closed by mea-
suring the impedance across the vocal folds. Some modern synthesis databases are still
recorded with an EGG. The problem with using an EGG is that it must be attached to
the speaker while they are recording the database. Althoughan EGG isn’t particularly
invasive, this is still annoying, and the EGG must be used during recording; it can’t be
used to pitch-mark speech that has already been collected. Modern epoch detectors are
now approaching a level of accuracy that EGGs are no longer used in most commer-
cial TTS engines. Algorithms for epoch detection include Brookes and Loke (1999),
Veldhuis (2000).

Given an epoch-labeled corpus, the intuition of TD-PSOLA isthat we can mod-
ify the pitch and duration of a waveform by extracting a framefor each pitch period
(windowed so that the frame doesn’t have sharp edges) and then recombining these
frames in various ways by simply overlapping and adding the windowed pitch period
frames (we will introduce the idea of windows in Sec.??). The idea that we modify
a signal by extracting frames, manipulating them in some wayand then recombin-
ing them by adding up the overlapped signals is called theoverlap-and-addor OLAOVERLAPANDADD

OLA algorithm; TD-PSOLA is a special case of overlap-and-add inwhich the frames are
pitch-synchronous, and the whole process takes place in thetime domain.

For example, in order to assign a specific duration to a diphone, we might want to
lengthen the recorded master diphone. To lengthen a signal with TD-PSOLA, we sim-
ply insert extra copies of some of the pitch-synchronous frames, essentially duplicating
a piece of the signal. Fig. 8.16 shows the intuition.

TD-PSOLA can also be used to change the F0 value of a recorded diphone to give
a higher or lower value. To increase the F0, we extract each pitch-synchronous frame
from the original recorded diphone signal, place the framescloser together (overlap-
ping them), with the amount of overlap determined by the desired period and hence
frequency, and then add up the overlapping signals to produce the final signal. But
note that by moving all the frames closer together, we make the signal shorter in time!
Thus in order to change the pitch while holding the duration constant, we need to add
duplicate frames.

Fig. 8.17 shows the intuition; in this figure we have explicitly shown the extracted
pitch-synchronous frames which are overlapped and added; note that the frames moved
closer together (increasing the pitch) while extra frames have been added to hold the
duration constant.
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A CB D E F

A CB D E FB

Figure 8.16 TD-PSOLA for duration modification. Individual pitch-synchronous
frames can be duplicated to lengthen the signal (as shown here), or deleted to shorten
the signal.

8.5 UNIT SELECTION (WAVEFORM) SYNTHESIS

Diphone waveform synthesis suffers from two main problems.First, the stored di-
phone database must be modified by signal process methods like PSOLA to produce
the desired prosody. Any kind of signal processing of the stored speech leaves artifacts
in the speech which can make the speech sound unnatural. Second, diphone synthesis
only captures the coarticulation due to a single neighboring phone. But there are many
more global effects on phonetic realization, including more distant phones, syllable
structure, the stress patterns of nearby phones, and even word-level effects.

For this reason, modern commercial synthesizers are based on a generalization of
diphone synthesis calledunit selection synthesis. Like diphone synthesis, unit selec-UNIT SELECTION

SYNTHESIS

tion synthesis is a kind of concatenative synthesis algorithm. It differs from classic
diphone synthesis in two ways:

1. In diphone synthesis the database stores exactly one copyof each diphone, while
in unit selection, the unit database is many hours long, containing many copies
of each diphone.

2. In diphone synthesis, the prosody of the concatenated units is modified by PSOLA
or similar algorithms, while in unit selection no (or minimal) signal processing
is applied to the concatenated units.

The strengths of unit selection are due to the large unit database. In a sufficiently
large database, entire words or phrases of the utterance we want to synthesize may be
already present in the database, resulting in an extremely natural waveform for these
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Figure 8.17 TD-PSOLA for pitch (F0) modification. In order to increase the pitch,
the individual pitch-synchronous frames are extracted, Hanning windowed, moved closer
together and then added up. To decrease the pitch, we move theframes further apart.
Increasing the pitch will result in a shorter signal (since the frames are closer together), so
we also need to duplicate frames if we want to change the pitchwhile holding the duration
constant.

words or phrases. In addition, in cases where we can’t find a large chunk and have to
back off to individual diphones, the fact that there are so many copies of each diphone
makes it more likely that we will find one that will fit in very naturally.

The architecture of unit selection can be summarized as follows. We are given a
large database of units; let’s assume these are diphones (although it’s also possible to do
unit selection with other kinds of units such half-phones, syllables, or half-syllables).
We are also given a characterization of the target ‘internalrepresentation’, i.e. a phone
string together with features such as stress values, word identity, F0 information, as
described in Fig. 8.1.

The goal of the synthesizer is to select from the database thebest sequence of
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diphone units that corresponds to the target representation. What do we mean by the
‘best’ sequence? Intuitively, the best sequence would be one in which:

• each diphone unit we select exactly meets the specificationsof the target diphone
(in terms of F0, stress level, phonetic neighbors, etc)

• each diphone unit concatenates smoothly with its neighboring units, with no
perceptible break.

Of course, in practice, we can’t guarantee that there wil be aunit which exactly
meets our specifications, and we are unlikely to find a sequence of units in which every
single join is imperceptible. Thus in practice unit selection algorithms implement a
gradient version of these constraints, and attempt to find the sequence of unit which at
least minimizes these two costs:

target costT(ut ,st): how well the target specificationst matches the potential unitutTARGET COST

join cost J(ut ,ut+1): how well (perceptually) the potential unitut joins with its po-JOIN COST

tential neighborut+1

TheT andJ values are expressed ascostsmeaning that high values indicate bad
matches and bad joins (Hunt and Black, 1996a).

Formally, then, the task of unit selection synthesis, givena sequenceSof T target
specifications, is to find the sequenceÛ of T units from the database which minimizes
the sum of these costs:

Û = argmin
U

T

∑
t=1

T(st ,ut)+
T−1

∑
t=1

J(ut ,ut+1)(8.21)

Let’s now define the target cost and the join cost in more detail before we turn to
the decoding and training tasks.

The target cost measures how well the unit matches the targetdiphone specifica-
tion. We can think of the specification for each diphone target as a feature vector; here
are three sample vectors for three target diphone specifications, using dimensions (fea-
tures) likeshould the syllable be stressed, andwhere in the intonational phrase should
the diphone come from:

/ih-t/, +stress, phrase internal, high F0, content word

/n-t/, -stress, phrase final, high F0, function word

/dh-ax/, -stress, phrase initial, low F0, word ‘the’

We’d like the distance between the target specifications and the unit to be some
function of the how different the unit is on each of these dimensions from the specifi-
cation. Let’s assume that for each dimensionp, we can come up with somesubcost
Tp(st [p],u j [p]). The subcost for a binary feature likestressmight be 1 or 0. The sub-
cost for a continuous feature like F0 might be the difference(or log difference) between
the specification F0 and unit F0. Since some dimensions are more important to speech
perceptions than others, we’ll also want to weight each dimension. The simplest way
to combine all these subcosts is just to assume that they are independent and additive.
Using this model, the total target cost for a given target/unit pair is the weighted sum
over all these subcosts for each feature/dimension:
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T(st ,u j) =
P

∑
p=1

wpTp(st [p],u j [p])(8.22)

The target cost is a function of the desired diphone specification and a unit from
the database. Thejoin cost, by contrast, is a function of two units from the database.
The goal of the join cost is to be low (0) when the join is completely natural, and high
when the join would be perceptible or jarring. We do this by measuring the acoustic
similarity of the edges of the two units that we will be joining. If the two units have
very similar energy, F0, and spectral features, they will probably join well. Thus as
with the target cost, we compute a join cost by summing weighted subcosts:

J(ut ,ut+1) =
P

∑
p=1

wpJp(ut [p],ut+1[p])(8.23)

The three subcosts used in the classic Hunt and Black (1996b)algorithm are the
cepstral distanceat the point of concatenation, and the absolute differencesin log
power and F0. We will introduce the cepstrum in Sec.??.

In addition, if the two unitsut andut+1 to be concatenated were consecutive di-
phones in the unit database (i.e. they followed each other inthe original utterance),
then we set the join cost to 0:J(ut ,ut+1) = 0. This is an important feature of unit
selection synthesis, since it encourages large natural sequences of units to be selected
from the database.

How do we find the best sequence of units which minimizes the sum of the target
and join costs as expressed in Eq. 8.21? The standard method is to think of the unit se-
lection problem as a Hidden Markov Model. The target units are the observed outputs,
and the units in the database are the hidden states. Our job isto find the best hidden
state sequence. We will use the Viterbi algorithm to solve this problem, just as we saw
it in Ch. 5 and Ch. 6, and will see it again in Ch. 9. Fig. 8.18 shows a sketch of the
search space as well as the best (Viterbi) path that determines the best unit sequence.

The weights for join and target costs are often set by hand, since the number of
weights is small (on the order of 20) and machine learning algorithms don’t always
achieve human performance. The system designer listens to entire sentences produced
by the system, and chooses values for weights that result in reasonable sounding utter-
ances. Various automatic weight-setting algorithms do exist, however. Many of these
assume we have some sort of distance function between the acoustics of two sentences,
perhaps based on cepstral distance. The method of Hunt and Black (1996b), for exam-
ple, holds out a test set of sentences from the unit selectiondatabase. For each of these
test sentences, we take the word sequence and synthesize a sentence waveform (using
units from the other sentences in the training database). Now we compare the acoustics
of the synthesized sentence with the acoustics of the true human sentence. Now we
have a sequence of synthesized sentences, each one associated with a distance function
to its human counterpart. Now we use linear regression basedon these distances to set
the target cost weights so as to minimize the distance.

There are also more advanced methods of assigning both target and join costs. For
example, above we computed target costs between two units bylooking at the features
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Figure 8.18 The process of decoding in unit selection. The figure shows the sequence
of target (specification) diphones for the wordsix, and the set of possible database diphone
units that we must search through. The best (Viterbi) path that minimizes the sum of the
target and join costs is shown in bold.

of the two units, doing a weighted sum of feature costs, and choosing the lowest-
cost unit. An alternative approach (which the new reader might need to come back to
after learning the speech recognition techniques introduced in the next chapters) is to
map the target unit into some acoustic space, and then find a unit which is near the
target in that acoustic space. In the method of Donovan and Eide (1998), Donovan and
Woodland (1995), for example, all the training units are clustered using the decision
tree algorithm of speech recognition described in Sec.??. The decision tree is based on
the same features described above, but here for each set of features, we follow a path
down the decision tree to a leaf node which contains a clusterof units that have those
features. This cluster of units can be parameterized by a Gaussian model, just as for
speech recognition, so that we can map a set of features into aprobability distribution
over cepstral values, and hence easily compute a distance between the target and a
unit in the database. As for join costs, more sophisticated metrics make use of how
perceivable a particular join might be (Wouters and Macon, 1998; Syrdal and Conkie,
2004; Bulyko and Ostendorf, 2001).

8.6 EVALUATION

Speech synthesis systems are evaluated by human listeners.The development of a
good automatic metric for synthesis evaluation, that wouldeliminate the need for ex-
pensive and time-consuming human listening experiments, remains an open and exiting
research topic.

The minimal evaluation metric for speech synthesis systemsis intelligibility : theINTELLIGIBILITY

ability of a human listener to correctly interpret the wordsand meaning of the synthe-
sized utterance. A further metric isquality ; an abstract measure of the naturalness,QUALITY

fluency, or clarity of the speech.
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The most local measures of intelligibility test the abilityof a listener to discriminate
between two phones. TheDiagnostic Rhyme Test(DRT) (Voiers et al., 1975) testsDIAGNOSTIC RHYME

TEST

DRT the intelligibility of initial consonants. It is based on 96pairs of confusable rhyming
words which differ only in a single phonetic feature, such as(dense/tense) orbond/pond
(differing in voicing) ormean/beator neck/deck(differing in nasality), and so on. For
each pair, listeners hear one member of the pair, and indicate which they think it is.
The percentage of right answers is then used as an intelligibility metric. TheModified
Rhyme Test (MRT ) (House et al., 1965) is a similar test based on a different set ofMODIFIED RHYME

TEST

MRT 300 words, consisting of 50 sets of 6 words. Each 6-word set differs in either initial
or final consonants (e.g.,went, sent, bent, dent, tent, rent or bat, bad, back, bass, ban,
bath). Listeners are again given a single word and must identify from a closed list of
six words; the percentage of correct identifications is again used as an intelligibility
metric.

Since context effects are very important, both DRT and MRT words are embedded
in carrier phrases like the following:CARRIER PHRASES

Now we will say <word> again.

In order to test larger units than single phones, we can usesemantically unpre-
dictable sentences(SUS) (Benoı̂t et al., 1996). These are sentences constructed bySUS

taking a simple POS template likeDET ADJ NOUN VERB DET NOUN and inserting
random English words in the slots, to produce sentences like

The unsure steaks closed the fish.

Measures of intelligibility like DRT/MRT and SUS are designed to factor out the
role of context in measuring intelligibility. While this allows us to get a carefully
controlled measure of a system’s intelligibility, such acontextual or semantically un-
predictable sentences aren’t a good fit to how TTS is used in most commercial appli-
cations. Thus in commercial applications instead of DRT or SUS, we generally test
intelligibility using situations that mimic the desired applications; reading addresses
out loud, reading lines of news text, and so on.

To further evaluate thequality of the synthesized utterances, we can play a sentence
for a listener and ask them to give amean opinion score(MOS), a rating of how goodMOS

the synthesized utterances are, usually on a scale from 1-5.We can then compare
systems by comparing their MOS scores on the same sentences (using, e.g., t-tests to
test for significant differences).

If we are comparing exactly two systems (perhaps to see if a particular change
actually improved the system), we can useAB tests In AB tests, we play the sameAB TESTS

sentence synthesized by two different systems (an A and a B system). The human
listener chooses which of the two utterances they like better. We can do this for 50
sentences and compare the number of sentences preferred foreach systems. In order
to avoid ordering preferences, for each sentence we must present the two synthesized
waveforms in random order.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

As we noted at the beginning of the chapter, speech synthesisis one of the earliest fields
of speech and language processing. The 18th century saw a number of physical models
of the articulation process, including the von Kempelen model mentioned above, as
well as the 1773 vowel model of Kratzenstein in Copenhagen using organ pipes.

But the modern era of speech synthesis can clearly be said to have arrived by the
early 1950’s, when all three of the major paradigms of waveform synthesis had been
proposed (formant synthesis, articulatory synthesis, andconcatenative synthesis).

Concatenative synthesis seems to have been first proposed byHarris (1953) at Bell
Laboratories, who literally spliced together pieces of magnetic tape corresponding to
phones. Harris’s proposal was actually more like unit selection synthesis than diphone
synthesis, in that he proposed storing multiple copies of each phone, and proposed
the use of a join cost (choosing the unit with the smoothest formant transitions with
the neighboring unit). Harris’s model was based on the phone, rather than diphone,
resulting in problems due to coarticulation. Peterson et al. (1958) added many of the
basic ideas of unit selection synthesis, including the use of diphones, a database with
multiple copies of each diphone with differing prosody, andeach unit labeled with in-
tonational features including F0, stress, and duration, and the use of join costs based
on F0 and formant distant between neighboring units. They also proposed microcon-
catenation techniques like windowing the waveforms. The Peterson et al. (1958) model
was purely theoretical, however, and concatenative synthesis was not implemented un-
til the 1960’s and 1970’s, when diphone synthesis was first implemented (Dixon and
Maxey, 1968; Olive, 1977). Later diphone systems included larger units such as con-
sonant clusters (Olive and Liberman, 1979). Modern unit selection, including the idea
of large units of non-uniform length, and the use of a target cost, was invented by Sag-
isaka (1988), Sagisaka et al. (1992). Hunt and Black (1996b)formalized the model,
and put it in the form in which we have presented it in this chapter in the context of the
ATR CHATR system (Black and Taylor, 1994). The idea of automatically generating
synthesis units by clustering was first invented by Nakajimaand Hamada (1988), but
was developed mainly by (Donovan, 1996) by incorporating decision tree clustering al-
gorithms from speech recognition. Many unit selection innovations took place as part
of the ATT NextGen synthesizer (Syrdal et al., 2000; Syrdal and Conkie, 2004).

We have focused in this chapter on concatenative synthesis,but there are two other
paradigms for synthesis:formant synthesis, in which we attempt to build rules which
generate artificial spectra, including especially formants, andarticulatory synthesis,
in which we attempt to directly model the physics of the vocaltract and articulatory
process.

Formant synthesizersoriginally were inspired by attempts to mimic human speech
by generating artificial spectrograms. The Haskins Laboratories Pattern Playback Ma-
chine generated a sound wave by painting spectrogram patterns on a moving trans-
parent belt, and using reflectance to filter the harmonics of awaveform (Cooper et al.,
1951); other very early formant synthesizers include Lawrence (1953) and Fant (3951).
Perhaps the most well-known of the formant synthesizers were theKlatt formant syn-
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thesizerand its successor systems, including the MITalk system (Allen et al., 1987),
and the Klattalk software used in Digital Equipment Corporation’s DECtalk (Klatt,
1982). See Klatt (1975) for details.

Articulatory synthesizers attempt to synthesize speech by modeling the physics
of the vocal tract as an open tube. Representative models, both early and somewhat
more recent include Stevens et al. (1953), Flanagan et al. (1975), Fant (1986) See Klatt
(1975) and Flanagan (1972) for more details.

Development of the text analysis components of TTS came somewhat later, as tech-
niques were borrowed from other areas of natural language processing. The input to
early synthesis systems was not text, but rather phonemes (typed in on punched cards).
The first text-to-speech system to take text as input seems tohave been the system of
Umeda and Teranishi (Umeda et al., 1968; Teranishi and Umeda, 1968; Umeda, 1976).
The system included a lexicalized parser which was used to assign prosodic bound-
aries, as well as accent and stress; the extensions in Coker et al. (1973) added addi-
tional rules, for example for deaccenting light verbs and explored articulatory models
as well. These early TTS systems used a pronunciation dictionary for word pronuncia-
tions. In order to expand to larger vocabularies, early formant-based TTS systems such
as MITlak (Allen et al., 1987) used letter-to-sound rules instead of a dictionary, since
computer memory was far too expensive to store large dictionaries.

Modern grapheme-to-phoneme models derive from the influential early probabilis-
tic grapheme-to-phoneme model of Lucassen and Mercer (1984), which was originally
proposed in the context of speech recognition. The widespread use of such machine
learning models was delayed, however, because early anecdotal evidence suggested
that hand-written rules worked better than e.g., the neuralnetworks of Sejnowski and
Rosenberg (1987). The careful comparisons of Damper et al. (1999) showed that ma-
chine learning methods were in generally superior. A numberof such models make use
of pronunciation by analogy (Byrd and Chodorow, 1985; ?; Daelemans and van den
Bosch, 1997; Marchand and Damper, 2000) or latent analogy (Bellegarda, 2005);
HMMs (Taylor, 2005) have also been proposed. The most recentwork makes use
of joint graphonemodels, in which the hidden variables are phoneme-graphemepairsGRAPHONE

and the probabilistic model is based on joint rather than conditional likelihood (Deligne
et al., 1995; Luk and Damper, 1996; Galescu and Allen, 2001; Bisani and Ney, 2002;
Chen, 2003).

There is a vast literature on prosody. Besides the ToBI and TILT models described
above, other important computational models include theFujisaki model (FujisakiFUJISAKI

and Ohno, 1997). IViE (Grabe, 2001) is an extension of ToBI that focuses on labelling
different varieties of English (Grabe et al., 2000). There is also much debate on the
units of intonational structure (intonational phrases (Beckman and Pierrehumbert,
1986),intonation units (Du Bois et al., 1983) ortone units (Crystal, 1969)), and theirINTONATION UNITS

TONE UNITS relation to clauses and other syntactic units (Chomsky and Halle, 1968; Langendoen,
1975; Streeter, 1978; Hirschberg and Pierrehumbert, 1986;Selkirk, 1986; Nespor and
Vogel, 1986; Croft, 1995; Ladd, 1996; Ford and Thompson, 1996; Ford et al., 1996).

One of the most exciting new paradigms for speech synthesis is HMM synthesis,HMM SYNTHESIS

first proposed by Tokuda et al. (1995b) and elaborated in Tokuda et al. (1995a), Tokuda
et al. (2000), and Tokuda et al. (2003). See also the textbooksummary of HMM syn-
thesis in Taylor (2008).
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More details on TTS evaluation can be found in Huang et al. (2001) and Gibbon
et al. (2000). Other descriptions of evaluation can be foundin the annual speech syn-
thesis competition called theBlizzard Challenge (Black and Tokuda, 2005; Bennett,BLIZZARD

CHALLENGE

2005).
Much recent work on speech synthesis has focused on generating emotional speech

(Cahn, 1990; Bulut1 et al., 2002; Hamza et al., 2004; Eide et al., 2004; Lee et al., 2006;
Schroder, 2006, inter alia)

Two classic text-to-speech synthesis systems are described in Allen et al. (1987)
(the MITalk system) and Sproat (1998b) (the Bell Labs system). Recent textbooks
include Dutoit (1997), Huang et al. (2001), Taylor (2008), and Alan Black’s online lec-
ture notes athttp://festvox.org/festtut/notes/festtut_toc.html .
Influential collections of papers include van Santen et al. (1997), Sagisaka et al. (1997),
Narayanan and Alwan (2004). Conference publications appear in the main speech engi-
neering conferences (INTERSPEECH,IEEE ICASSP), and theSpeech Synthesis Work-
shops. Journals includeSpeech Communication, Computer Speech and Language, the
IEEE Transactions on Audio, Speech, and Language Processing, and theACM Trans-
actions on Speech and Language Processing.

EXERCISES

8.1 Implement the text normalization routine that deals withMONEY, i.e. mapping
strings of dollar amounts like$45, $320, and $4100 to words (either writing code
directly or designing an FST). If there are multiple ways to pronounce a number you
may pick your favorite way.

8.2 Implement the text normalization routine that deals withNTEL, i.e. seven-digit
phone numbers like555-1212, 555-1300, and so on. You should use a combination of
thepaired andtrailing unit methods of pronunciation for the last four digits. (Again
you may either write code or design an FST).

8.3 Implement the text normalization routine that deals with typeDATE in Fig. 8.4

8.4 Implement the text normalization routine that deals with typeNTIME in Fig. 8.4.

8.5 (Suggested by Alan Black). Download the free Festival speech synthesizer. Aug-
ment the lexicon to correctly pronounce the names of everyone in your class.

8.6 Download the Festival synthesizer. Record and train a diphone synthesizer using
your own voice.
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S. (Eds.),Frontiers of Speech Communication Research, pp.
287–299. Academic.



DRAFT
Section 8.6. Evaluation 41

Klimt, B. and Yang, Y. (2004). The Enron corpus: A new
dataset for email classification research. InProceedings of
the European Conference on Machine Learning, pp. 217–226.
Springer.

Koehn, P., Abney, S. P., Hirschberg, J., and Collins, M. (2000).
Improving intonational phrasing with syntactic information.
In IEEE ICASSP-00.

Ladd, D. R. (1996).Intonational Phonology. Cambridge Stud-
ies in Linguistics. Cambridge University Press.

Langendoen, D. T. (1975). Finite-state parsing of phrase-
structure languages and the status of readjustment rules inthe
grammar.Linguistic Inquiry, 6(4), 533–554.

Lawrence, W. (1953). The synthesis of speech from signals
which have a low information rate.. In Jackson, W. (Ed.),
Communication Theory, pp. 460–469. Butterworth.

Lee, S., Bresch, E., Adams, J., Kazemzadeh, A., and
Narayanan, S. S. (2006). A study of emotional speech ar-
ticulation using a fast magnetic resonance imaging technique.
In ICSLP-06.

Liberman, M. Y. and Church, K. W. (1992). Text analysis and
word pronunciation in text-to-speech synthesis. In Furui,S.
and Sondhi, M. M. (Eds.),Advances in Speech Signal Pro-
cessing, pp. 791–832. Marcel Dekker.

Liberman, M. Y. and Prince, A. (1977). On stress and linguistic
rhythm. Linguistic Inquiry, 8, 249–336.

Liberman, M. Y. and Sproat, R. (1992). The stress and structure
of modified noun phrases in English. In Sag, I. A. and Sz-
abolcsi, A. (Eds.),Lexical Matters, pp. 131–181. CSLI, Stan-
ford University.

Lucassen, J. and Mercer, R. L. (1984). An information the-
oretic approach to the automatic determination of phonemic
baseforms. InIEEE ICASSP-84, Vol. 9, pp. 304–307.

Luk, R. W. P. and Damper, R. I. (1996). Stochastic phono-
graphic transduction for english.Computer Speech and Lan-
guage, 10(2), 133–153.

Marchand, Y. and Damper, R. I. (2000). A multi-strategy ap-
proach to improving pronunciation by analogy.Computa-
tional Linguistics, 26(2), 195–219.

Nakajima, S. and Hamada, H. (1988). Automatic generation of
synthesis units based on context oriented clustering. InIEEE
ICASSP-88, pp. 659–662.

Narayanan, S. S. and Alwan, A. (Eds.). (2004).Text to Speech
Synthesis: New paradigms and advances. Prentice Hall.

Nenkova, A., Brenier, J., Kothari, A., Calhoun, S., Whitton,
L., Beaver, D., and Jurafsky, D. (2007). To memorize or to
predict: Prominence labeling in conversational speech. In
NAACL-HLT 07.

Nespor, M. and Vogel, I. (1986).Prosodic phonology. Foris,
Dordrecht.

Olive, J. and Liberman, M. (1979). A set of concatenative units
for speech synthesis.Journal of the Acoustical Society of
America, 65, S130.

Olive, J. P. (1977). Rule synthesis of speech from dyadic units.
In ICASSP77, pp. 568–570.

Olive, J. P., van Santen, J. P. H., Möbius, B., and Shih, C.
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9
AUTOMATIC SPEECH
RECOGNITION

When Frederic was a little lad he proved so brave and daring,
His father thought he’d ’prentice him to some career seafaring.
I was, alas! his nurs’rymaid, and so it fell to my lot
To take and bind the promising boy apprentice to apilot —
A life not bad for a hardy lad, though surely not a high lot,
Though I’m a nurse, you might do worse than make your boy a pilot.
I was a stupid nurs’rymaid, on breakers always steering,
And I did not catch the word aright, through being hard of hearing;
Mistaking my instructions, which within my brain did gyrate,
I took and bound this promising boy apprentice to apirate.

The Pirates of Penzance, Gilbert and Sullivan, 1877

Alas, this mistake by nurserymaid Ruth led to Frederic’s long indenture as a pirate and,
due to a slight complication involving 21st birthdays and leap years, nearly led to 63
extra years of apprenticeship. The mistake was quite natural, in a Gilbert-and-Sullivan
sort of way; as Ruth later noted, “The two words were so much alike!” True, true;
spoken language understanding is a difficult task, and it is remarkable that humans do
as well at it as we do. The goal ofautomatic speech recognition(ASR) research is toASR

address this problem computationally by building systems that map from an acoustic
signal to a string of words.Automatic speech understanding(ASU) extends this goal
to producing some sort of understanding of the sentence, rather than just the words.

The general problem of automatic transcription of speech byany speaker in any en-
vironment is still far from solved. But recent years have seen ASR technology mature
to the point where it is viable in certain limited domains. One major application area
is in human-computer interaction. While many tasks are better solved with visual or
pointing interfaces, speech has the potential to be a betterinterface than the keyboard
for tasks where full natural language communication is useful, or for which keyboards
are not appropriate. This includes hands-busy or eyes-busyapplications, such as where
the user has objects to manipulate or equipment to control. Another important ap-
plication area is telephony, where speech recognition is already used for example in
spoken dialogue systems for entering digits, recognizing “yes” to accept collect calls,
finding out airplane or train information, and call-routing(“Accounting, please”, “Prof.
Regier, please”). In some applications, a multimodal interface combining speech and
pointing can be more efficient than a graphical user interface without speech (Cohen
et al., 1998). Finally, ASR is applied to dictation, that is,transcription of extended
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monologue by a single specific speaker. Dictation is common in fields such as law and
is also important as part of augmentative communication (interaction between comput-
ers and humans with some disability resulting in the inability to type, or the inability to
speak). The blind Milton famously dictatedParadise Lostto his daughters, and Henry
James dictated his later novels after a repetitive stress injury.

Before turning to architectural details, let’s discuss some of the parameters and the
state of the art of the speech recognition task. One dimension of variation in speech
recognition tasks is the vocabulary size. Speech recognition is easier if the number of
distinct words we need to recognize is smaller. So tasks witha two word vocabulary,
like yesversusnodetection, or an eleven word vocabulary, like recognizing sequences
of digits, in what is called thedigits task task, are relatively easy. On the other end,DIGITS TASK

tasks with large vocabularies, like transcribing human-human telephone conversations,
or transcribing broadcast news, tasks with vocabularies of64,000 words or more, are
much harder.

A second dimension of variation is how fluent, natural, or conversational the speech
is. Isolated word recognition, in which each word is surrounded by some sort ofpause,ISOLATED WORD

is much easier than recognizingcontinuous speech, in which words run into each otherCONTINUOUS
SPEECH

and have to be segmented. Continuous speech tasks themselves vary greatly in diffi-
culty. For example, human-to-machine speech turns out to befar easier to recognize
than human-to-human speech. That is, recognizing speech ofhumans talking to ma-
chines, either reading out loud inread speech(which simulates the dictation task), orREAD SPEECH

conversing with speech dialogue systems, is relatively easy. Recognizing the speech
of two humans talking to each other, inconversational speechrecognition, for exam-CONVERSATIONAL

SPEECH

ple for transcribing a business meeting or a telephone conversation, is much harder.
It seems that when humans talk to machines, they simplify their speech quite a bit,
talking more slowly and more clearly.

A third dimension of variation is channel and noise. Commercial dictation systems,
and much laboratory research in speech recognition, is donewith high quality, head
mounted microphones. Head mounted microphones eliminate the distortion that occurs
in a table microphone as the speakers head moves around. Noise of any kind also makes
recognition harder. Thus recognizing a speaker dictating in a quiet office is much easier
than recognizing a speaker dictating in a noisy car on the highway with the window
open.

A final dimension of variation is accent or speaker-class characteristics. Speech is
easier to recognize if the speaker is speaking a standard dialect, or in general one that
matches the data the system was trained on. Recognition is thus harder on foreign-
accented speech, or speech of children (unless the system was specifically trained on
exactly these kinds of speech).

Table 9.1 shows the rough percentage of incorrect words (theword error rate , or
WER, defined on page 45) from state-of-the-art systems on a range of different ASR
tasks.

Variation due to noise and accent increases the error rates quite a bit. The word error
rate on strongly Japanese-accented or Spanish accented English has been reported to be
about 3 to 4 times higher than for native speakers on the same task (Tomokiyo, 2001).
And adding automobile noise with a 10dB SNR (signal-to-noise ratio) can cause error
rates to go up by 2 to 4 times.
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Task Vocabulary Error Rate %

TI Digits 11 (zero-nine, oh) .5
Wall Street Journal read speech 5,000 3
Wall Street Journal read speech 20,000 3
Broadcast News 64,000+ 10
Conversational Telephone Speech (CTS) 64,000+ 20

Figure 9.1 Rough word error rates (% of words misrecognized) reported around 2006
for ASR on various tasks; the error rates for Broadcast News and CTS are based on par-
ticular training and test scenarios and should be taken as ballpark numbers; error rates for
differently defined tasks may range up to a factor of two.

In general, these error rates go down every year, as speech recognition performance
has improved quite steadily. One estimate is that performance has improved roughly
10 percent a year over the last decade (Deng and Huang, 2004),due to a combination
of algorithmic improvements and Moore’s law.

While the algorithms we describe in this chapter are applicable across a wide va-
riety of these speech tasks, we chose to focus this chapter onthe fundamentals of one
crucial area:Large-Vocabulary Continuous Speech Recognition(LVCSR). Large-LVCSR

vocabulary generally means that the systems have a vocabulary of roughly 20,000
to 60,000 words. We saw above thatcontinuous means that the words are run to-
gether naturally. Furthermore, the algorithms we will discuss are generallyspeaker-
independent; that is, they are able to recognize speech from people whosespeech theSPEAKER

INDEPENDENT

system has never been exposed to before.
The dominant paradigm for LVCSR is the HMM, and we will focus on this ap-

proach in this chapter. Previous chapters have introduced most of the core algorithms
used in HMM-based speech recognition. Ch. 7 introduced the key phonetic and phono-
logical notions ofphone, syllable, and intonation. Ch. 5 and Ch. 6 introduced the use
of the Bayes rule, theHidden Markov Model (HMM ), theViterbi algorithm, and
the Baum-Welch training algorithm. Ch. 4 introduced theN-gram language model
and theperplexity metric. In this chapter we begin with an overview of the architec-
ture for HMM speech recognition, offer an all-too-brief overview of signal processing
for feature extraction and the extraction of the important MFCC features, and then in-
troduce Gaussian acoustic models. We then continue with howViterbi decoding works
in the ASR context, and give a complete summary of the training procedure for ASR,
calledembedded training. Finally, we introduce word error rate, the standard evalua-
tion metric. The next chapter will continue with some advanced ASR topics.

9.1 SPEECHRECOGNITION ARCHITECTURE

The task of speech recognition is to take as input an acousticwaveform and produce
as output a string of words. HMM-based speech recognition systems view this task
using the metaphor of the noisy channel. The intuition of thenoisy channelmodelNOISY CHANNEL

(see Fig. 9.2) is to treat the acoustic waveform as an “noisy”version of the string of
words, i.e.. a version that has been passed through a noisy communications channel.
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This channel introduces “noise” which makes it hard to recognize the “true” string of
words. Our goal is then to build a model of the channel so that we can figure out how
it modified this “true” sentence and hence recover it.

The insight of the noisy channel model is that if we know how the channel distorts
the source, we could find the correct source sentence for a waveform by taking every
possible sentence in the language, running each sentence through our noisy channel
model, and seeing if it matches the output. We then select thebest matching source
sentence as our desired source sentence.

noisy sentence

source sentence

noisy channel

decoder
Every happy family

In a hole in the ground

...

If music be the food of love

guess at source:
noisy 1

noisy 2
noisy N

If music be 

the food of love...

If music be 

the food of love...

Figure 9.2 The noisy channel model. We search through a huge space of potential
“source” sentences and choose the one which has the highest probability of generating the
“noisy” sentence. We need models of the prior probability ofa source sentence (N-grams),
the probability of words being realized as certain strings of phones (HMM lexicons), and
the probability of phones being realized as acoustic or spectral features (Gaussian Mixture
Models).

Implementing the noisy-channel model as we have expressed it in Fig. 9.2 requires
solutions to two problems. First, in order to pick the sentence that best matches the
noisy input we will need a complete metric for a “best match”.Because speech is so
variable, an acoustic input sentence will never exactly match any model we have for
this sentence. As we have suggested in previous chapters, wewill use probability as our
metric. This makes the speech recognition problem a specialcase ofBayesian infer-BAYESIAN

ence, a method known since the work of Bayes (1763). Bayesian inference or Bayesian
classification was applied successfully by the 1950s to language problems like optical
character recognition (Bledsoe and Browning, 1959) and to authorship attribution tasks
like the seminal work of Mosteller and Wallace (1964) on determining the authorship of
the Federalist papers. Our goal will be to combine various probabilistic models to get a
complete estimate for the probability of a noisy acoustic observation-sequence given a
candidate source sentence. We can then search through the space of all sentences, and
choose the source sentence with the highest probability.

Second, since the set of all English sentences is huge, we need an efficient algorithm
that will not search through all possible sentences, but only ones that have a good
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chance of matching the input. This is thedecodingor searchproblem, which we have
already explored with the Viterbi decoding algorithm for HMMs in Ch. 5 and Ch. 6.
Since the search space is so large in speech recognition, efficient search is an important
part of the task, and we will focus on a number of areas in search.

In the rest of this introduction we will review the probabilistic or Bayesian model
for speech recognition that we introduced for part-of-speech tagging in Ch. 5. We then
introduce the various components of a modern HMM-based ASR system.

Recall that the goal of the probabilistic noisy channel architecture for speech recog-
nition can be summarized as follows:

“What is the most likely sentence out of all sentences in the languageL
given some acoustic input O?”

We can treat the acoustic inputO as a sequence of individual “symbols” or “obser-
vations” (for example by slicing up the input every 10 milliseconds, and representing
each slice by floating-point values of the energy or frequencies of that slice). Each
index then represents some time interval, and successiveoi indicate temporally con-
secutive slices of the input (note that capital letters willstand for sequences of symbols
and lower-case letters for individual symbols):

O = o1,o2,o3, . . . ,ot(9.1)

Similarly, we treat a sentence as if it were composed of a string of words:

W = w1,w2,w3, . . . ,wn(9.2)

Both of these are simplifying assumptions; for example dividing sentences into
words is sometimes too fine a division (we’d like to model facts about groups of words
rather than individual words) and sometimes too gross a division (we need to deal with
morphology). Usually in speech recognition a word is definedby orthography (after
mapping every word to lower-case):oak is treated as a different word thanoaks, but
the auxiliarycan(“can you tell me. . . ”) is treated as the same word as the nouncan(“i
need a can of. . . ” ).

The probabilistic implementation of our intuition above, then, can be expressed as
follows:

Ŵ = argmax
W∈L

P(W|O)(9.3)

Recall that the function argmaxx f (x) means “the x such that f(x) is largest”. Equa-
tion (9.3) is guaranteed to give us the optimal sentenceW; we now need to make the
equation operational. That is, for a given sentenceW and acoustic sequenceO we need
to computeP(W|O). Recall that given any probabilityP(x|y), we can use Bayes’ rule
to break it down as follows:

P(x|y) =
P(y|x)P(x)

P(y)
(9.4)

We saw in Ch. 5 that we can substitute (9.4) into (9.3) as follows:
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Ŵ = argmax
W∈L

P(O|W)P(W)

P(O)
(9.5)

The probabilities on the right-hand side of (9.5) are for themost part easier to
compute thanP(W|O). For example,P(W), the prior probability of the word string
itself is exactly what is estimated by then-gram language models of Ch. 4. And we
will see below thatP(O|W) turns out to be easy to estimate as well. ButP(O), the
probability of the acoustic observation sequence, turns out to be harder to estimate.
Luckily, we can ignoreP(O) just as we saw in Ch. 5. Why? Since we are maximizing

over all possible sentences, we will be computingP(O|W)P(W)
P(O) for each sentence in the

language. ButP(O) doesn’t change for each sentence! For each potential sentence
we are still examining the same observationsO, which must have the same probability
P(O). Thus:

Ŵ = argmax
W∈L

P(O|W)P(W)

P(O)
= argmax

W∈L

P(O|W)P(W)(9.6)

To summarize, the most probable sentenceW given some observation sequence
O can be computed by taking the product of two probabilities for each sentence, and
choosing the sentence for which this product is greatest. The general components of
the speech recognizer which compute these two terms have names;P(W), theprior
probability , is computed by thelanguage model. while P(O|W), the observationLANGUAGE MODEL

likelihood, is computed by theacoustic model.ACOUSTIC MODEL

Ŵ = argmax
W∈L

likelihood
︷ ︸︸ ︷

P(O|W)

prior
︷ ︸︸ ︷

P(W)(9.7)

The language model (LM) priorP(W) expresses how likely a given string of words
is to be a source sentence of English. We have already seen in Ch. 4 how to compute
such a language model priorP(W) by usingN-gram grammars. Recall that anN-gram
grammar lets us assign a probability to a sentence by computing:

P(wn
1)≈

n

∏
k=1

P(wk|w
k−1
k−N+1)(9.8)

This chapter will show how the HMM we covered in Ch. 6 can be used to build
an Acoustic Model (AM) which computes the likelihoodP(O|W). Given the AM and
LM probabilities, the probabilistic model can be operationalized in a search algorithm
so as to compute the maximum probability word string for a given acoustic waveform.
Fig. 9.3 shows the components of an HMM speech recognizer as it processes a single
utterance, indicating the computation of the prior and likelihood. The figure shows
the recognition process in three stages. In thefeature extraction or signal processing
stage, the acoustic waveform is sampled intoframes (usually of 10, 15, or 20 mil-
liseconds) which are transformed intospectral features. Each time window is thus
represented by a vector of around 39 features representing this spectral information as
well as information about energy and spectral change. Sec. 9.3 gives an (unfortunately
brief) overview of the feature extraction process.
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In theacoustic modelingor phone recognitionstage, we compute the likelihood
of the observed spectral feature vectors given linguistic units (words, phones, subparts
of phones). For example, we use Gaussian Mixture Model (GMM)classifiers to com-
pute for each HMM stateq, corresponding to a phone or subphone, the likelihood of
a given feature vector given this phonep(o|q). A (simplified) way of thinking of the
output of this stage is as a sequence of probability vectors,one for each time frame,
each vector at each time frame containing the likelihoods that each phone or subphone
unit generated the acoustic feature vector observation at that time.

Finally, in thedecodingphase, we take the acoustic model (AM), which consists of
this sequence of acoustic likelihoods, plus an HMM dictionary of word pronunciations,
combined with the language model (LM) (generally anN-gram grammar), and output
the most likely sequence of words. An HMM dictionary, as we will see in Sec. 9.2, is a
list of word pronunciations, each pronunciation represented by a string of phones. Each
word can then be thought of as an HMM, where the phones (or sometimes subphones)
are states in the HMM, and the Gaussian likelihood estimators supply the HMM output
likelihood function for each state. Most ASR systems use theViterbi algorithm for
decoding, speeding up the decoding with wide variety of sophisticated augmentations
such as pruning, fast-match, and tree-structured lexicons.

cepstral 
feature 
extraction

Gaussian 
Acoustic Model

MFCC features

phone 
likelihoods

HMM lexicon

N-gram 
language 
model

Viterbi Decoder

if music be the food of love...

O

W

P(W)
P(O|W)

Figure 9.3 Schematic architecture for a (simplified) speech recognizer decoding a sin-
gle sentence. A real recognizer is more complex since various kinds of pruning and fast
matches are needed for efficiency. This architecture is onlyfor decoding; we also need a
separate architecture for training parameters.
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9.2 APPLYING THE HIDDEN MARKOV MODEL TO SPEECH

Let’s turn now to how the HMM model is applied to speech recognition. We saw in
Ch. 6 that a Hidden Markov Model is characterized by the following components:

Q = q1q2 . . .qN a set ofstates

A = a01a02. . .an1 . . .ann a transition probability matrix A, eachai j rep-
resenting the probability of moving from statei
to statej, s.t.∑n

j=1ai j = 1 ∀i

O = o1o2 . . .oN a set ofobservations, each one drawn from a vo-
cabularyV = v1,v2, ...,vV .

B = bi(ot) A set of observation likelihoods:, also called
emission probabilities, each expressing the
probability of an observationot being generated
from a statei.

q0,qend a specialstart and end statewhich are not asso-
ciated with observations.

Furthermore, the chapter introduced theViterbi algorithm for decoding HMMs,
and theBaum-Welchor Forward-Backward algorithm for training HMMs.

All of these facets of the HMM paradigm play a crucial role in ASR. We begin
here by discussing how the states, transitions, and observations map into the speech
recognition task. We will return to the ASR applications of Viterbi decoding in Sec. 9.6.
The extensions to the Baum-Welch algorithms needed to deal with spoken language are
covered in Sec. 9.4 and Sec. 9.7.

Recall the examples of HMMs we saw earlier in the book. In Ch. 5, the hid-
den states of the HMM were parts-of-speech, the observations were words, and the
HMM decoding task mapped a sequence of words to a sequence of parts-of-speech. In
Ch. 6, the hidden states of the HMM were weather, the observations were ‘ice-cream
consumptions’, and the decoding task was to determine the weather sequence from a
sequence of ice-cream consumption. For speech, the hidden states are phones, parts
of phones, or words, each observation is information about the spectrum and energy
of the waveform at a point in time, and the decoding process maps this sequence of
acoustic information to phones and words.

The observation sequence for speech recognition is a sequence ofacoustic feature
vectors. Each acoustic feature vector represents information suchas the amount of en-
ergy in different frequency bands at a particular point in time. We will return in Sec. 9.3
to the nature of these observations, but for now we’ll simplynote that each observation
consists of a vector of 39 real-valued features indicating spectral information. Obser-
vations are generally drawn every 10 milliseconds, so 1 second of speech requires 100
spectral feature vectors, each vector of length 39.

The hidden states of Hidden Markov Models can be used to modelspeech in a
number of different ways. For small tasks, likedigit recognition, (the recognition ofDIGIT RECOGNITION

the 10 digit wordszerothroughnine), or foryes-norecognition (recognition of the two
wordsyesandno), we could build an HMM whose states correspond to entire words.
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For most larger tasks, however, the hidden states of the HMM correspond to phone-like
units, and words are sequences of these phone-like units.

Let’s begin by describing an HMM model in which each state of an HMM corre-
sponds to a single phone (if you’ve forgotten what a phone is,go back and look again
at the definition in Ch. 7). In such a model, a word HMM thus consists of a sequence
of HMM states concatenated together. Fig. 9.4 shows a schematic of the structure of a
basic phone-state HMM for the wordsix.

Figure 9.4 An HMM for the wordsix, consisting of four emitting states and two non-
emitting states, the transition probabilities A, the observation probabilitiesB, and a sample
observation sequence.

Note that only certain connections between phones exist in Fig. 9.4. In the HMMs
described in Ch. 6, there were arbitrary transitions between states; any state could
transition to any other. This was also in principle true of the HMMs for part-of-speech
tagging in Ch. 5; although the probability of some tag transitions was low, any tag
could in principle follow any other tag. Unlike in these other HMM applications, HMM
models for speech recognition usually do not allow arbitrary transitions. Instead, they
place strong constraints on transitions based on the sequential nature of speech. Except
in unusual cases, HMMs for speech don’t allow transitions from states to go to earlier
states in the word; in other words, states can transition to themselves or to successive
states. As we saw in Ch. 6, this kind ofleft-to-right HMM structure is called aBakis
network.BAKIS NETWORK

The most common model used for speech, illustrated in a simplified form in Fig. 9.4
is even more constrained, allowing a state to transition only to itself (self-loop) or to a
single succeeding state. The use of self-loops allows a single phone to repeat so as to
cover a variable amount of the acoustic input. Phone durations vary hugely, dependent
on the phone identify, the speaker’s rate of speech, the phonetic context, and the level
of prosodic prominence of the word. Looking at the Switchboard corpus, the phone
[aa] varies in length from 7 to 387 milliseconds (1 to 40 frames), while the phone [z]
varies in duration from 7 milliseconds to more than 1.3 seconds (130 frames) in some
utterances! Self-loops thus allow a single state to be repeated many times.

For very simple speech tasks (recognizing small numbers of words such as the
10 digits), using an HMM state to represent a phone is sufficient. In general LVCSR
tasks, however, a more fine-grained representation is necessary. This is because phones
can last over 1 second, i.e., over 100 frames, but the 100 frames are not acoustically
identical. The spectral characteristics of a phone, and theamount of energy, vary dra-
matically across a phone. For example, recall from Ch. 7 thatstop consonants have
a closure portion, which has very little acoustic energy, followed by a release burst.
Similarly, diphthongs are vowels whose F1 and F2 change significantly. Fig. 9.5 shows
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these large changes in spectral characteristics over time for each of the two phones in
the word “Ike”, ARPAbet [ay k].

Time (s)
0.48152 0.937203

0

5000
F

re
qu

en
cy

 (
H

z)

ay k

Figure 9.5 The two phones of the word ”Ike”, pronounced [ay k]. Note the continuous
changes in the [ay] vowel on the left, as F2 rises and F1 falls,and the sharp differences
between the silence and release parts of the [k] stop.

To capture this fact about the non-homogeneous nature of phones over time, in
LVCSR we generally model a phone with more than one HMM state.The most com-
mon configuration is to use three HMM states, a beginning, middle, and end state. Each
phone thus consists of 3 emitting HMM states instead of one (plus two non-emitting
states at either end), as shown in Fig. 9.6. It is common to reserve the wordmodel orMODEL

phone modelto refer to the entire 5-state phone HMM, and use the wordHMM statePHONE MODEL

HMM STATE (or juststatefor short) to refer to each of the 3 individual subphone HMM states.

Figure 9.6 A standard 5-state HMM model for a phone, consisting of threeemitting
states (corresponding to the transition-in, steady state,and transition-out regions of the
phone) and two non-emitting states.

To build a HMM for an entire word using these more complex phone models, we
can simply replace each phone of the word model in Fig. 9.4 with a 3-state phone
HMM. We replace the non-emitting start and end states for each phone model with
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transitions directly to the emitting state of the precedingand following phone, leaving
only two non-emitting states for the entire word. Fig. 9.7 shows the expanded word.

Figure 9.7 A composite word model for “six”, [s ih k s], formed by concatenating four
phone models, each with three emitting states.

In summary, an HMM model of speech recognition is parameterized by:

Q = q1q2 . . .qN a set ofstatescorresponding tosubphones

A = a01a02. . .an1 . . .ann a transition probability matrix A, eachai j rep-
resenting the probability for each subphone of
taking aself-loopor going to the next subphone.

B = bi(ot) A set of observation likelihoods:, also called
emission probabilities, each expressing the
probability of a cepstral feature vector (observa-
tion ot ) being generated from subphone statei.

Another way of looking at theA probabilities and the statesQ is that together they
represent alexicon: a set of pronunciations for words, each pronunciation consisting
of a set of subphones, with the order of the subphones specified by the transition prob-
abilitiesA.

We have now covered the basic structure of HMM states for representing phones
and words in speech recognition. Later in this chapter we will see further augmenta-
tions of the HMM word model shown in Fig. 9.7, such as the use oftriphone models
which make use of phone context, and the use of special phonesto model silence. First,
though, we need to turn to the next component of HMMs for speech recognition: the
observation likelihoods. And in order to discuss observation likelihoods, we first need
to introduce the actual acoustic observations: feature vectors. After discussing these in
Sec. 9.3, we turn in Sec. 9.4 the acoustic model and details ofobservation likelihood
computation. We then re-introduce Viterbi decoding and show how the acoustic model
and language model are combined to choose the best sentence.

9.3 FEATURE EXTRACTION: MFCC VECTORS

Our goal in this section is to describe how we transform the input waveform into a se-
quence of acousticfeature vectors, each vector representing the information in a smallFEATURE VECTORS

time window of the signal. While there are many possible suchfeature representations,
by far the most common in speech recognition is theMFCC , themel frequency cep-MFCC

stral coefficients. These are based on the important idea of thecepstrum. We will
MEL FREQUENCY

CEPSTRAL
COEFFICIENTS

CEPSTRUM give a relatively high-level description of the process of extraction of MFCCs from a
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speech
signal

MFCC 12
coefficients

pre-
emphasis

DFTwindow
Mel filter-

bank
log IDFT deltas

energy 1 energy feature

12 MFCC 
12  ∆ MFCC
12 ∆∆ MFCC

1 energy
1 ∆ energy

 1 ∆∆ energy

Figure 9.8 Extracting a sequence of 39-dimensional MFCC feature vectors from a quantized digitized wave-
form

waveform; we strongly encourage students interested in more detail to follow up with
a speech signal processing course.

We begin by repeating from Sec.?? the process of digitizing and quantizing an
analog speech waveform. Recall that the first step in processing speech is to convert
the analog representations (first air pressure, and then analog electric signals in a mi-
crophone), into a digital signal. This process ofanalog-to-digital conversionhas two
steps:sampling andquantization. A signal is sampled by measuring its amplitudeSAMPLING

at a particular time; thesampling rate is the number of samples taken per second. InSAMPLING RATE

order to accurately measure a wave, it is necessary to have atleast two samples in each
cycle: one measuring the positive part of the wave and one measuring the negative part.
More than two samples per cycle increases the amplitude accuracy, but less than two
samples will cause the frequency of the wave to be completelymissed. Thus the maxi-
mum frequency wave that can be measured is one whose frequency is half the sample
rate (since every cycle needs two samples). This maximum frequency for a given sam-
pling rate is called theNyquist frequency. Most information in human speech is inNYQUIST

FREQUENCY

frequencies below 10,000 Hz; thus a 20,000 Hz sampling rate would be necessary for
complete accuracy. But telephone speech is filtered by the switching network, and only
frequencies less than 4,000 Hz are transmitted by telephones. Thus an 8,000 Hz sam-
pling rate is sufficient fortelephone-bandwidthspeech like the Switchboard corpus.TELEPHONE

BANDWIDTH

A 16,000 Hz sampling rate (sometimes calledwideband) is often used for microphoneWIDEBAND

speech.
Even an 8,000 Hz sampling rate requires 8000 amplitude measurements for each

second of speech, and so it is important to store the amplitude measurement efficiently.
They are usually stored as integers, either 8-bit (values from -128–127) or 16 bit (values
from -32768–32767). This process of representing real-valued numbers as integers is
calledquantization because there is a minimum granularity (the quantum size) and allQUANTIZATION

values which are closer together than this quantum size are represented identically.
We refer to each sample in the digitized quantized waveform as x[n], wheren is

an index over time. Now that we have a digitized, quantized representation of the
waveform, we are ready to extract MFCC features. The seven steps of this process are
shown in Fig. 9.8 and individually described in each of the following sections.

9.3.1 Preemphasis

The first stage in MFCC feature extraction is to boost the amount of energy in the
high frequencies. It turns out that if we look at the spectrumfor voiced segments like
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vowels, there is more energy at the lower frequencies than the higher frequencies. This
drop in energy across frequencies (which is calledspectral tilt ) is caused by the natureSPECTRAL TILT

of the glottal pulse. Boosting the high frequency energy makes information from these
higher formants more available to the acoustic model and improves phone detection
accuracy.

This preemphasis is done by using a filter1 Fig. 9.9 shows an example of a spectral
slice from the first author’s pronunciation of the single vowel [aa] before and after
preemphasis.
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Figure 9.9 A spectral slice from the vowel [aa] before (a) and after (b) preemphasis.

9.3.2 Windowing

Recall that the goal of feature extraction is to provide spectral features that can help
us build phone or subphone classifiers. We therefore don’t want to extract our spectral
features from an entire utterance or conversation, becausethe spectrum changes very
quickly. Technically, we say that speech is anon-stationary signal, meaning that itsNONSTATIONARY

statistical properties are not constant across time. Instead, we want to extract spectral
features from a smallwindow of speech that characterizes a particular subphone and
for which we can make the (rough) assumption that the signal is stationary (i.e. itsSTATIONARY

statistical properties are constant within this region).
We’ll do this by using a window which is non-zero inside some region and zero

elsewhere, running this window across the speech signal, and extracting the waveform
inside this window.

We can characterize such a windowing process by three parameters: howwide is
the window (in milliseconds), what is theoffsetbetween successive windows, and what
is theshapeof the window. We call the speech extracted from each window aframe,FRAME

and we call the number of milliseconds in the frame theframe sizeand the number ofFRAME SIZE

milliseconds between the left edges of successive windows theframe shift.FRAME SHIFT

The extraction of the signal takes place by multiplying the value of the signal at

1 For students who have had signal processing: this preemphasis filter is a first-order high-pass filter. In the
time domain, with inputx[n] and 0.9≤ α ≤ 1.0, the filter equation isy[n] = x[n]−αx[n−1].
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FRAME SIZE

25 ms

FRAME

 SHIFT

10 ms

Figure 9.10 The windowing process, showing the frame shift and frame size, assuming
a frame shift of 10ms, a frame size of 25 ms, and a rectangular window. After a figure by
Bryan Pellom.

timen, s[n], with the value of the window at timen, w[n]:

y[n] = w[n]s[n](9.9)

Figure 9.10 suggests that these window shapes are rectangular, since the extracted
windowed signal looks just like the original signal. Indeedthe simplest window is the
rectangular window. The rectangular window can cause problems, however, becauseRECTANGULAR

it abruptly cuts of the signal at its boundaries. These discontinuities create problems
when we do Fourier analysis. For this reason, a more common window used in MFCC
extraction is theHamming window, which shrinks the values of the signal towardHAMMING

zero at the window boundaries, avoiding discontinuities. Fig. 9.11 shows both of these
windows; the equations are as follows (assuming a window that is L frames long):

rectangular w[n] =

{

1 0≤ n≤ L−1
0 otherwise

(9.10)

hamming w[n] =

{

0.54−0.46cos(2πn
L ) 0≤ n≤ L−1

0 otherwise
(9.11)

9.3.3 Discrete Fourier Transform

The next step is to extract spectral information for our windowed signal; we need to
know how much energy the signal contains at different frequency bands. The tool for
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Figure 9.11 Windowing a portion of a pure sine wave with the rectangular and Ham-
ming windows.

extracting spectral information for discrete frequency bands for a discrete-time (sam-
pled) signal is theDiscrete Fourier Transform or DFT.DISCRETE FOURIER

TRANSFORM

DFT The input to the DFT is a windowed signalx[n]...x[m], and the output, for each of
N discrete frequency bands, is a complex numberX[k] representing the magnitude and
phase of that frequency component in the original signal. Ifwe plot the magnitude
against the frequency, we can visualize thespectrum that we introduced in Ch. 7. For
example, Fig. 9.12 shows a 25 ms Hamming-windowed portion ofa signal and its
spectrum as computed by a DFT (with some additional smoothing).

We will not introduce the mathematical details of the DFT here, except to note that
Fourier analysis in general relies onEuler’s formula :EULER’S FORMULA

ejθ = cosθ + j sinθ(9.12)

As a brief reminder for those students who have already had signal processing, the DFT
is defined as follows:

X[k] =
N−1

∑
n=0

x[n]e− j2 π
N kn(9.13)

A commonly used algorithm for computing the DFT is the theFast Fourier Trans-
form or FFT. This implementation of the DFT is very efficient, but only works forFAST FOURIER

TRANSFORM

FFT values of N which are powers of two.



DRAFT

16 Chapter 9. Automatic Speech Recognition

Time (s)
0.0141752 0.039295

–0.04121

0.04414

0

Frequency (Hz)
0 8000

S
ou

nd
 p

re
ss

ur
e 

le
ve

l (
dB
/

H
z)

–20

0

20

(a) (b)

Figure 9.12 (a) A 25 ms Hamming-windowed portion of a signal from the vowel [iy]
and (b) its spectrum computed by a DFT.

9.3.4 Mel filter bank and log

The results of the FFT will be information about the amount ofenergy at each fre-
quency band. Human hearing, however, is not equally sensitive at all frequency bands.
It is less sensitive at higher frequencies, roughly above 1000 Hertz. It turns out that
modeling this property of human hearing during feature extraction improves speech
recognition performance. The form of the model used in MFCCsis to warp the fre-
quencies output by the DFT onto themel scale mentioned in Ch. 7. Amel (StevensMEL

et al., 1937; Stevens and Volkmann, 1940) is a unit of pitch defined so that pairs of
sounds which are perceptually equidistant in pitch are separated by an equal number of
mels. The mapping between frequency in Hertz and the mel scale is linear below 1000
Hz and the logarithmic above 1000 Hz. The mel frequencym can be computed from
the raw acoustic frequency as follows:

mel( f ) = 1127ln(1+
f

700
)(9.14)

During MFCC computation, this intuition is implemented by creating a bank of fil-
ters which collect energy from each frequency band, with 10 filters spaced linearly be-
low 1000 Hz, and the remaining filters spread logarithmically above 1000 Hz. Fig. 9.13
shows the bank of triangular filters that implement this idea.

Finally, we take the log of each of the mel spectrum values. Ingeneral the human
response to signal level is logarithmic; humans are less sensitive to slight differences
in amplitude at high amplitudes than at low amplitudes. In addition, using a log makes
the feature estimates less sensitive to variations in input(for example power variations
due to the speaker’s mouth moving closer or further from the microphone).

9.3.5 The Cepstrum: Inverse Discrete Fourier Transform

While it would be possible to use the mel spectrum by itself asa feature representation
for phone detection, the spectrum also has some problems, aswe will see. For this rea-
son, the next step in MFCC feature extraction is the computation of thecepstrum. TheCEPSTRUM
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Figure 9.13 The Mel filter bank, after Davis and Mermelstein (1980). Eachtriangular
filter collects energy from a given frequency range. Filtersare spaced linearly below 1000
Hz, and logarithmically above 1000 Hz.

cepstrum has a number of useful processing advantages and also significantly improves
phone recognition performance.

One way to think about the cepstrum is as a useful way of separating thesource
andfilter . Recall from Sec.?? that the speech waveform is created when a glottal
source waveform of a particular fundamental frequency is passed through the vocal
tract, which because of its shape has a particular filtering characteristic. But many
characteristics of the glottalsource(its fundamental frequency, the details of the glottal
pulse, etc) are not important for distinguishing differentphones. Instead, the most
useful information for phone detection is thefilter , i.e. the exact position of the vocal
tract. If we knew the shape of the vocal tract, we would know which phone was being
produced. This suggests that useful features for phone detection would find a way to
deconvolve (separate) the source and filter and show us only the vocal tract filter. It
turns out that the cepstrum is one way to do this.

(a) (b) (c)

Figure 9.14 PLACEHOLDER FIGURE. The magnitude spectrum (a), the log magnitude spectrum (b), and
the cepstrum (c). From Taylor (2008). The two spectra have a smoothed spectral enveloped laid on top of them to
help visualize the spectrum.

For simplicity, let’s ignore the pre-emphasis and mel-warping that are part of the
definition of MFCCs, and look just at the basic definition of the cepstrum. The cep-
strum can be thought of as thespectrum of the log of the spectrum. This may sound
confusing. But let’s begin with the easy part: thelog of the spectrum. That is, the cep-
strum begins with a standard magnitude spectrum, such as theone for a vowel shown
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in Fig. 9.14(a) from Taylor (2008). We then take the log, i.e.replace each amplitude
value in the magnitude spectrum with its log, as shown in Fig.9.14(b).

The next step is to visualize the log spectrumas if itself were a waveform. In other
words, consider the log spectrum in Fig. 9.14(b). Let’s imagine removing the axis
labels that tell us that this is a spectrum (frequency on the x-axis) and imagine that we
are dealing with just a normal speech signal with time on the x-axis. Now what can we
say about the spectrum of this ‘pseudo-signal’? Notice thatthere is a high-frequency
repetitive component in this wave: small waves that repeat about 8 times in each 1000
along the x-axis, for a frequency of about 120 Hz. This high-frequency component is
caused by the fundamental frequency of the signal, and represents the little peaks in the
spectrum at each harmonic of the signal. In addition, there are some lower frequency
components in this ‘pseudo-signal’; for example the envelope or formant structure has
about four large peaks in the window, for a much lower frequency.

Fig. 9.14(c) shows thecepstrum: the spectrum that we have been describing of
the log spectrum. This cepstrum (the wordcepstrum is formed by reversing the first
letters ofspectrum) is shown withsamplesalong the x-axis. This is because by taking
the spectrum of the log spectrum, we have left the frequency domain of the spectrum,
and gone back to the time domain. It turns out that the correctunit of a cepstrum is the
sample.

Examining this cepstrum, we see that there is indeed a large peak around 120,
corresponding to the F0 and representing the glottal pulse.There are other various
components at lower values on the x-axis. These represent the vocal tract filter (the
position of the tongue and the other articulators). Thus if we are interested in detecting
phones, we can make use of just the lower cepstral values. If we are interested in
detecting pitch, we can use the higher cepstral values.

For the purposes of MFCC extraction, we generally just take the first 12 cepstral
values. These 12 coefficients will represent information solely about the vocal tract
filter, cleanly separated from information about the glottal source.

It turns out that cepstral coefficients have the extremely useful property that the
variance of the different coefficients tends to be uncorrelated. This is not true for the
spectrum, where spectral coefficients at different frequency bands are correlated. The
fact that cepstral features are uncorrelated means, as we will see in the next section, that
the Gaussian acoustic model (the Gaussian Mixture Model, orGMM) doesn’t have to
represent the covariance between all the MFCC features, which hugely reduces the
number of parameters.

For those who have had signal processing, the cepstrum is more formally defined as
the inverse DFT of the log magnitude of the DFT of a signal, hence for a windowed
frame of speechx[n]:

c[n] =
N−1

∑
n=0

log

(

∣

∣

∣

∣

∣

N−1

∑
n=0

x[n]e− j 2π
N kn

∣

∣

∣

∣

∣

)

ej 2π
N kn(9.15)

9.3.6 Deltas and Energy

The extraction of the cepstrum via the Inverse DFT from the previous section results
in 12 cepstral coefficients for each frame. We next add a thirteenth feature: the energy
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from the frame. Energy correlates with phone identity and sois a useful cue for phone
detection (vowels and sibilants have more energy than stops, etc). Theenergy in aENERGY

frame is the sum over time of the power of the samples in the frame; thus for a signalx
in a window from time samplet1 to time samplet2, the energy is:

Energy=
t2

∑
t=t1

x2[t](9.16)

Another important fact about the speech signal is that it is not constant from frame
to frame. This change, such as the slope of a formant at its transitions, or the nature
of the change from a stop closure to stop burst, can provide a useful cue for phone
identity. For this reason we also add features related to thechange in cepstral features
over time.

We do this by adding for each of the 13 features (12 cepstral features plus en-
ergy) adelta or velocity feature, and adouble deltaor accelerationfeature. Each ofDELTA

VELOCITY

DOUBLE DELTA

ACCELERATION

the 13 delta features represents the change between frames in the corresponding cep-
stral/energy feature, while each of the 13 double delta features represents the change
between frames in the corresponding delta features.

A simple way to compute deltas would be just to compute the difference between
frames; thus the delta valued(t) for a particular cepstral valuec(t) at timet can be
estimated as:

d(t) =
c(t +1)−c(t−1)

2
(9.17)

Instead of this simple estimate, however, it is more common to make more sophis-
ticated estimates of the slope, using a wider context of frames.

9.3.7 Summary: MFCC

After adding energy, and then delta and double-delta features to the 12 cepstral features,
we end up with 39 MFCC features:

12 cepstral coefficients
12 delta cepstral coefficients
12 double delta cepstral coefficients
1 energy coefficient
1 delta energy coefficient
1 double delta energy coefficient
39 MFCC features

Again, one of the most useful facts about MFCC features is that the cepstral coef-
ficients tend to be uncorrelated, which will turn out to make our acoustic model much
simpler.
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9.4 COMPUTING ACOUSTIC L IKELIHOODS

The last section showed how we can extract MFCC features representing spectral infor-
mation from a wavefile, and produce a 39-dimensional vector every 10 milliseconds.
We are now ready to see how to compute the likelihood of these feature vectors given
an HMM state. Recall from Ch. 6 that this output likelihood iscomputed by theB
probability function of the HMM. Given an individual stateqi and an observationot ,
the observation likelihoods inB matrix gave usp(ot |qi), which we calledbt(i).

For part-of-speech tagging in Ch. 5, each observationot is a discrete symbol (a
word) and we can compute the likelihood of an observation given a part-of-speech tag
just by counting the number of times a given tag generates a given observation in the
training set. But for speech recognition, MFCC vectors are real-valued numbers; we
can’t compute the likelihood of a given state (phone) generating an MFCC vector by
counting the number of times each such vector occurs (since each one is likely to be
unique).

In both decoding and training, we need an observation likelihood function that can
computep(ot |qi) on real-valued observations. In decoding, we are given an observation
ot and we need to produce the probabilityp(ot |qi) for each possible HMM state, so we
can choose the most likely sequence of states. Once we have this observation likelihood
B function, we need to figure out how to modify the Baum-Welch algorithm of Ch. 6
to train it as part of training HMMs.

9.4.1 Vector Quantization

One way to make MFCC vectors look like symbols that we could count is to build a
mapping function that maps each input vector into one of a small number of symbols.
Then we could just compute probabilities on these symbols bycounting, just as we
did for words in part-of-speech tagging. This idea of mapping input vectors to discrete
quantized symbols is calledvector quantization or VQ (Gray, 1984). Although vectorVECTOR

QUANTIZATION

VQ quantization is too simple to act as the acoustic model in modern LVCSR systems, it is
a useful pedagogical step, and plays an important role in various areas of ASR, so we
use it to begin our discussion of acoustic modeling.

In vector quantization, we create the small symbol set by mapping each training
feature vector into a small number of classes, and then we represent each class by a
discrete symbol. More formally, a vector quantization system is characterized by a
codebook, aclustering algorithm, and adistance metric.

A codebookis a list of possible classes, a set of symbols constituting avocabularyCODEBOOK

V = {v1,v2, ...,vn}. For each symbolvk in the codebook we list aprototype vector,PROTOTYPE VECTOR

also known as acodeword, which is a specific feature vector. For example if we chooseCODEWORD

to use 256 codewords we could represent each vector by a valuefrom 0 to 255; (this
is referred to as 8-bit VQ, since we can represent each vectorby a single 8-bit value).
Each of these 256 values would be associated with a prototypefeature vector.

The codebook is created by using aclustering algorithm to cluster all the featureCLUSTERING

vectors in the training set into the 256 classes. Then we chose a representative feature
vector from the cluster, and make it the prototype vector or codeword for that cluster.
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K-means clusteringis often used, but we won’t define clustering here; see Huang et al.KMEANS
CLUSTERING

(2001) or Duda et al. (2000) for detailed descriptions.
Once we’ve built the codebook, for each incoming feature vector, we compare it to

each of the 256 prototype vectors, select the one which is closest (by somedistance
metric), and replace the input vector by the index of this prototypevector. A schematic
of this process is shown in Fig. 9.15.

The advantage of VQ is that since there are a finite number of classes, for each class
vk, we can compute the probability that it is generated by a given HMM state/sub-phone
by simply counting the number of times it occurs in some training set when labeled by
that state, and normalizing.

Figure 9.15 Schematic architecture of the (trained) vector quantization (VQ) process
for choosing a symbolvq for each input feature vector. The vector is compared to each
codeword in the codebook, the closest entry (by some distance metric) is selected, and the
index of the closest codeword is output.

Both the clustering process and the decoding process require adistance metricDISTANCE METRIC

or distortion metric, that specifies how similar two acoustic feature vectors are. The
distance metric is used to build clusters, to find a prototypevector for each cluster, and
to compare incoming vectors to the prototypes.

The simplest distance metric for acoustic feature vectors is Euclidean distance.EUCLIDEAN
DISTANCE

Euclidean distance is the distance in N-dimensional space between the two points de-
fined by the two vectors. In practice we use the phrase ‘Euclidean distance’ even though
we actually often use the square of the Euclidean distance. Thus given a vectorx and
a vectory of length D, the (square of the) Euclidean distance between them is defined
as:

deuclidean(x,y) =
D

∑
i=1

(xi−yi)
2(9.18)

The (squared) Euclidean distance described in (9.18) (and shown for two dimen-
sions in Fig. 9.16) is also referred to as the sum-squared error, and can also be expressed
using the vector transpose operator as:
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deuclidean(x,y) = (x−y)T(x−y)(9.19)

Figure 9.16 Euclidean distance in two dimensions; by the Pythagorean theorem,
the distance between two points in a planex = (x1,y1) and y = (x2,y2) d(x,y) =
√

(x1−x2)2 +(y1−y2)2.

The Euclidean distance metric assumes that each of the dimensions of a feature
vector are equally important. But actually each of the dimensions have very different
variances. If a dimension tends to have a lot of variance, then we’d like it to count
less in the distance metric; a large difference in a dimension with low variance should
count more than a large difference in a dimension with high variance. A slightly more
complex distance metric, theMahalanobis distance, takes into account the differentMAHALANOBIS

DISTANCE

variances of each of the dimensions.
If we assume that each dimensioni of the acoustic feature vectors has a variance

σ2
i , then the Mahalanobis distance is:

dmahalanobis(x,y) =
D

∑
i=1

(xi−yi)
2

σ2
i

(9.20)

For those readers with more background in linear algebra here’s the general form
of Mahalanobis distance, which includes a full covariance matrix (covariance matrices
will be defined below):

dmahalanobis(x,y) = (x−y)TΣ−1(x−y)(9.21)

In summary, when decoding a speech signal, to compute an acoustic likelihood of
a feature vectorot given an HMM stateq j using VQ, we compute the Euclidean or
Mahalanobis distance between the feature vector and each ofthe N codewords, choose
the closest codeword, getting the codeword indexvk. We then look up the likelihood of
the codeword indexvk given the HMM statej in the pre-computedB likelihood matrix
defined by the HMM:
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b̂ j(ot) = b j(vk) s.t. vk is codeword of closest vector toot(9.22)

Since VQ is so rarely used, we don’t use up space here giving the equations for
modifying the EM algorithm to deal with VQ data; instead, we defer discussion of
EM training of continuous input parameters to the next section, when we introduce
Gaussians.

9.4.2 Gaussian PDFs

Vector quantization has the advantage of being extremely easy to compute and requires
very little storage. Despite these advantages, vector quantization turns out not to be a
good model of speech. A small number of codewords is insufficient to capture the wide
variability in the speech signal. Speech is simply not a categorical, symbolic process.

Modern speech recognition algorithms therefore do not use vector quantization to
compute acoustic likelihoods. Instead, they are based on computing observation prob-
abilities directly on the real-valued, continuous input feature vector. These acoustic
models are based on computing aprobability density function or pdf over a contin-PROBABILITY

DENSITY FUNCTION

uous space. By far the most common method for computing acoustic likelihoods is
theGaussian Mixture Model (GMM ) pdfs, although neural networks, support vectorGAUSSIAN MIXTURE

MODEL

GMM machines (SVMs) and conditional random fields (CRFs) are also used.
Let’s begin with the simplest use of Gaussian probability estimators, slowly build-

ing up the more sophisticated models that are used.

Univariate Gaussians

TheGaussiandistribution, also known as thenormal distribution , is the bell-curveGAUSSIAN

NORMAL
DISTRIBUTION function familiar from basic statistics. A Gaussian distribution is a function parame-

terized by amean, or average value, and avariance, which characterizes the averageMEAN

VARIANCE spread or dispersal from the mean. We will useµ to indicate the mean, andσ2 to
indicate the variance, giving the following formula for a Gaussian function:

f (x|µ ,σ) =
1

√
2πσ2

exp(−
(x− µ)2

2σ2 )(9.23)

Recall from basic statistics that the mean of a random variable X is the expected
value ofX. For a discrete variableX, this is the weighted sum over the values ofX (for
a continuous variable, it is the integral):

µ = E(X) =
N

∑
i=1

p(Xi)Xi(9.24)

The variance of a random variableX is the weigthed squared average deviation
from the mean:

σ2 = E(Xi−E(X))2 =
N

∑
i=1

p(Xi)(Xi−E(X))2(9.25)

When a Gaussian function is used as a probability density function, the area under
the curve is constrained to be equal to one. Then the probability that a random variable
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Figure 9.17 Gaussian functions with different means and variances.

takes on any particular range of values can be computed by summing the area under
the curve for that range of values. Fig. 9.18 shows the probability expressed by the area
under an interval of a Gaussian.
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Figure 9.18 A Gaussian probability density function, showing a region from 0 to 1 with
a total probability of .341. Thus for this sample Gaussian, the probability that a value on
the X axis lies between 0 and 1 is .341.
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We can use a univariate Gaussian pdf to estimate the probability that a particular
HMM state j generates the value of a single dimension of a feature vectorby assuming
that the possible values of (this one dimension of the) observation feature vectorot are
normally distributed. In other words we represent the observation likelihood function
b j(ot) for one dimension of the acoustic vector as a Gaussian. Taking, for the moment,
our observation as a single real valued number (a single cepstral feature), and assuming
that each HMM statej has associated with it a mean valueµ j and varianceσ2

j , we
compute the likelihoodb j(ot) via the equation for a Gaussian pdf:

b j(ot) =
1

√

2πσ2
j

exp

(

−
(ot − µ j)

2

2σ2
j

)

(9.26)

Equation (9.26) shows us how to computeb j(ot), the likelihood of an individual
acoustic observation given a single univariate Gaussian from statej with its mean and
variance. We can now use this probability in HMM decoding.

But first we need to solve the training problem; how do we compute this mean and
variance of the Gaussian for each HMM stateqi? Let’s start by imagining the simpler
situation of a completely labeled training set, in which each acoustic observation was
labeled with the HMM state that produced it. In such a training set, we could compute
the mean of each state by just taking the average of the valuesfor eachot that corre-
sponded to statei, as show in (9.27). The variance could just be computed from the
sum-squared error between each observation and the mean, asshown in (9.28).

µ̂i =
1
T

T

∑
t=1

ot s.t. qt is statei(9.27)

σ̂2
j =

1
T

T

∑
t=1

(ot − µi)
2 s.t.qt is statei(9.28)

But since states are hidden in an HMM, we don’t know exactly which observation
vectorot was produced by which state. What we would like to do is assigneach ob-
servation vectorot to every possible statei, prorated by the probability that the HMM
was in statei at timet. Luckily, we already know how to do this prorating; the prob-
ability of being in statei at timet was defined in Ch. 6 asξt(i), and we saw how to
computeξt(i) as part of the Baum-Welch algorithm using the forward and backward
probabilities. Baum-Welch is an iterative algorithm, and we will need to do the prob-
ability computation ofξt(i) iteratively since getting a better observation probability b
will also help us be more sure of the probabilityξ of being in a state at a certain time.
Thus we give equations for computing an updated mean and varianceµ̂ andσ̂2:

µ̂i =
∑T

t=1 ξt(i)ot

∑T
t=1 ξt(i)

(9.29)

σ̂2
i =

∑T
t=1 ξt(i)(ot − µi)

2

∑T
t=1 ξt(i)

(9.30)

Equations (9.29) and (9.30) are then used in the forward-backward (Baum-Welch)training
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of the HMM. As we will see, the values ofµi andσi are first set to some initial estimate,
which is then re-estimated until the numbers converge.

Multivariate Gaussians

Equation (9.26) shows how to use a Gaussian to compute an acoustic likelihood for a
single cepstral feature. Since an acoustic observation is avector of 39 features, we’ll
need to use a multivariate Gaussian, which allows us to assign a probability to a 39-
valued vector. Where a univariate Gaussian is defined by a mean µ and a variance
σ2, a multivariate Gaussian is defined by a mean vector~µ of dimensionality D and
a covariance matrixΣ, defined below. As we discussed in the previous section, for a
typical cepstral feature vector in LVCSR, D is 39:

f (~x|~µ ,Σ) =
1

(2π)
D
2 |Σ|

1
2

exp

(

−
1
2
(x− µ)TΣ−1(x− µ)

)

(9.31)

The covariance matrixΣ captures the variance of each dimension as well as the
covariance between any two dimensions.

Recall again from basic statistics that the covariance of two random variablesX
andY is the expected value of the product of their average deviations from the mean:

Σ = E[(X−E(X))(Y−E(Y)]) =
N

∑
i=1

p(XiYi)(Xi−E(X))(Yi−E(Y))(9.32)

Thus for a given HMM state with mean vectorµ j and covariance matrixΣ j , and a
given observation vectorot , the multivariate Gaussian probability estimate is:

b j(ot) =
1

(2π)
D
2 |Σ|

1
2

exp

(

−
1
2
(ot − µ j)

TΣ−1
j (ot − µ j)

)

(9.33)

The covariance matrixΣ j expresses the variance between each pair of feature di-
mensions. Suppose we made the simplifying assumption that features in different di-
mensions did not covary, i.e., that there was no correlationbetween the variances of
different dimensions of the feature vector. In this case, wecould simply keep a dis-
tinct variance for each feature dimension. It turns out thatkeeping a separate variance
for each dimension is equivalent to having a covariance matrix that is diagonal, i.e.DIAGONAL

non-zero elements only appear along the main diagonal of thematrix. The main di-
agonal of such a diagonal covariance matrix contains the variances of each dimension,
σ2

1 ,σ2
2 , ...σ2

D;
Let’s look at some illustrations of multivariate Gaussians, focusing on the role of

the full versus diagonal covariance matrix. We’ll explore asimple multivariate Gaus-
sian with only 2 dimensions, rather than the 39 that are typical in ASR. Fig. 9.19 shows
three different multivariate Gaussians in two dimensions.The leftmost figure shows
a Gaussian with a diagonal covariance matrix, in which the variances of the two di-
mensions are equal. Fig. 9.20 shows 3 contour plots corresponding to the Gaussians in
Fig. 9.19; each is a slice through the Gaussian. The leftmostgraph in Fig. 9.20 shows
a slice through the diagonal equal-variance Gaussian. The slice is circular, since the
variances are equal in both the X and Y directions.
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Figure 9.19 Three different multivariate Gaussians in two dimensions.The first
two have diagonal covariance matrices, one with equal variance in the two dimensions
[

1 0
0 1

]

, the second with different variances in the two dimensions,

[

.6 0
0 2

]

, and the

third with non-zero elements in the off-diagonal of the covariance matrix:

[

1 .8
.8 1

]

.

The middle figure in Fig. 9.19 shows a Gaussian with a diagonalcovariance matrix,
but where the variances are not equal. It is clear from this figure, and especially from
the contour slice show in Fig. 9.20, that the variance is morethan 3 times greater in one
dimension than the other.
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Figure 9.20 The same three multivariate Gaussians as in the previous figure. From left
to right, a diagonal covariance matrix with equal variance,diagonal with unequal variance,
and and nondiagonal covariance. With non-diagonal covariance, knowing the value on
dimension X tells you something about the value on dimensionY.

The rightmost graph in Fig. 9.19 and Fig. 9.20 shows a Gaussian with a non-
diagonal covariance matrix. Notice in the contour plot in Fig. 9.20 that the contour
is not lined up with the two axes, as it is in the other two plots. Because of this, know-
ing the value in one dimension can help in predicting the value in the other dimension.
Thus having a non-diagonal covariance matrix allows us to model correlations between
the values of the features in multiple dimensions.

A Gaussian with a full covariance matrix is thus a more powerful model of acoustic
likelihood than one with a diagonal covariance matrix. And indeed, speech recognition
performance is better using full-covariance Gaussians than diagonal-covariance Gaus-
sians. But there are two problems with full-covariance Gaussians that makes them
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difficult to use in practice. First, they are slow to compute.A full covariance matrix
hasD2 parameters, where a diagonal covariance matrix has onlyD. This turns out to
make a large difference in speed in real ASR systems. Second,a full covariance matrix
has many more parameters and hence requires much more data totrain than a diagonal
covariance matrix. Using a diagonal covariance model meanswe can save room for
using our parameters for other things like triphones (context-dependent phones) to be
introduced in Sec.??.

For this reason, in practice most ASR systems use diagonal covariance. We will
assume diagonal covariance for the remainder of this section.

Equation (9.33) can thus be simplified to the version in (9.34) in which instead of a
covariance matrix, we simply keep a mean and variance for each dimension. Equation
(9.34) thus describes how to estimate the likelihoodb j(ot) of a D-dimensional feature
vectorot given HMM statej, using a diagonal-covariance multivariate Gaussian.

b j(ot) =
D

∏
d=1

1
√

2πσ2
jd

exp

(

−
1
2
[
(otd− µ jd)2

σ jd
2 ]

)

(9.34)

Training a diagonal-covariance multivariate Gaussian is asimple generalization of
training univariate Gaussians. We’ll do the same Baum-Welch training, where we use
the value ofξt(i) to tell us the likelihood of being in statei at timet. Indeed, we’ll
use exactly the same equation as in (9.30), except that now weare dealing with vectors
instead of scalars; the observationot is a vector of cepstral features, the mean vector
~µ is a vector of cepstral means, and the variance vector~σ2

i is a vector of cepstral
variances.

µ̂i =
∑T

t=1 ξt(i)ot

∑T
t=1 ξt(i)

(9.35)

σ̂2
i =

∑T
t=1 ξt(i)(ot − µi)(ot − µi)

T

∑T
t=1 ξt(i)

(9.36)

Gaussian Mixture Models

The previous subsection showed that we can use a multivariate Gaussian model to as-
sign a likelihood score to an acoustic feature vector observation. This models each
dimension of the feature vector as a normal distribution. But a particular cepstral fea-
ture might have a very non-normal distribution; the assumption of a normal distribu-
tion may be too strong an assumption. For this reason, we often model the observation
likelihood not with a single multivariate Gaussian, but with a weighted mixture of mul-
tivariate Gaussians. Such a model is called aGaussian Mixture Model or GMM .GAUSSIAN MIXTURE

MODEL

GMM Equation (9.37) shows the equation for the GMM function; theresulting function is the
sum ofM Gaussians. Fig. 9.21 shows an intuition of how a mixture of Gaussians can
model arbitrary functions.

f (x|µ ,Σ) =
M

∑
k=1

ck
1

√

2π |Σk|
exp[(x− µk)

TΣ−1(x− µk)](9.37)
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Figure 9.21 An arbitrary function approximated by a mixture of 3 gaussians.

Equation (9.38) shows the definition of the output likelihood functionb j(ot)

b j(ot) =
M

∑
m=1

c jm
1

√

2π |Σ jm|
exp[(x− µ jm)TΣ−1

jm(ot − µ jm)](9.38)

Let’s turn to training the GMM likelihood function. This mayseem hard to do; how
can we train a GMM model if we don’t know in advance which mixture is supposed to
account for which part of each distribution? Recall that a single multivariate Gaussian
could be trained even if we didn’t know which state accountedfor each output, simply
by using the Baum-Welch algorithm to tell us the likelihood of being in each statej at
time t. It turns out the same trick will work for GMMs; we can use Baum-Welch to tell
us the probability of a certain mixture accounting for the observation, and iteratively
update this probability.

We used theξ function above to help us compute the state probability. By analogy
with this function, let’s defineξtm( j) to mean the probability of being in statej at time
t with the mth mixture component accounting for the output observationot . We can
computeξtm( j) as follows:

ξtm( j) =
∑i=1Nαt−1( j)ai j c jmb jm(ot)βt( j)

αT(F)
(9.39)

Now if we had the values ofξ from a previous iteration of Baum-Welch, we can
useξtm( j) to recompute the mean, mixture weight, and covariance usingthe following
equations:

µ̂im =
∑T

t=1 ξtm(i)ot

∑T
t=1 ∑M

m=1 ξtm(i)
(9.40)

ĉim =
∑T

t=1 ξtm(i)

∑T
t=1 ∑M

k=1 ξtk(i)
(9.41)
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Σ̂im =
∑T

t=1 ξt(i)(ot − µim)(ot − µim)T

∑T
t=1 ∑M

k=1 ξtm(i)
(9.42)

9.4.3 Probabilities, log probabilities and distance functions

Up to now, all the equations we have given for acoustic modeling have used probabil-
ities. It turns out, however, that alog probability (or logprob) is much easier to workLOGPROB

with than a probability. Thus in practice throughout speechrecognition (and related
fields) we compute log-probabilities rather than probabilities.

One major reason that we can’t use probabilities is numeric underflow. To com-
pute a likelihood for a whole sentence, say, we are multiplying many small prob-
ability values, one for each 10ms frame. Multiplying many probabilities results in
smaller and smaller numbers, leading to underflow. The log ofa small number like
.00000001= 10−8, on the other hand, is a nice easy-to-work-with-number like−8. A
second reason to use log probabilities is computational speed. Instead of multiplying
probabilities, we add log-probabilities, and adding is faster than multiplying. Log-
probabilities are particularly efficient when we are using Gaussian models, since we
can avoid exponentiating.

Thus for example for a single multivariate diagonal-covariance Gaussian model,
instead of computing:

b j(ot) =
D

∏
d=1

1
√

2πσ2
jd

exp

(

−
1
2

(otd− µ jd)2

σ2
jd

)

(9.43)

we would compute

logb j(ot) =−
1
2

D

∑
d=1

[

log(2π)+ σ2
jd +

(otd− µ jd)2

σ2
jd

]

(9.44)

With some rearrangement of terms, we can rewrite this equation to pull out a constant
C:

logb j(ot) = C−
1
2

D

∑
d=1

(otd− µ jd)2

σ2
jd

(9.45)

where C can be precomputed:

C =−
1
2

D

∑
d=1

(

log(2π)+ σ2
jd

)

(9.46)

In summary, computing acoustic models in log domain means a much simpler com-
putation, much of which can be precomputed for speed.

The perceptive reader may have noticed that equation (9.45)looks very much like
the equation for Mahalanobis distance (9.20). Indeed, one way to think about Gaussian
logprobs is as just a weighted distance metric.

A further point about Gaussian pdfs, for those readers with calculus. Although the
equations for observation likelihood such as (9.26) are motivated by the use of Gaus-
sian probability density functions, the values they returnfor the observation likelihood,
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b j(ot), are not technically probabilities; they may in fact be greater than one. This is
because we are computing the value ofb j(ot) at a single point, rather than integrating
over a region. While the total area under the Gaussian PDF curve is constrained to one,
the actual value at any point could be greater than one. (Imagine a very tall skinny
Gaussian; the value could be greater than one at the center, although the area under the
curve is still 1.0). If we were integrating over a region, we would be multiplying each
point by its widthdx, which would bring the value down below one. The fact that the
Gaussian estimate is not a true probability doesn’t matter for choosing the most likely
HMM state, since we are comparing different Gaussians, eachof which is missing this
dx factor.

In summary, the last few subsections introduced Gaussian models for acoustic train-
ing in speech recognition. Beginning with simple univariate Gaussian, we extended
first to multivariate Gaussians to deal with the multidimensionality acoustic feature
vectors. We then introduced the diagonal covariance simplification of Gaussians, and
then introduced Gaussians mixtures (GMMs).

9.5 THE LEXICON AND LANGUAGE MODEL

Since previous chapters had extensive discussions of theN-gram language model (Ch. 4)
and the pronunciation lexicon (Ch. 7), in this section we just briefly recall them to the
reader.

Language models for LVCSR tend to be trigrams or even fourgrams; good toolkits
are available to build and manipulate them (Stolcke, 2002; Young et al., 2005). Bigrams
and unigram grammars are rarely used for large-vocabulary applications. Since tri-
grams require huge amounts of space, however, language models for memory-constrained
applications like cell phones tend to use smaller contexts (or use compression tech-
niques). As we will discuss in Ch. 24, some simple dialogue applications take ad-
vantage of their limited domain to use very simple finite state or weighted-finite state
grammars.

Lexicons are simply lists of words, with a pronunciation foreach word expressed
as a phone sequence. Publicly available lexicons like the CMU dictionary (CMU,
1993) can be used to extract the 64,000 word vocabularies commonly used for LVCSR.
Most words have a single pronunciation, although some wordssuch as homonyms and
frequent function words may have more; the average number ofpronunciations per
word in most LVCSR systems seems to range from 1 to 2.5. Sec.?? in Ch. 10 discusses
the issue of pronunciation modeling.

9.6 SEARCH AND DECODING

We are now very close to having described all the parts of a complete speech recog-
nizer. We have shown how to extract cepstral features for a frame, and how to compute
the acoustic likelihoodb j(ot) for that frame. We also know how to represent lexical
knowledge, that each word HMM is composed of a sequence of phone models, and
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each phone model of a set of subphone states. Finally, in Ch. 4we showed how to use
N-grams to build a model of word predictability.

In this section we show how to combine all of this knowledge tosolve the problem
of decoding: combining all these probability estimators to produce themost probableDECODING

string of words. We can phrase the decoding question as: ‘Given a string of acoustic
observations, how should we choose the string of words whichhas the highest posterior
probability?’

Recall from the beginning of the chapter the noisy channel model for speech recog-
nition. In this model, we use Bayes rule, with the result thatthe best sequence of words
is the one that maximizes the product of two factors, a language model prior and an
acoustic likelihood:

Ŵ = argmax
W∈L

likelihood
︷ ︸︸ ︷

P(O|W)

prior
︷ ︸︸ ︷

P(W)(9.47)

Now that we have defined both the acoustic model and language model we are
ready to see how to find this maximum probability sequence of words. First, though,
it turns out that we’ll need to make a modification to Equation(9.47), because it relies
on some incorrect independence assumptions. Recall that wetrained a multivariate
Gaussian mixture classifier to compute the likelihood of a particular acoustic observa-
tion (a frame) given a particular state (subphone). By computing separate classifiers
for each acoustic frame and multiplying these probabilities to get the probability of the
whole word, we are severely underestimating the probability of each subphone. This
is because there is a lot of continuity across frames; if we were to take into account
the acoustic context, we would have a greater expectation for a given frame and hence
could assign it a higher probability. We must therefore reweight the two probabilities.
We do this by adding in alanguage model scaling factoror LMSF , also called theLMSF

language weight. This factor is an exponent on the language model probability P(W).
BecauseP(W) is less than one and the LMSF is greater than one (between 5 and15, in
many systems), this has the effect of decreasing the value ofthe LM probability:

Ŵ = argmax
W∈L

P(O|W)P(W)LMSF(9.48)

Reweighting the language model probabilityP(W) in this way requires us to make
one more change. This is becauseP(W) has a side-effect as a penalty for inserting
words. It’s simplest to see this in the case of a uniform language model, where every
word in a vocabulary of size|V| has an equal probability1|V| . In this case, a sentence

with N words will have a language model probability of1
|V| for each of theN words,

for a total penalty of ofN|V| . The largerN is (the more words in the sentence), the more

times this1
V penalty multiplier is taken, and the less probable the sentence will be. Thus

if (on average) the language model probability decreases (causing a larger penalty), the
decoder will prefer fewer, longer words. If the language model probability increases
(larger penalty), the decoder will prefer more shorter words. Thus our use of a LMSF to
balance the acoustic model has the side-effect of decreasing the word insertion penalty.
To offset this, we need to add back in a separateword insertion penalty:WORD INSERTION

PENALTY
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Ŵ = argmax
W∈L

P(O|W)P(W)LMSFWIPN(9.49)

Since in practice we use logprobs, the goal of our decoder is:

Ŵ = argmax
W∈L

logP(O|W)+LMSF× logP(W)+N× logWIP(9.50)

Now that we have an equation to maximize, let’s look at how to decode. It’s the job
of a decoder to simultaneously segment the utterance into words and identify each of
these words. This task is made difficult by variation, both interms of how words are
pronounced in terms of phones, and how phones are articulated in acoustic features.
Just to give an intuition of the difficulty of the problem imagine a massively simplified
version of the speech recognition task, in which the decoderis given a series of discrete
phones. In such a case, we would know what each phone was with perfect accuracy,
and yet decoding is still difficult. For example, try to decode the following sentence
from the (hand-labeled) sequence of phones from the Switchboard corpus (don’t peek
ahead!):

[ay d ih s hh er d s ah m th ih ng ax b aw m uh v ih ng r ih s en l ih]

The answer is in the footnote.2 The task is hard partly because of coarticulation
and fast speech (e.g., [d] for the first phone ofjust!). But it’s also hard because speech,
unlike English writing, has no spaces indicating word boundaries. The true decoding
task, in which we have to identify the phones at the same time as we identify and
segment the words, is of course much harder.

For decoding, we will start with the Viterbi algorithm that we introduced in Ch. 6,
in the domain ofdigit recognition, a simple task with with a vocabulary size of 11 (the
numbersonethroughninepluszeroandoh).

Recall the basic components of an HMM model for speech recognition:

Q = q1q2 . . .qN a set ofstatescorresponding tosubphones

A = a01a02. . .an1 . . .ann a transition probability matrix A, eachai j rep-
resenting the probability for each subphone of
taking aself-loopor going to the next subphone.
Together,Q and A implement apronunciation
lexicon, an HMM state graph structure for each
word that the system is capable of recognizing.

B = bi(ot) A set of observation likelihoods:, also called
emission probabilities, each expressing the
probability of a cepstral feature vector (observa-
tion ot ) being generated from subphone statei.

The HMM structure for each word comes from a lexicon of word pronunciations.
Generally we use an off-the-shelf pronunciation dictionary such as the free CMUdict
dictionary described in Ch. 7. Recall from page 9 that the HMMstructure for words in

2 I just heard something about moving recently.
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speech recognition is a simple concatenation of phone HMMs,each phone consisting
of 3 subphone states, where every state has exactly two transitions: a self-loop and a
loop to the next phones. Thus the HMM structure for each digitword in our digit rec-
ognizer is computed simply by taking the phone string from the dictionary, expanding
each phone into 3 subphones, and concatenating together. Inaddition, we generally
add an optional silence phone at the end of each word, allowing the possibility of paus-
ing between words. We usually define the set of statesQ from some version of the
ARPAbet, augmented with silence phones, and expanded to create three subphones for
each phone.

TheA andB matrices for the HMM are trained by the Baum-Welch algorithmin
the embedded training procedure that we will describe in Sec. 9.7. For now we’ll
assume that these probabilities have been trained.

Fig. 9.22 shows the resulting HMM for digit recognition. Note that we’ve added
non-emitting start and end states, with transitions from the end of each word to the end
state, and a transition from the end state back to the start state to allow for sequences
of digits. Note also the optional silence phones at the end ofeach word.

Digit recognizers often don’t use word probabilities, since in many digit situations
(phone numbers or credit card numbers) each digit may have anequal probability of
appearing. But we’ve included transition probabilities into each word in Fig. 9.22,
mainly to show where such probabilities would be for other kinds of recognition tasks.
As it happens, there are cases where digit probabilities do matter, such as in addresses
(which are often likely to end in 0 or 00) or in cultures where some numbers are lucky
and hence more frequent, such as the lucky number ‘8’ in Chinese.

Now that we have an HMM, we can use the same forward and Viterbialgorithms
that we introduced in Ch. 6. Let’s see how to use the forward algorithm to generate
P(O|W), the likelihood of an observation sequenceO given a sequence of wordsW;
we’ll use the single word “five”. In order to compute this likelihood, we need to sum
over all possible sequences of states; assumingfivehas the states [f], [ay], and [v], a
10-observation sequence includes many sequences such as the following:

f ay ay ay ay v v v v v
f f ay ay ay ay v v v v
f f f f ay ay ay ay v v
f f ay ay ay ay ay ay v v
f f ay ay ay ay ay ay ay v
f f ay ay ay ay ay v v v
...

The forward algorithm efficiently sums over this large number of sequences in
O(N2T) time.

Let’s quickly review the forward algorithm. It is a dynamic programming algo-
rithm, i.e. an algorithm that uses a table to store intermediate values as it builds up the
probability of the observation sequence. The forward algorithm computes the obser-
vation probability by summing over the probabilities of allpossible paths that could
generate the observation sequence.

Each cell of the forward algorithm trellisαt( j) or forward[t, j] represents the proba-
bility of being in statej after seeing the firstt observations, given the automatonλ . The
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Figure 9.22 An HMM for the digit recognition task. A lexicon specifies thephone
sequence, and each phone HMM is composed of three subphones each with a Gaussian
emission likelihood model. Combining these and adding an optional silence at the end of
each word, results in a single HMM for the whole task. Note thetransition from the End
state to the Start state to allow digit sequences of arbitrary length.

value of each cellαt ( j) is computed by summing over the probabilities of every path
that could lead us to this cell. Formally, each cell expresses the following probability:

αt( j) = P(o1,o2 . . .ot ,qt = j|λ )(9.51)

Hereqt = j means “the probability that thetth state in the sequence of states is state
j”. We compute this probability by summing over the extensions of all the paths that
lead to the current cell. For a given stateq j at timet, the valueαt ( j) is computed as:

αt( j) =
N

∑
i=1

αt−1(i)ai j b j(ot)(9.52)

The three factors that are multiplied in Eq˙ 9.52 in extending the previous paths to
compute the forward probability at timet are:
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αt−1(i) theprevious forward path probability from the previous time step

ai j thetransition probability from previous stateqi to current stateq j

b j(ot) thestate observation likelihoodof the observation symbolot given
the current statej

The algorithm is described in Fig. 9.23.

function FORWARD(observationsof lenT, state-graphof lenN) returns forward-prob

create a probability matrixforward[N+2,T]
for each states from 1 to N do ;initialization step

forward[s,1]←a0,s ∗ bs(o1)
for each time stept from 2 to T do ;recursion step

for each states from 1 to N do

forward[s,t]←
N

∑
s′=1

forward[s′,t−1] ∗ as′,s ∗ bs(ot)

forward[qF ,T]←
N

∑
s=1

forward[s,T] ∗ as,qF ; termination step

return forward[qF ,T]

Figure 9.23 The forward algorithm for computing likelihood of observation sequence
given a word model.a[s,s′] is the transition probability from current states to next states′,
andb[s′,ot ] is the observation likelihood ofs’ givenot . The observation likelihoodb[s′,ot ]
is computed by theacoustic model.

Let’s see a trace of the forward algorithm running on a simplified HMM for the
single wordfivegiven 10 observations; assuming a frame shift of 10ms, this comes to
100ms. The HMM structure is shown vertically along the left of Fig. 9.24, followed by
the first 3 time-steps of the forward trellis. The complete trellis is shown in Fig. 9.25,
together withB values giving a vector of observation likelihoods for each frame. These
likelihoods could be computed by any acoustic model (GMMs orother); in this exam-
ple we’ve hand-created simple values for pedagogical purposes.

Let’s now turn to the question of decoding. Recall the Viterbi decoding algorithm
from our description of HMMs in Ch. 6. The Viterbi algorithm returns the most likely
state sequence (which is not the same as the most likely word sequence, but is often a
good enough approximation) in timeO(N2T).

Each cell of the Viterbi trellis,vt( j) represents the probability that the HMM is in
state j after seeing the firstt observations and passing through the most likely state
sequenceq1...qt−1, given the automatonλ . The value of each cellvt( j) is computed
by recursively taking the most probable path that could leadus to this cell. Formally,
each cell expresses the following probability:

vt( j) = P(q0,q1...qt−1,o1,o2 . . .ot ,qt = j|λ )(9.53)

Like other dynamic programming algorithms, Viterbi fills each cell recursively.
Given that we had already computed the probability of being in every state at time
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Figure 9.24 The first 3 time-steps of the forward trellis computation forthe wordfive.
TheA transition probabilities are shown along the left edge; theB observation likelihoods
are shown in Fig. 9.25.

V 0 0 0.008 0.0093 0.0114 0.00703 0.00345 0.00306 0.00206 0.00117
AY 0 0.04 0.054 0.0664 0.0355 0.016 0.00676 0.00208 0.000532 0.000109
F 0.8 0.32 0.112 0.0224 0.00448 0.000896 0.000179 4.48e-05 1.12e-05 2.8e-06

Time 1 2 3 4 5 6 7 8 9 10

f 0.8 f 0.8 f 0.7 f 0.4 f 0.4 f 0.4 f 0.4 f 0.5 f 0.5 f 0.5
ay 0.1 ay 0.1 ay 0.3 ay 0.8 ay 0.8 ay 0.8 ay 0.8 ay 0.6 ay 0.5 ay 0.4

B v 0.6 v 0.6 v 0.4 v 0.3 v 0.3 v 0.3 v 0.3 v 0.6 v 0.8 v 0.9
p 0.4 p 0.4 p 0.2 p 0.1 p 0.1 p 0.1 p 0.1 p 0.1 p 0.3 p 0.3
iy 0.1 iy 0.1 iy 0.3 iy 0.6 iy 0.6 iy 0.6 iy 0.6 iy 0.5 iy 0.5 iy 0.4

Figure 9.25 The forward trellis for 10 frames of the wordfive, consisting of 3 emitting states (f, ay, v), plus non-
emitting start and end states (not shown). The bottom half ofthe table gives part of theB observation likelihood
vector for the observationo at each frame,p(o|q) for each phoneq. B values are created by hand for pedagogical
purposes. This table assumes the HMM structure forfive shown in Fig. 9.24, each emitting state having a .5
loopback probability.

t−1, We compute the Viterbi probability by taking the most probable of the extensions
of the paths that lead to the current cell. For a given stateq j at timet, the valuevt( j) is
computed as:

vt( j) =
N

max
i=1

vt−1(i) ai j b j(ot)(9.54)

The three factors that are multiplied in Eq. 9.54 for extending the previous paths to
compute the Viterbi probability at timet are:

vt−1(i) theprevious Viterbi path probability from the previous time step

ai j thetransition probability from previous stateqi to current stateq j

b j(ot) thestate observation likelihoodof the observation symbolot given
the current statej

Fig. 9.26 shows the Viterbi algorithm, repeated from Ch. 6.
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function V ITERBI(observationsof lenT,state-graphof lenN) returns best-path

create a path probability matrixviterbi[N+2,T]
for each states from 1 to N do ;initialization step

viterbi[s,1]←a0,s ∗ bs(o1)
backpointer[s,1]←0

for each time stept from 2 to T do ;recursion step
for each states from 1 to N do

viterbi[s,t]←
N

max
s′=1

viterbi[s′,t−1] ∗ as′,s ∗ bs(ot )

backpointer[s,t]←
N

argmax
s′=1

viterbi[s′,t−1] ∗ as′,s

viterbi[qF ,T]←
N

max
s=1

viterbi[s,T] ∗ as,qF ; termination step

backpointer[qF ,T]←
N

argmax
s=1

viterbi[s,T] ∗ as,qF ; termination step

return the backtrace path by following backpointers to states backin time from
backpointer[qF ,T]

Figure 9.26 Viterbi algorithm for finding optimal sequence of hidden states. Given
an observation sequence of words and an HMM (as defined by theA and B matrices),
the algorithm returns the state-path through the HMM which assigns maximum likelihood
to the observation sequence.a[s′,s] is the transition probability from previous states′ to
current states, andbs(ot) is the observation likelihood ofsgivenot . Note that states 0 and
F are non-emitting start and end states.

Recall that the goal of the Viterbi algorithm is to find the best state sequenceq =
(q1q2q3 . . .qT) given the set of observationso = (o1o2o3 . . .oT). It needs to also find
the probability of this state sequence. Note that the Viterbi algorithm is identical to the
forward algorithm except that it takes the MAX over the previous path probabilities
where forward takes the SUM.

Fig. 9.27 shows the computation of the first three time-stepsin the Viterbi trellis
corresponding to the forward trellis in Fig. 9.24. We have again used the made-up
probabilities for the cepstral observations; here we also follow common convention in
not showing the zero cells in the upper left corner. Note thatonly the middle cell in the
third column differs from Viterbi to forward. Fig. 9.25 shows the complete trellis.

Note the difference between the final values from the Viterbiand forward algo-
rithms for this (made-up) example. The forward algorithm gives the probability of
the observation sequence as .00128, which we get by summing the final column. The
Viterbi algorithm gives the probability of the observationsequence given the best path,
which we get from the Viterbi matrix as .000493. The Viterbi probability is much
smaller than the forward probability, as we should expect since Viterbi comes from a
single path, where the forward probability is the sum over all paths.

The real usefulness of the Viterbi decoder, of course, lies in its ability to decode
a string of words. In order to do cross-word decoding, we needto augment theA
matrix, which only has intra-word state transitions, with the inter-word probability of
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Figure 9.27 The first 3 time-steps of the viterbi trellis computation forthe wordfive.
TheA transition probabilities are shown along the left edge; theB observation likelihoods
are shown in Fig. 9.28. In this computation we make the simplifying assumption that the
probability of starting in state 1 (phone [f]) is 1.0

V 0 0 0.008 0.0072 0.00672 0.00403 0.00188 0.00161 0.000667 0.000493
AY 0 0.04 0.048 0.0448 0.0269 0.0125 0.00538 0.00167 0.000428 8.78e-05
F 0.8 0.32 0.112 0.0224 0.00448 0.000896 0.000179 4.48e-05 1.12e-05 2.8e-06

Time 1 2 3 4 5 6 7 8 9 10

f 0.8 f 0.8 f 0.7 f 0.4 f 0.4 f 0.4 f 0.4 f 0.5 f 0.5 f 0.5
ay 0.1 ay 0.1 ay 0.3 ay 0.8 ay 0.8 ay 0.8 ay 0.8 ay 0.6 ay 0.5 ay 0.4

B v 0.6 v 0.6 v 0.4 v 0.3 v 0.3 v 0.3 v 0.3 v 0.6 v 0.8 v 0.9
p 0.4 p 0.4 p 0.2 p 0.1 p 0.1 p 0.1 p 0.1 p 0.1 p 0.3 p 0.3
iy 0.1 iy 0.1 iy 0.3 iy 0.6 iy 0.6 iy 0.6 iy 0.6 iy 0.5 iy 0.5 iy 0.4

Figure 9.28 The Viterbi trellis for 10 frames of the wordfive, consisting of 3 emitting states (f, ay, v), plus non-
emitting start and end states (not shown). The bottom half ofthe table gives part of theB observation likelihood
vector for the observationo at each frame,p(o|q) for each phoneq. B values are created by hand for pedagogical
purposes. This table assumes the HMM structure forfive shown in Fig. 9.24, each emitting state having a .5
loopback probability.

transitioning from the end of one word to the beginning of another word. The digit
HMM model in Fig. 9.22 showed that we could just treat each word as independent,
and use only the unigram probability. Higher-orderN-grams are much more common.
Fig. 9.29, for example, shows an augmentation of the digit HMM with bigram proba-
bilities.

A schematic of the HMM trellis for such a multi-word decodingtask is shown
in Fig. 9.30. The intraword transitions are exactly as shownin Fig. 9.27. But now
between words we’ve added a transition. The transition probability on this arc, rather
than coming from theA matrix inside each word, comes from the language model
P(W).

Once the entire Viterbi trellis has been computed for the utterance, we can start
from the most-probable state at the final time step and followthe backtrace pointers
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Figure 9.29 A bigram grammar network for the digit recognition task. Thebigrams
give the probability of transitioning from the end of one word to the beginning of the next.

Figure 9.30 The HMM Viterbi trellis for a bigram language model. The intraword
transitions are exactly as shown in Fig. 9.27. Between words, a potential transition is
added (shown as a dotted line) from the end state of each word to the beginning state of
every word, labeled with the bigram probability of the word pair.

backwards to get the most probable string of states, and hence the most probable string
of words. Fig. 9.31 shows the backtrace pointers being followed back from the best
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state, which happens to be atw2, eventually throughwN andw1, resulting in the final
word stringw1wN · · ·w2.

Figure 9.31 Viterbi backtrace in the HMM trellis. The backtrace starts in the final state,
and results in a best phone string from which a word string is derived.

The Viterbi algorithm is much more efficient than exponentially running the for-
ward algorithm for each possible word string. Nonetheless,it is still slow, and much
modern research in speech recognition has focused on speeding up the decoding pro-
cess. For example in practice in large-vocabulary recognition we do not consider all
possible words when the algorithm is extending paths from one state-column to the
next. Instead, low-probability paths arepruned at each time step and not extended toPRUNING

the next state column.
This pruning is usually implemented viabeam search(Lowerre, 1968). In beamBEAM SEARCH

search, at each timet, we first compute the probability of the best (most-probable)
state/pathD. We then prune away any state which is worse thanD by some fixed
threshold (beam width) θ . We can talk about beam-search in both the probabilityBEAM WIDTH

and negative log probability domain. In the probability domain any path/state whose
probability is less thanθ ∗D is pruned away; in the negative log domain, any path
whose cost is greater thenθ +D is pruned. Beam search is implemented by keeping for
each time step anactive list of states. Only transitions from these words are extendedACTIVE LIST

when moving to the next time step.
Making this beam search approximation allows a significant speed-up at the cost

of a degradation to the decoding performance. Huang et al. (2001) suggest that em-
pirically a beam size of 5-10% of the search space is sufficient; 90-95% of the states
are thus not considered. Because in practice most implementations of Viterbi use beam
search, some of the literature uses the termbeam searchor time-synchronous beam
searchinstead of Viterbi.
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9.7 EMBEDDED TRAINING

We turn now to see how an HMM-based speech recognition systemis trained. We’ve
already seen some aspects of training. In Ch. 4 we showed how to train a language
model. In Sec. 9.4, we saw how GMM acoustic models are trainedby augmenting the
EM algorithm to deal with training the means, variances, andweights. We also saw
how posterior AM classifiers like SVMs or neural nets could betrained, although for
neural nets we haven’t yet seen how we get training data in which each frame is labeled
with a phone identity.

In this section we complete the picture of HMM training by showing how this aug-
mented EM training algorithm fits into the whole process of training acoustic models.
For review, here are the three components of theacoustic model:

Q = q1q2 . . .qN thesubphonesrepresented as a set ofstates

A = a01a02. . .an1 . . .ann a subphone transition probability matrix A,
each ai j representing the probability for each
subphone of taking aself-loop or going to the
next subphone. Together,Q and A implement
a pronunciation lexicon, an HMM state graph
structure for each word that the system is capa-
ble of recognizing.

B = bi(ot) A set of observation likelihoods:, also called
emission probabilities, each expressing the
probability of a cepstral feature vector (observa-
tion ot ) being generated from subphone statei.

We will assume that the pronunciation lexicon, and thus the basic HMM state graph
structure for each word, is pre-specified as the simple linear HMM structures with
loopbacks on each state that we saw in Fig. 9.7 and Fig. 9.22. In general, speech
recognition systems do not attempt to learn the structure ofthe individual word HMMs.
Thus we only need to train theB matrix, and we need to train the probabilities of
the non-zero (self-loop and next-subphone) transitions inthe A matrix. All the other
probabilities in theA matrix are set to zero and never change.

The simplest possible training method, ishand-labeled isolated wordtraining,
in which we train separate theB andA matrices for the HMMs for each word based
on hand-aligned training data. We are given a training corpus of digits, where each
instance of a spoken digit is stored in a wavefile, and with thestart and end of each word
and phone hand-segmented. Given such a hand-labeled database, we can compute theB
Gaussians observation likelihoods and theA transition probabilities by merely counting
in the training data! TheA transition probability are specific to each word, but theB
Gaussians would be shared across words if the same phone occurred in multiple words.

Unfortunately, hand-segmented training data is rarely used in training systems for
continuous speech. One reason is that it is very expensive touse humans to hand-label
phonetic boundaries; it can take up to 400 times real time (i.e. 400 labeling hours
to label each 1 hour of speech). Another reason is that humansdon’t do phonetic
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labeling very well for units smaller than the phone; people are bad at consistently
finding the boundaries of subphones. ASR systems aren’t better than humans at finding
boundaries, but their errors are at least consistent between the training and test sets.

For this reason, speech recognition systems train each phone HMM embedded in an
entire sentence, and the segmentation and phone alignment are done automatically as
part of the training procedure. This entire acoustic model training process is therefore
calledembedded training. Hand phone segmentation do still play some role, however,EMBEDDED

TRAINING

for example for bootstrapping initial systems for discriminative (SVM; non-Gaussian)
likelihood estimators, or for tasks like phone recognition.

In order to train a simple digits system, we’ll need a training corpus of spoken digit
sequences. For simplicity assume that the training corpus is separated into separate
wavefiles, each containing a sequence of spoken digits. For each wavefile, we’ll need
to know the correct sequence of digit words. We’ll thus associate with each wavefile a
transcription (a string of words). We’ll also need a pronunciation lexicon and a phone-
set, defining a set of (untrained) phone HMMs. From the transcription, lexicon, and
phone HMMs, we can build a “whole sentence” HMM for each sentence, as shown in
Fig. 9.32.

Figure 9.32 The input to the embedded training algorithm; a wavefile of spoken digits with a corresponding
transcription. The transcription is converted into a raw HMM, ready to be aligned and trained against the cepstral
features extracted from the wavefile.

We are now ready to train the transition matrix A and output likelihood estimator B
for the HMMs. The beauty of the Baum-Welch-based paradigm for embedded training
of HMMs is that this is all the training data we need. In particular, we don’t need
phonetically transcribed data. We don’t even need to know where each word starts and
ends. The Baum-Welch algorithm will sum over all possible segmentations of words
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and phones, usingξ j(t), the probability of being in statej at timet and generating the
observation sequence O.

We will, however, need an initial estimate for the transition and observation prob-
abilities ai j andb j(ot). The simplest way to do this is with aflat start . In flat start,FLAT START

we first set to zero any HMM transitions that we want to be ‘structurally zero’, such as
transitions from later phones back to earlier phones. Theγ probability computation in
Baum-Welch includes the previous value ofai j , so those zero values will never change.
Then we make all the rest of the (non-zero) HMM transitions equiprobable. Thus the
two transitions out of each state (the self-loop and the transition to the following sub-
phone) each would have a probability of 0.5. For the Gaussians, a flat start initializes
the mean and variance for each Gaussian identically, to the global mean and variance
for the entire training data.

Now we have initial estimates for theA andB probabilities. For a standard Gaus-
sian HMM system, we now run multiple iterations of the Baum-Welch algorithm on
the entire training set. Each iteration modifies the HMM parameters, and we stop when
the system converges. During each iteration, as discussed in Ch. 6, we compute the
forward and backward probabilities for each sentence giventhe initial A andB proba-
bilities, and use them to re-estimate theA andB probabilities. We also apply the various
modifications to EM discussed in the previous section to correctly update the Gaussian
means and variances for multivariate Gaussians. We will discuss in Sec.?? in Ch. 10
how to modify the embedded training algorithm to handle mixture Gaussians.

In summary, the basicembedded training procedureis as follows:

Given: phoneset, pronunciation lexicon, and the transcribed wavefiles

1. Build a “whole sentence” HMM for each sentence, as shown inFig. 9.32.

2. InitializeA probabilities to 0.5 (for loop-backs or for the correct next
subphone) or to zero (for all other transitions).

3. Initialize B probabilities by setting the mean and variance for each
Gaussian to the global mean and variance for the entire training set.

4. Run multiple iterations of the Baum-Welch algorithm.

The Baum-Welch algorithm is used repeatedly as a component of the embedded
training process. Baum-Welch computesξt(i), the probability of being in statei at
time t, by using forward-backward to sum over all possible paths that were in state
i emitting symbolot at time t. This lets us accumulate counts for re-estimating the
emission probabilityb j(ot) from all the paths that pass through statej at timet. But
Baum-Welch itself can be time-consuming.

There is an efficient approximation to Baum-Welch training that makes use of the
Viterbi algorithm. InViterbi training , instead of accumulating counts by a sum overVITERBI TRAINING

all paths that pass through a statej at timet, we approximate this by only choosing
the Viterbi (most-probable) path. Thus instead of running EM at every step of the
embedded training, we repeatedly run Viterbi.

Running the Viterbi algorithm over the training data in thisway is calledforced
Viterbi alignment or just forced alignment. In Viterbi training (unlike in ViterbiFORCED ALIGNMENT

decoding on the test set) we know which word string to assign to each observation
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sequence, So we can ‘force’ the Viterbi algorithm to pass through certain words, by
setting theai j s appropriately. A forced Viterbi is thus a simplification ofthe regular
Viterbi decoding algorithm, since it only has to figure out the correct state (subphone)
sequence, but doesn’t have to discover the word sequence. The result is aforced align-
ment: the single best state path corresponding to the training observation sequence. We
can now use this alignment of HMM states to observations to accumulate counts for re-
estimating the HMM parameters. We saw earlier that forcd alignment can also be used
in other speech applications like text-to-speech, whenverwe have a word transcript and
a wavefile in which we want to find boundaries.

The equations for retraining a (non-mixture) Gaussian froma Viterbi alignment are
as follows:

µ̂i =
1
T

T

∑
t=1

ot s.t. qt is statei(9.55)

σ̂2
j =

1
T

T

∑
t=1

(ot − µi)
2 s.t.qt is statei(9.56)

We saw these equations already, as (9.27) and (9.28) on page 25, when we were
‘imagining the simpler situation of a completely labeled training set’.

It turns out that this forced Viterbi algorithm is also used in the embedded training
of hybrid models like HMM/MLP or HMM/SVM systems. We begin with an untrained
MLP, and using its noisy outputs as theB values for the HMM, perform a forced Viterbi
alignment of the training data. This alignment will be quiteerrorful, since the MLP
was random. Now this (quite errorful) Viterbi alignment give us a labeling of feature
vectors with phone labels. We use this labeling to retrain the MLP. The counts of the
transitions which are taken in the forced alignments can be used to estimate the HMM
transition probabilities. We continue this hill-climbingprocess of neural-net training
and Viterbi alignment until the HMM parameters begin to converge.

9.8 EVALUATION : WORD ERRORRATE

The standard evaluation metric for speech recognition systems is theword error rate.WORD ERROR

The word error rate is based on how much the word string returned by the recognizer
(often called thehypothesizedword string) differs from a correct orreferencetran-
scription. Given such a correct transcription, the first step in computing word error is
to compute theminimum edit distance in words between the hypothesized and cor-
rect strings, as described in Ch. 3. The result of this computation will be the minimum
number of wordsubstitutions, word insertions, and worddeletionsnecessary to map
between the correct and hypothesized strings. The word error rate (WER) is then de-
fined as follows (note that because the equation includes insertions, the error rate can
be greater than 100%):

Word Error Rate= 100×
Insertions+Substitutions+Deletions

Total Words in Correct Transcript
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We sometimes also talk about the SER (Sentence Error Rate), which tells us how
many sentences had at least one error:

Sentence Error Rate= 100×
# of sentences with at least one word error

total # of sentences

Here is an example of thealignments between a reference and a hypothesizedALIGNMENTS

utterance from the CALLHOME corpus, showing the counts usedto compute the word
error rate:

REF: i *** ** UM the PHONE IS i LEFT THE portable **** PHONE UPSTAIRS last night
HYP: i GOT IT TO the ***** FULLEST i LOVE TO portable FORM OF STORES last night
Eval: I I S D S S S I S S

This utterance has six substitutions, three insertions, and one deletion:

Word Error Rate= 100
6+3+1

13
= 76.9%

The standard method for implementing minimum edit distanceand computing word
error rates is a free script calledsclite, available from the National Institute of
Standards and Technologies (NIST) (NIST, 2005).sclite is given a series of ref-
erence (hand-transcribed, gold-standard) sentences and amatching set of hypothesis
sentences. Besides performing alignments, and computing word error rate, sclite per-
forms a number of other useful tasks. For example, it gives useful information for
error analysis, such as confusion matrices showing which words are often misrecog-
nized for others, and gives summary statistics of words which are often inserted or
deleted.sclite also gives error rates by speaker (if sentences are labeled for speaker
id), as well as useful statistics like thesentence error rate, the percentage of sentencesSENTENCE ERROR

RATE

with at least one word error.
Finally, sclite can be used to compute significance tests. Suppose we make

some changes to our ASR system and find that our word error ratehas decreased by
1%. In order to know if our changes really improved things, weneed a statistical test
to make sure that the 1% difference is not just due to chance. The standard statistical
test for determining if two word error rates are different isthe Matched-Pair Sentence
Segment Word Error (MAPSSWE) test, which is also available in sclite (although
theMcNemar test is sometimes used as well).MCNEMAR TEST

The MAPSSWE test is a parametric test that looks at the difference between the
number of word errors the two systems produce, averaged across a number of segments.
The segments may be quite short or as long as an entire utterance; in general we want to
have the largest number of (short) segments in order to justify the normality assumption
and for maximum power. The test requires that the errors in one segment be statistically
independent of the errors in another segment. Since ASR systems tend to use trigram
LMs, this can be approximated by defining a segment as a regionbounded on both
sides by words that both recognizers get correct (or turn/utterance boundaries).

Here’s an example from NIST (2007) with four segments, labeled in roman numer-
als:
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I II III IV

REF: |it was|the best|of|times it|was the worst|of times| |it was

| | | | | | | |

SYS A:|ITS |the best|of|times it|IS the worst |of times|OR|it was

| | | | | | | |

SYS B:|it was|the best| |times it|WON the TEST |of times| |it was

In region I, system A has 2 errors (a deletion and an insertion) and system B has
0; in region III system A has 1 (substitution) error and system B has 2. Let’s define
a sequence of variablesZ representing the difference between the errors in the two
systems as follows:

Ni
A the number of errors made on segmenti by systemA

Ni
B the number of errors made on segmenti by systemB

Z Ni
A−Ni

B, i = 1,2, · · · ,n wheren is the number of segments

For example in the example above the sequence ofZ values is{2,−1,−1,1}. In-
tuitively, if the two systems are identical, we would expectthe average difference, i.e.
the average of theZ values, to be zero. If we call the true average of the differences
muz, we would thus like to know whethermuz = 0. Following closely the original pro-
posal and notation of Gillick and Cox (1989), we can estimatethe true average from
our limited sample aŝµz = ∑n

i=1Zi/n.
The estimate of the variance of theZi ’s is:

σ2
z =

1
n−1

n

∑
i=1

(Zi− µz)
2(9.57)

Let

W =
µ̂z

σz/
√

n
(9.58)

For a large enoughn (> 50) W will approximately have a normal distribution with unit
variance. The null hypothesis isH0 : µz = 0, and it can thus be rejected if 2∗P(Z ≥
|w|)≤ 0.05 (two-tailed) orP(Z≥ |w|)≤ 0.05 (one-tailed). whereZ is standard normal
andw is the realized valueW; these probabilities can be looked up in the standard
tables of the normal distribution.

Could we improve on word error rate as a metric? It would be nice, for example, to
have something which didn’t give equal weight to every word,perhaps valuing content
words likeTuesdaymore than function words likea or of. While researchers generally
agree that this would be a good idea, it has proved difficult toagree on a metric that
works in every application of ASR. For dialogue systems, however, where the desired
semantic output is more clear, a metric calledconcept error ratehas proved extremely
useful, and will be discussed in Ch. 24 on page??.

9.9 SUMMARY

Together with Ch. 4 and Ch. 6, this chapter introduced the fundamental algorithms for
addressing the problem ofLarge Vocabulary Continuous Speech Recognition.
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• The input to a speech recognizer is a series of acoustic waves. Thewaveform,
spectrogramandspectrumare among the visualization tools used to understand
the information in the signal.

• In the first step in speech recognition, sound waves aresampled, quantized,
and converted to some sort ofspectral representation; A commonly used spec-
tral representation is themel cepstrum or MFCC which provides a vector of
features for each frame of the input.

• GMM acoustic models are used to estimate thephonetic likelihoods(also called
observation likelihoods) of thesefeature vectorsfor each frame.

• Decodingor searchor inference is the process of finding the optimal sequence
of model states which matches a sequence of input observations. (The fact that
there are three terms for this process is a hint that speech recognition is inherently
inter-disciplinary, and draws its metaphors from more thanone field;decoding
comes from information theory, andsearchandinferencefrom artificial intelli-
gence).

• We introduced two decoding algorithms: time-synchronousViterbi decoding
(which is usually implemented with pruning and can then be calledbeam search)
andstack or A∗ decoding. Both algorithms take as input a sequence of cepstral
feature vectors, a GMM acoustic model, and anN-gram language model, and
produce a string of words.

• Theembedded trainingparadigm is the normal method for training speech rec-
ognizers. Given an initial lexicon with hand-built pronunciation structures, it will
train the HMM transition probabilities and the HMM observation probabilities.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The first machine which recognized speech was probably a commercial toy named
“Radio Rex” which was sold in the 1920s. Rex was a celluloid dog that moved (via
a spring) when the spring was released by 500 Hz acoustic energy. Since 500 Hz is
roughly the first formant of the vowel [eh] in “Rex”, the dog seemed to come when he
was called (David and Selfridge, 1962).

By the late 1940s and early 1950s, a number of machine speech recognition systems
had been built. An early Bell Labs system could recognize anyof the 10 digits from
a single speaker (Davis et al., 1952). This system had 10 speaker-dependent stored
patterns, one for each digit, each of which roughly represented the first two vowel
formants in the digit. They achieved 97–99% accuracy by choosing the pattern which
had the highest relative correlation coefficient with the input. Fry (1959) and Denes
(1959) built a phoneme recognizer at University College, London, which recognized
four vowels and nine consonants based on a similar pattern-recognition principle. Fry
and Denes’s system was the first to use phoneme transition probabilities to constrain
the recognizer.

The late 1960s and early 1970s produced a number of importantparadigm shifts.
First were a number of feature-extraction algorithms, include the efficient Fast Fourier
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Transform (FFT) (Cooley and Tukey, 1965), the application of cepstral processing to
speech (Oppenheim et al., 1968), and the development of LPC for speech coding (Atal
and Hanauer, 1971). Second were a number of ways of handlingwarping; stretchingWARPING

or shrinking the input signal to handle differences in speaking rate and segment length
when matching against stored patterns. The natural algorithm for solving this problem
was dynamic programming, and, as we saw in Ch. 6, the algorithm was reinvented
multiple times to address this problem. The first application to speech processing was
by Vintsyuk (1968), although his result was not picked up by other researchers, and
was reinvented by Velichko and Zagoruyko (1970) and Sakoe and Chiba (1971) (and
(1984)). Soon afterward, Itakura (1975) combined this dynamic programming idea
with the LPC coefficients that had previously been used only for speech coding. The
resulting system extracted LPC features for incoming wordsand used dynamic pro-
gramming to match them against stored LPC templates. The non-probabistic use of
dynamic programming to match a template against incoming speech is calleddynamic
time warping.DYNAMIC TIME

WARPING

The third innovation of this period was the rise of the HMM. Hidden Markov Mod-
els seem to have been applied to speech independently at two laboratories around 1972.
One application arose from the work of statisticians, in particular Baum and colleagues
at the Institute for Defense Analyses in Princeton on HMMs and their application to
various prediction problems (Baum and Petrie, 1966; Baum and Eagon, 1967). James
Baker learned of this work and applied the algorithm to speech processing (Baker,
1975) during his graduate work at CMU. Independently, Frederick Jelinek, Robert
Mercer, and Lalit Bahl (drawing from their research in information-theoretical mod-
els influenced by the work of Shannon (1948)) applied HMMs to speech at the IBM
Thomas J. Watson Research Center (Jelinek et al., 1975). IBM’s and Baker’s sys-
tems were very similar, particularly in their use of the Bayesian framework described
in this chapter. One early difference was the decoding algorithm; Baker’s DRAGON
system used Viterbi (dynamic programming) decoding, whilethe IBM system applied
Jelinek’s stack decoding algorithm (Jelinek, 1969). Bakerthen joined the IBM group
for a brief time before founding the speech-recognition company Dragon Systems. The
HMM approach to speech recognition would turn out to completely dominate the field
by the end of the century; indeed the IBM lab was the driving force in extending sta-
tistical models to natural language processing as well, including the development of
class-basedN-grams, HMM-based part-of-speech tagging, statistical machine transla-
tion, and the use of entropy/perplexity as an evaluation metric.

The use of the HMM slowly spread through the speech community. One cause
was a number of research and development programs sponsoredby the Advanced Re-
search Projects Agency of the U.S. Department of Defense (ARPA). The first five-
year program starting in 1971, and is reviewed in Klatt (1977). The goal of this first
program was to build speech understanding systems based on afew speakers, a con-
strained grammar and lexicon (1000 words), and less than 10%semantic error rate.
Four systems were funded and compared against each other: the System Develop-
ment Corporation (SDC) system, Bolt, Beranek & Newman (BBN)’s HWIM system,
Carnegie-Mellon University’s Hearsay-II system, and Carnegie-Mellon’s Harpy sys-
tem (Lowerre, 1968). The Harpy system used a simplified version of Baker’s HMM-
based DRAGON system and was the best of the tested systems, and according to Klatt
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the only one to meet the original goals of the ARPA project (with a semantic accuracy
rate of 94% on a simple task).

Beginning in the mid-1980s, ARPA funded a number of new speech research pro-
grams. The first was the “Resource Management” (RM) task (Price et al., 1988), which
like the earlier ARPA task involved transcription (recognition) of read-speech (speakers
reading sentences constructed from a 1000-word vocabulary) but which now included a
component that involved speaker-independent recognition. Later tasks included recog-
nition of sentences read from the Wall Street Journal (WSJ) beginning with limited
systems of 5,000 words, and finally with systems of unlimitedvocabulary (in prac-
tice most systems use approximately 60,000 words). Later speech-recognition tasks
moved away from read-speech to more natural domains; the Broadcast News domain
(LDC, 1998; Graff, 1997) (transcription of actual news broadcasts, including quite
difficult passages such as on-the-street interviews) and the Switchboard,CALLHOME,
CALLFRIEND, and Fisher domains (Godfrey et al., 1992; Cieri et al., 2004) (natural
telephone conversations between friends or strangers) . The Air Traffic Information
System (ATIS) task (Hemphill et al., 1990) was an earlier speech understanding task
whose goal was to simulate helping a user book a flight, by answering questions about
potential airlines, times, dates, and so forth.

Each of the ARPA tasks involved an approximately annualbake-off at which allBAKEOFF

ARPA-funded systems, and many other ‘volunteer’ systems from North American and
Europe, were evaluated against each other in terms of word error rate or semantic error
rate. In the early evaluations, for-profit corporations didnot generally compete, but
eventually many (especially IBM and ATT) competed regularly. The ARPA compe-
titions resulted in widescale borrowing of techniques among labs, since it was easy
to see which ideas had provided an error-reduction the previous year, and were prob-
ably an important factor in the eventual spread of the HMM paradigm to virtual ev-
ery major speech recognition lab. The ARPA program also resulted in a number of
useful databases, originally designed for training and testing systems for each evalua-
tion (TIMIT, RM, WSJ, ATIS, BN, CALLHOME, Switchboard, Fisher) but then made
available for general research use.

Speech research includes a number of areas besides speech recognition; we already
saw computational phonology in Ch. 7, speech synthesis in Ch. 8, and we will discuss
spoken dialogue systems in Ch. 24. Another important area isspeaker identificationSPEAKER

IDENTIFICATION

and speaker verification, in which we identify a speaker (for example for securitySPEAKER
VERIFICATION

when accessing personal information over the telephone) (Reynolds and Rose, 1995;
Shriberg et al., 2005; Doddington, 2001). This task is related tolanguage identifica-
tion, in which we are given a wavefile and have to identify which language is beingLANGUAGE

IDENTIFICATION

spoken; this is useful for automatically directing callersto human operators that speak
appropriate languages.

There are a number of textbooks and reference books on speechrecognition that are
good choices for readers who seek a more in-depth understanding of the material in this
chapter: Huang et al. (2001) is by far the most comprehensiveand up-to-date reference
volume and is highly recommended. Jelinek (1997), Gold and Morgan (1999), and Ra-
biner and Juang (1993) are good comprehensive textbooks. The last two textbooks also
have discussions of the history of the field, and together with the survey paper of Levin-
son (1995) have influenced our short history discussion in this chapter. Our description
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of the forward-backward algorithm was modeled after Rabiner (1989), and we were
also influenced by another useful tutorial paper, Knill and Young (1997). Research in
the speech recognition field often appears in the proceedings of the annual INTER-
SPEECH conference, (which is called ICSLP and EUROSPEECH inalternate years)
as well as the annual IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP). Journals includeSpeech Communication, Computer Speech and
Language, the IEEE Transactions on Audio, Speech, and Language Processing, and
theACM Transactions on Speech and Language Processing.

EXERCISES

9.1 Analyze each of the errors in the incorrectly recognized transcription of “um the
phone is I left the. . . ” on page 46. For each one, give your bestguess as to whether you
think it is caused by a problem in signal processing, pronunciation modeling, lexicon
size, language model, or pruning in the decoding search.

9.2 In practice, speech recognizers do all their probability computation using thelog
probability (or logprob) rather than actual probabilities. This helps avoid underflowLOGPROB

for very small probabilities, but also makes the Viterbi algorithm very efficient, since
all probability multiplications can be implemented by adding log probabilities. Rewrite
the pseudocode for the Viterbi algorithm in Fig. 9.26 on page38 to make use of log-
probs instead of probabilities.

9.3 Now modify the Viterbi algorithm in Fig. 9.26 on page 38 to implement the beam
search described on page 41. Hint: You will probably need to add in code to check
whether a given state is at the end of a word or not.

9.4 Finally, modify the Viterbi algorithm in Fig. 9.26 on page 38with more detailed
pseudocode implementing the array of backtrace pointers.

9.5 Using the tutorials available as part of a publicly available recognizer like HTK
or Sonic, build a digit recognizer.

9.6 Take the digit recognizer above and dump the phone likelihoods for a sentence.
Now take your implementation of the Viterbi algorithm and show that you can success-
fully decode these likelihoods.
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10
SPEECH RECOGNITION:
ADVANCED TOPICS

True, their voice-print machine was unfortunately a crude one. It
could discriminate among only a few frequencies, and it indicated
amplitude by indecipherable blots. But it had never been intended
for such vitally important work.

Aleksandr I. Solzhenitsyn,The First Circle, p. 505

The keju civil service examinations of Imperial China lasted almost1300 years,
from the year 606 until it was abolished in 1905. In its peak, millions of would-be
officials from all over China competed for high-ranking government positions by par-
ticipating in a uniform examination. For the final ‘metropolitan’ part of this exam in
the capital city, the candidates would be locked into an examination compound for a
grueling 9 days and nights answering questions about history, poetry, the Confucian
classics, and policy.

Naturally all these millions of candidates didn’t all show up in the capital. Instead,
the exam had progressive levels; candidates who passed a one-day local exam in their
local prefecture could then sit for the biannual provincialexam, and only upon passing
that exam in the provincial capital was a candidate eligiblefor the metropolitan and
palace examinations.

This algorithm for selecting capable officials is an instance of multi-stage search.
The final 9-day process requires far too many resources (in both space and time) to
examine every candidate. Instead, the algorithm uses an easier, less intensive 1-day
process to come up with a preliminary list of potential candidates, and applies the final
test only to this list.

Thekejualgorithm can also be applied to speech recognition. We’d like to be able
to apply very expensive algorithms in the speech recognition process, such as 4-gram,
5-gram, or even parser-based language models, or context-dependent phone models
that can see two or three phones into the future or past. But there are a huge number
of potential transcriptions sentences for any given waveform, and it’s too expensive
(in time, space, or both) to apply these powerful algorithmsto every single candidate.
Instead, we’ll introducemultipass decodingalgorithms in which efficient but dumber
decoding algorithms produce shortlists of potential candidates to be rescored by slow
but smarter algorithms. We’ll also introduce thecontext-dependent acoustic model,
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which is one of these smarter knowledge sources that turns out to be essential in large-
vocabulary speech recognition. We’ll also briefly introduce the important topics of
discriminative training and the modeling of variation.

10.1 MULTIPASS DECODING: N-BEST LISTS AND LATTICES

The previous chapter applied the Viterbi algorithm for HMM decoding. There are two
main limitations of the Viterbi decoder, however. First, the Viterbi decoder does not
actually compute the sequence of words which is most probable given the input acous-
tics. Instead, it computes an approximation to this: the sequence ofstates(i.e.,phones
or subphones) which is most probable given the input. More formally, recall that the
true likelihood of an observation sequenceO is computed by the forward algorithm by
summing over all possible paths:

P(O|W) = ∑
S∈ST

1

P(O,S|W)(10.1)

The Viterbi algorithm only approximates this sum by using the probability of the best
path:

P(O|W) ≈ max
S∈ST

1

P(O,S|W)(10.2)

It turns out that thisViterbi approximation is not too bad, since the most probableVITERBI
APPROXIMATION

sequence of phones usually turns out to correspond to the most probable sequence
of words. But not always. Consider a speech recognition system whose lexicon has
multiple pronunciations for each word. Suppose the correctword sequence includes a
word with very many pronunciations. Since the probabilities leaving the start arc of
each word must sum to 1.0, each of these pronunciation-pathsthrough this multiple-
pronunciation HMM word model will have a smaller probability than the path through
a word with only a single pronunciation path. Thus because the Viterbi decoder can
only follow one of these pronunciation paths, it may ignore this many-pronunciation
word in favor of an incorrect word with only one pronunciation path. In essence, the
Viterbi approximation penalizes words with many pronunciations.

A second problem with the Viterbi decoder is that it is impossible or expensive for
it to take advantage of many useful knowledge sources. For example the Viterbi al-
gorithm as we have defined it cannot take complete advantage of any language model
more complex than a bigram grammar. This is because of the fact mentioned earlier
that a trigram grammar, for example, violates thedynamic programming invariant .
Recall that this invariant is the simplifying (but incorrect) assumption that if the ulti-
mate best path for the entire observation sequence happens to go through a stateqi , that
this best path must include the best path up to and including stateqi . Since a trigram
grammar allows the probability of a word to be based on the twoprevious words, it is
possible that the best trigram-probability path for the sentence may go through a word
but not include the best path to that word. Such a situation could occur if a particular
word wx has a high trigram probability givenwy,wz, but that conversely the best path
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to wy didn’t includewz (i.e., P(wy|wq,wz) was low for allq). Advanced probabilistic
LMs like SCFGs also violate the same dynamic programming assumptions.

There are two solutions to these problems with Viterbi decoding. The most com-
mon is to modify the Viterbi decoder to return multiple potential utterances, instead
of just the single best, and then use other high-level language model or pronunciation-
modeling algorithms to re-rank these multiple outputs (Schwartz and Austin, 1991;
Soong and Huang, 1990; Murveit et al., 1993).

The second solution is to employ a completely different decoding algorithm, such
as thestack decoder, or A∗ decoder (Jelinek, 1969; Jelinek et al., 1975). We beginSTACK DECODER

A
∗ in this section with multiple-pass decoding, and return to stack decoding in the next

section.
In multiple-pass decodingwe break up the decoding process into two stages. In

the first stage we use fast, efficient knowledge sources or algorithms to perform a non-
optimal search. So for example we might use an unsophisticated but time-and-space
efficient language model like a bigram, or use simplified acoustic models. In the second
decoding pass we can apply more sophisticated but slower decoding algorithms on a
reduced search space. The interface between these passes isan N-best list or word
lattice.

The simplest algorithm for multipass decoding is to modify the Viterbi algorithm
to return theN-best sentences (word sequences) for a given speech input. SupposeNBEST

for example a bigram grammar is used with such anN-best-Viterbi algorithm to return
the 1000 most highly-probable sentences, each with their AMlikelihood and LM prior
score. This 1000-best list can now be passed to a more sophisticated language model
like a trigram grammar. This new LM is used to replace the bigram LM score of
each hypothesized sentence with a new trigram LM probability. These priors can be
combined with the acoustic likelihood of each sentence to generate a new posterior
probability for each sentence. Sentences are thusrescoredand re-ranked using thisRESCORED

more sophisticated probability. Fig. 10.1 shows an intuition for this algorithm.

Rescoring
N-Best
Decoder

Speech Input

Simple
Knowledge
Source

Smarter
Knowledge
Source

N-Best List 1-Best Utterance
? Alice was beginning to get...
? Every happy family
? In a hole in the ground...
? If music be the food of love...
? If music be the foot of dove...

If music be the

food of love

Figure 10.1 The use ofN-best decoding as part of a two-stage decoding model. Effi-
cient but unsophisticated knowledge sources are used to return theN-best utterances. This
significantly reduces the search space for the second pass models, which are thus free to
be very sophisticated but slow.

There are a number of algorithms for augmenting the Viterbi algorithm to generate
N-best hypotheses. It turns out that there is no polynomial-time admissible algorithm
for finding theN most likely hypotheses (Young, 1984). There are however, a number
of approximate (non-admissible) algorithms; we will introduce just one of them, the
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“Exact N-best” algorithm of Schwartz and Chow (1990). In ExactN-best, instead of
each state maintaining a single path/backtrace, we maintain up toN different paths for
each state. But we’d like to insure that these paths correspond to different word paths;
we don’t want to waste ourN paths on different state sequences that map to the same
words. To do this, we keep for each path theword history , the entire sequence of
words up to the current word/state. If two paths with the sameword history come to
a state at the same time, we merge the paths and sum the path probabilities. To keep
the N best word sequences, the resulting algorithm requiresO(N) times the normal
Viterbi time. We’ll see this merging of paths again when we introducing decoding for
statistical machine translation, where it is calledhypothesis recombination.HYPOTHESIS

RECOMBINATION

AM LM
Rank Path logprob logprob
1. it’s an area that’s naturally sort of mysterious -7193.53 -20.25
2. that’s an area that’s naturally sort of mysterious -7192.28 -21.11
3. it’s an area that’s not really sort of mysterious -7221.68 -18.91
4. that scenario that’s naturally sort of mysterious -7189.19 -22.08
5. there’s an area that’s naturally sort of mysterious -7198.35 -21.34
6. that’s an area that’s not really sort of mysterious -7220.44 -19.77
7. the scenario that’s naturally sort of mysterious -7205.42 -21.50
8. so it’s an area that’s naturally sort of mysterious -7195.92 -21.71
9. that scenario that’s not really sort of mysterious -7217.34 -20.70
10. there’s an area that’s not really sort of mysterious -7226.51 -20.01

Figure 10.2 An example 10-Best list from the Broadcast News corpus, produced by the
CU-HTK BN system (thanks to Phil Woodland). Logprobs use log10; the language model
scale factor (LMSF) is 15.

The result of any of these algorithms is anN-best list like the one shown in Fig. 10.2.
In Fig. 10.2 the correct hypothesis happens to be the first one, but of course the reason
to useN-best lists is that isn’t always the case. Each sentence in anN-best list is also
annotated with an acoustic model probability and a languagemodel probability. This
allows a second-stage knowledge source to replace one of those two probabilities with
an improved estimate.

One problem with anN-best list is that whenN is large, listing all the sentences
is extremely inefficient. Another problem is thatN-best lists don’t give quite as much
information as we might want for a second-pass decoder. For example, we might want
distinct acoustic model information for each word hypothesis so that we can reapply a
new acoustic model for the word. Or we might want to have available different start
and end times of each word so that we can apply a new duration model.

For this reason, the output of a first-pass decoder is usuallya more sophisticated
representation called aword lattice (Murveit et al., 1993; Aubert and Ney, 1995). AWORD LATTICE

word lattice is a directed graph that efficiently representsmuch more information about
possible word sequences.1 In some systems, nodes in the graph are words and arcs are

1 Actually an ASR lattice is not the kind of lattice that may be familiar to you from mathematics, since it is
not required to have the properties of a true lattice (i.e., be a partially ordered set with particular properties,
such as a unique join for each pair of elements). Really it’s just a graph, but it is conventional to call it a
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transitions between words. In others, arcs represent word hypotheses and nodes are
points in time. Let’s use this latter model, and so each arc represents lots of information
about the word hypothesis, including the start and end time,the acoustic model and
language model probabilities, the sequence of phones (the pronunciation of the word),
or even the phone durations. Fig. 10.3 shows a sample latticecorresponding to theN-
best list in Fig. 10.2. Note that the lattice contains many distinct links (records) for the
same word, each with a slightly different starting or endingtime. Such lattices are not
produced fromN-best lists; instead, a lattice is produced during first-pass decoding by
including some of the word hypotheses which were active (in the beam) at each time-
step. Since the acoustic and language models are context-dependent, distinct links
need to be created for each relevant context, resulting in a large number of links with
the same word but different times and contexts.N-best lists like Fig. 10.2 can also be
produced by first building a lattice like Fig. 10.3 and then tracing through the paths to
produceN word strings.

Figure 10.3 Word lattice corresponding to theN-best list in Fig. 10.2. The arcs beneath
each word show the different start and end times for each wordhypothesis in the lattice;
for some of these we’ve shown schematically how each word hypothesis must start at the
end of a previous hypothesis. Not shown in this figure are the acoustic and language model
probabilities that decorate each arc.

The fact that each word hypothesis in a lattice is augmented separately with its
acoustic model likelihood and language model probability allows us to rescore any
path through the lattice, using either a more sophisticatedlanguage model or a more
sophisticated acoustic model. As withN-best lists, the goal of this rescoring is to
replace the1-best utterancewith a different utterance that perhaps had a lower score
on the first decoding pass. For this second-pass knowledge source to get perfect word
error rate, the actual correct sentence would have to be in the lattice orN-best list. If
the correct sentence isn’t there, the rescoring knowledge source can’t find it. Thus it

lattice.
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is important when working with a lattice orN-best list to consider the baselinelattice
error rate (Woodland et al., 1995; Ortmanns et al., 1997): the lower bound word errorLATTICE ERROR

RATE

rate from the lattice. The lattice error rate is the word error rate we get if we chose
the lattice path (the sentence) that has the lowest word error rate. Because it relies on
perfect knowledge of which path to pick, we call this anoracle error rate, since weORACLE

need some oracle to tell us which sentence/path to pick.
Another important lattice concept is thelattice density, which is the number ofLATTICE DENSITY

edges in a lattice divided by the number of words in the reference transcript. As we saw
schematically in Fig. 10.3, real lattices are often extremely dense, with many copies of
individual word hypotheses at slightly different start andend times. Because of this
density, lattices are often pruned.

Besides pruning, lattices are often simplified into a different, more schematic kind
of lattice that is sometimes called aword graph orfinite state machine, although oftenWORD GRAPH

it’s still just referred to as a word lattice. In these word graphs, the timing information
is removed and multiple overlapping copies of the same word are merged. The timing
of the words is left implicit in the structure of the graph. Inaddition, the acoustic model
likelihood information is removed, leaving only the language model probabilities. The
resulting graph is a weighted FSA, which is a natural extension of anN-gram language
model; the word graph corresponding to Fig. 10.3 is shown in Fig. 10.4. This word
graph can in fact be used as the language model for another decoding pass. Since such
a wordgraph language model vastly restricts the search space, it can make it possible
to use a complicated acoustic model which is too slow to use infirst-pass decoding.

Figure 10.4 Word graph corresponding to theN-best list in Fig. 10.2. Each word hy-
pothesis in the lattice also has language model probabilities (not shown in this figure).

A final type of lattice is used when we need to represent the posterior probability of
individual words in a lattice. It turns out that in speech recognition, we almost never see
the true posterior probability of anything, despite the fact that the goal of speech recog-
nition is to compute the sentence with the maximum a posteriori probability. This is
because in the fundamental equation of speech recognition we ignore the denominator
in our maximization:

Ŵ = argmax
W∈L

P(O|W)P(W)

P(O)
= argmax

W∈L

P(O|W)P(W)(10.3)

The product of the likelihood and the prior isnot the posterior probability of the
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utterance. It is not even a probability, since it doesn’t necessarily lie between 0 and
1. It’s just a score. Why does it matter that we don’t have a true probability? The
reason is that without having true probability, we can choose the best hypothesis, but
we can’t know how good it is. Perhaps the best hypothesis is still really bad, and we
need to ask the user to repeat themselves. If we had the posterior probability of a word
it could be used as aconfidencemetric, since the posterior is an absolute rather than
relative measure. A confidence metric is a metric that the speech recognizer can give
to a higher-level process (like dialogue) to indicate how confident the recognizer is that
the word string that it returns is a good one. We’ll return to the use of confidence in
Ch. 24.

In order to compute the posterior probability of a word, we’ll need to normalize
over all the different word hypotheses available at a particular point in the utterances.
At each point we’ll need to know which words are competing or confusable. The
lattices that show these sequences of word confusions are called confusion networks,CONFUSION

NETWORKS

meshes, sausages, orpinched lattices. A confusion network consists of a sequence ofMESHES

SAUSAGES

PINCHED LATTICES

word positions. At each position is a set of mutually exclusive word hypotheses. The
network represents the set of sentences that can be created by choosing one word from
each position.

Figure 10.5 Confusion network corresponding to the word lattice in Fig.10.3. Each
word is associated with a posterior probability. Note that some of the words from the
lattice have been pruned away. (Probabilities computed by the SRI-LM toolkit).

Note that unlike lattices or word graphs, the process of constructing a confusion
network actually adds paths that were not in the original lattice. Confusion networks
have other uses besides computing confidence. They were originally proposed for
use in minimizing word error rate, by focusing on maximizingimproving the word
posterior probability rather than the sentence likelihood. Recently confusion networks
have been used to train discriminative classifiers that distinguish between words.

Roughly speaking, confusion networks are built by taking the different hypothesis
paths in the lattice and aligning them with each other. The posterior probability for
each word is computing by first summing over all paths passingthrough a word, and
then normalizing by the sum of the probabilities of all competing words. For further
details see Mangu et al. (2000), Evermann and Woodland (2000), Kumar and Byrne
(2002), Doumpiotis et al. (2003b).

Standard publicly available language modeling toolkits like SRI-LM (Stolcke, 2002)
(http://www.speech.sri.com/projects/srilm/) and the HTK language
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modeling toolkit (Young et al., 2005) (http://htk.eng.cam.ac.uk/) can be
used to generate and manipulate lattices,N-best lists, and confusion networks.

There are many other kinds of multiple-stage search, such astheforward-backwardFORWARD
BACKWARD

search algorithm (not to be confused with theforward-backward algorithm for HMM
parameter setting) (Austin et al., 1991) which performs a simple forward search fol-
lowed by a detailed backward (i.e., time-reversed) search.

10.2 A∗ (‘STACK ’) D ECODING

Recall that the Viterbi algorithm approximated the forwardcomputation, computing
the likelihood of the single best (MAX) path through the HMM,while the forward al-
gorithm computes the likelihood of the total (SUM) of all thepaths through the HMM.
The A∗ decoding algorithm allows us to use the complete forward probability, avoiding
the Viterbi approximation. A∗ decoding also allows us to use any arbitrary language
model. Thus A∗ is a one-pass alternative to multi-pass decoding.

The A∗ decoding algorithm is a best-first search of the tree that implicitly defines
the sequence of allowable words in a language. Consider the tree in Fig. 10.6, rooted in
the START node on the left. Each leaf of this tree defines one sentence of the language;
the one formed by concatenating all the words along the path from START to the leaf.
We don’t represent this tree explicitly, but the stack decoding algorithm uses the tree
implicitly as a way to structure the decoding search.

Figure 10.6 A visual representation of the implicit lattice of allowable word sequences
that defines a language. The set of sentences of a language is far too large to represent
explicitly, but the lattice gives a metaphor for exploring prefixes.

The algorithm performs a search from the root of the tree toward the leaves, look-
ing for the highest probability path, and hence the highest probability sentence. As we
proceed from root toward the leaves, each branch leaving a given word node represents
a word which may follow the current word. Each of these branches has a probabil-
ity, which expresses the conditional probability of this next word given the part of the
sentence we’ve seen so far. In addition, we will use the forward algorithm to assign
each word a likelihood of producing some part of the observedacoustic data. The
A∗ decoder must thus find the path (word sequence) from the root to a leaf which
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has the highest probability, where a path probability is defined as the product of its
language model probability (prior) and its acoustic match to the data (likelihood). It
does this by keeping apriority queue of partial paths (i.e., prefixes of sentences, eachPRIORITY QUEUE

annotated with a score). In a priority queue each element hasa score, and thepopoper-
ation returns the element with the highest score. The A∗ decoding algorithm iteratively
chooses the best prefix-so-far, computes all the possible next words for that prefix, and
adds these extended sentences to the queue. Fig. 10.7 shows the complete algorithm.

function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence.
Pop the best (highest score) sentences off the queue.
If (s is marked end-of-sentence (EOS) ) outputsand terminate.
Get list of candidate next words by doing fast matches.
For each candidate next wordw:

Create a new candidate sentences+w.
Use forward algorithm to compute acoustic likelihoodL of s+w
Compute language model probabilityP of extended sentences+w
Compute “score” fors+w (a function ofL, P, and ???)
if (end-of-sentence) set EOS flag fors+w.
Inserts+w into the queue together with its score and EOS flag

Figure 10.7 The A∗ decoding algorithm (modified from Paul (1991) and Jelinek
(1997)). The evaluation function that is used to compute thescore for a sentence is not
completely defined here; possible evaluation functions arediscussed below.

Let’s consider a stylized example of an A∗ decoder working on a waveform for
which the correct transcription isIf music be the food of love. Fig. 10.8 shows the
search space after the decoder has examined paths of length one from the root. Afast
match is used to select the likely next words. A fast match is one of aclass of heuristicsFAST MATCH

designed to efficiently winnow down the number of possible following words, often
by computing some approximation to the forward probability(see below for further
discussion of fast matching).

At this point in our example, we’ve done the fast match, selected a subset of the
possible next words, and assigned each of them a score. The word Alicehas the highest
score. We haven’t yet said exactly how the scoring works.

Fig. 10.9a show the next stage in the search. We have expandedthe Alice node.
This means that theAlicenode is no longer on the queue, but its children are. Note that
now the node labeledif actually has a higher score than any of the children ofAlice.
Fig. 10.9b shows the state of the search after expanding theif node, removing it, and
addingif music, if muscle, andif messyon to the queue.

We clearly want the scoring criterion for a hypothesis to be related to its probability.
Indeed it might seem that the score for a string of wordswi

1 given an acoustic stringy j
1

should be the product of the prior and the likelihood:

P(y j
1|w

i
1)P(wi

1)
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Figure 10.8 The beginning of the search for the sentenceIf music be the food of love.
At this early stageAlice is the most likely hypothesis. (It has a higher score than theother
hypotheses.)
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32
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Figure 10.9 The next steps of the search for the sentenceIf music be the food of love. In
(a) we’ve now expanded theAlicenode and added three extensions which have a relatively
high score; the highest-scoring node isSTART if, which is not along theSTART Alicepath
at all. In (b) we’ve expanded theif node. The hypothesisSTART if musicthen has the
highest score.

Alas, the score cannot be this probability because the probability will be much
smaller for a longer path than a shorter one. This is due to a simple fact about prob-
abilities and substrings; any prefix of a string must have a higher probability than the
string itself (e.g., P(START the . . . ) will be greater than P(START the book)). Thus
if we used probability as the score, the A∗ decoding algorithm would get stuck on the
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single-word hypotheses.
Instead, we use the A∗ evaluation function (Nilsson, 1980; Pearl, 1984)f ∗(p),

given a partial pathp:

f ∗(p) = g(p)+h∗(p)

f ∗(p) is theestimatedscore of the best complete path (complete sentence) which
starts with the partial pathp. In other words, it is an estimate of how well this path
would do if we let it continue through the sentence. The A∗ algorithm builds this
estimate from two components:

• g(p) is the score from the beginning of utterance to the end of the partial path
p. This g function can be nicely estimated by the probability ofp given the
acoustics so far (i.e., asP(O|W)P(W) for the word stringW constitutingp).

• h∗(p) is an estimate of the best scoring extension of the partial path to the end of
the utterance.

Coming up with a good estimate ofh∗ is an unsolved and interesting problem. A
very simple approach is to chose anh∗ estimate which correlates with the number of
words remaining in the sentence (Paul, 1991). Slightly smarter is to estimate the ex-
pected likelihood per frame for the remaining frames, and multiple this by the estimate
of the remaining time. This expected likelihood can be computed by averaging the
likelihood per frame in the training set. See Jelinek (1997)for further discussion.

Tree Structured Lexicons

We mentioned above that both the A∗ and various other two-stage decoding algorithms
require the use of afast match for quickly finding which words in the lexicon are
likely candidates for matching some portion of the acousticinput. Many fast match
algorithms are based on the use of atree-structured lexicon, which stores the pronun-TREESTRUCTURED

LEXICON

ciations of all the words in such a way that the computation ofthe forward probability
can be shared for words which start with the same sequence of phones. The tree-
structured lexicon was first suggested by Klovstad and Mondshein (1975); fast match
algorithms which make use of it include Gupta et al. (1988), Bahl et al. (1992) in the
context of A∗ decoding, and Ney et al. (1992) and Nguyen and Schwartz (1999) in the
context of Viterbi decoding. Fig. 10.10 shows an example of atree-structured lexicon
from the Sphinx-II recognizer (Ravishankar, 1996). Each tree root represents the first
phone of all words beginning with that context dependent phone (phone context may
or may not be preserved across word boundaries), and each leaf is associated with a
word.

10.3 CONTEXT-DEPENDENTACOUSTICMODELS: TRIPHONES

In our discussion in Sec.?? of how the HMM architecture is applied to ASR, we
showed how an HMM could be created for each phone, with its three emitting states
corresponding to subphones at the beginning, middle, and end of the phone. We thus
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AX(#,B)

N(AW,DD)

B(AX,AW)

B(AX,AH)

AW(B,N)

AW(B,TD)

AH(B,V)

DD(N,#)

B(#,EY)
TD(KD,#)

EY(B,KD)

EY(B,K)

KD(EY,#)

KD(EY,TD)

K(EY,IX)

K(EY,AXR)
AXR(K,#)

AXR(K,IY) IY(AXR,#)

IX(K,NG) NG(IX,#)

ABOUND

ABOUTTD(AW,#)

V(AH,#) ABOVE

BAKE

BAKED

BAKING

BAKER

BAKERY

Figure 10.10 A tree-structured lexicon from the Sphinx-II recognizer (after Ravis-
hankar (1996)). Each node corresponds to a particular triphone in the slightly modified
version of the ARPAbet used by Sphinx-II. Thus EY(B,KD) means the phone EY pre-
ceded by a B and followed by the closure of a K.

represent each subphone (“beginning of [eh]”, “beginning of [t]”, “middle of [ae]”)
with its own GMM.

There is a problem with using a fixed GMM for a subphone like ”beginning of
[eh]”. The problem is that phones vary enormously based on the phones on either side.
This is because the movement of the articulators (tongue, lips, velum) during speech
production is continuous and is subject to physical constraints like momentum. Thus
an articulator may start moving during one phone to get into place in time for the next
phone. In Ch. 7 we defined the wordcoarticulation as the movement of articulators toCOARTICULATION

anticipate the next sound, or perseverating movement from the last sound. Fig. 10.11
shows coarticulation due to neighboring phone contexts forthe vowel [eh].

In order to model the marked variation that a phone exhibits in different contexts,
most LVCSR systems replace the idea of a context-independent (CI phone) HMMCI PHONE

with a context-dependent orCD phones. The most common kind of context-dependentCD PHONES

model is atriphone HMM (Schwartz et al., 1985; Deng et al., 1990). A triphone modelTRIPHONE

represents a phone in a particular left and right context. For example the triphone[y-
eh+l] means “[eh] preceded by [y] and followed by [l]”. In general,[a-b+c] will mean
“[b] preceded by [a] and followed by [c]”. In situations where we don’t have a full
triphone context, we’ll use [a-b] to mean “[b] preceded by [a]” and [b+c] to mean “[b]
followed by [c]”.

Context-dependent phones capture an important source of variation, and are a key
part of modern ASR systems. But unbridled context-dependency also introduces the
same problem we saw in language modeling: training data sparsity. The more complex
the model we try to train, the less likely we are to have seen enough observations of
each phone-type to train on. For a phoneset with 50 phones, inprinciple we would need
503 or 125,000 triphones. In practice not every sequence of three phones is possible
(English doesn’t seem to allow triphone sequences like [ae-eh+ow] or [m-j+t]). Young
et al. (1994) found that 55,000 triphones are needed in the 20K Wall Street Journal
task. But they found that only 18,500 of these triphones, i.e. less than half, actually
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Figure 10.11 The vowel [eh] in three different triphone contexts, in the wordswed, yell,
andBen. Notice the marked differences in the second formant (F2) atthe beginning and
end of the [eh] in all three cases.

occurred in the SI84 section of the WSJ training data.
Because of the problem of data sparsity, we must reduce the number of triphone

parameters that we need to train. The most common way to do this is by clustering
some of the contexts together andtying subphones whose contexts fall into the sameTYING

cluster (Young and Woodland, 1994). For example, the beginning of a phone with an
[n] on its left may look much like the beginning of a phone withan [m] on its left. We
can therefore tie together the first (beginning) subphone of, say, the [m-eh+d] and [n-
eh+d] triphones. Tying two states together means that they share the same Gaussians.
So we only train a single Gaussian model for the first subphoneof the [m-eh+d] and [n-
eh+d] triphones. Likewise, it turns out that the left context phones [r] and [w] produce
a similar effect on the initial subphone of following phones.

Fig. 10.12 shows, for example the vowel [iy] preceded by the consonants [w], [r],
[m], and [n]. Notice that the beginning of [iy] has a similar rise in F2 after [w] and [r].
And notice the similarity of the beginning of [m] and [n]; as Ch. 7 noted, the position
of nasal formants varies strongly across speakers, but thisspeaker (the first author) has
a nasal formant (N2) around 1000 Hz.

Fig. 10.13 shows an example of the kind of triphone tying learned by the clustering
algorithm. Each mixture Gaussian model is shared by the subphone states of various
triphone HMMs.

How do we decide what contexts to cluster together? The most common method
is to use a decision tree. For each state (subphone) of each phone, a separate tree is
built. Fig. 10.14 shows a sample tree from the first (beginning) state of the phone /ih/,
modified from Odell (1995). We begin at the root node of the tree with a single large
cluster containing (the beginning state of) all triphones centered on /ih/. At each node
in the tree, we split the current cluster into two smaller clusters by asking questions
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[w iy] [r iy] [m iy] [n iy]

Figure 10.12 The wordswe, re, me, andknee. The glides [w] and [r] have similar
effects on the beginning of the vowel [iy], as do the two nasals [n] and [m].

t-iy+n t-iy+ng f-iy+l s-iy+l

... etc.

Figure 10.13 Four triphones showing the result of clustering. Notice that the initial
subphone of [t-iy+n] and [t-iy+ng] is tied together, i.e. shares the same Gaussian mixture
acoustic model. After Young et al. (1994).

about the context. For example the tree in Fig. 10.14 first splits the initial cluster into
two clusters, one with nasal phone on the left, and one without. As we descend the tree
from the root, each of these clusters is progressively split. The tree in Fig. 10.14 would
split all beginning-state /ih/ triphones into 5 clusters, labeled A-E in the figure.

The questions used in the decision tree ask whether the phoneto the left or right
has a certainphonetic feature, of the type introduced in Ch. 7. Fig. 10.15 shows
a few decision tree questions; note that there are separate questions for vowels and
consonants. Real trees would have many more questions.

How are decision trees like the one in Fig. 10.14 trained? Thetrees are grown top
down from the root. At each iteration, the algorithm considers each possible question
q and each noden in the tree. For each such question, it considers how the new split
would impact the acoustic likelihood of the training data. The algorithm computes the
difference between the current acoustic likelihood of the training data, and the new
likelihood if the models were tied based on splitting via question q. The algorithm
picks the noden and questionq which give the maximum likelihood. The procedure
then iterates, stopping when each each leaf node has some minimum threshold number
of examples.

We also need to modify the embedded training algorithm we sawin Sec.?? to deal
with context-dependent phones and also to handle mixture Gaussians. In both cases we
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Figure 10.14 Decision tree for choosing which triphone states (subphones) to tie to-
gether. This particular tree will cluster state 0 (the beginning state) of the triphones /n-
ih+l/, /ng-ih+l/, /m-ih+l/, into cluster class A, and various other triphones into classes B-E.
Adapted from Odell (1995).

Feature Phones
Stop b d g k p t
Nasal m n ng
Fricative ch dh f jh s sh th v z zh
Liquid l r w y
Vowel aa ae ah ao aw ax axr ay eh er ey ih ix iy ow oy uh uw
Front Vowel ae eh ih ix iy
Central Vowel aa ah ao axr er
Back Vowel ax ow uh uw
High Vowel ih ix iy uh uw
Rounded ao ow oy uh uw w
Reduced ax axr ix
Unvoiced ch f hh k p s sh t th
Coronal ch d dh jh l n r s sh t th z zh

Figure 10.15 Sample decision tree questions on phonetic features. Modified from Odell
(1995).

use a more complex process that involvescloning and using extra iterations of EM, asCLONING

described in Young et al. (1994).
To train context-dependent models, for example, we first usethe standard em-

bedded training procedure to train context-independent models, using multiple passes
of EM and resulting in separate single-Gaussians models foreach subphone of each
monophone /aa/, /ae/, etc. We thencloneeach monophone model, i.e. make identical
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copies of the model with its 3 substates of Gaussians, one clone for each potential tri-
phone. TheA transition matrices are not cloned, but tied together for all the triphone
clones of a monophone. We then run an iteration of EM again andretrain the triphone
Gaussians. Now for each monophone we cluster all the context-dependent triphones
using the clustering algorithm described on page 15 to get a set of tied state clusters.
One typical state is chosen as the exemplar for this cluster and the rest are tied to it.

We use this same cloning procedure to learn Gaussian mixtures. We first use em-
bedded training with multiple iterations of EM to learn single-mixture Gaussian models
for each tied triphone state as described above. We then clone (split) each state into 2
identical Gaussians, perturb the values of each by some epsilon, and run EM again to
retrain these values. We then split each of the two mixtures,resulting in four, perturb
them, retrain. We continue until we have an appropriate number of mixtures for the
amount of observations in each state.

A full context-depending GMM triphone model is thus createdby applying these
two cloning-and-retraining procedures in series, as shownschematically in Fig. 10.16.

iy

t-iy+n t-iy+ng f-iy+l s-iy+l

(1) Train monophone 
single Gaussian

models

(2) Clone monophones
 to triphones

... etc.

t-iy+n t-iy+ng f-iy+l s-iy+l(3) Cluster and tie 
triphones

... etc.

t-iy+n t-iy+ng f-iy+l s-iy+l

... etc.

(4) Expand to 
GMMs

Figure 10.16 The four stages in training a tied-mixture triphone acoustic model. After Young et al. (1994).
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10.4 DISCRIMINATIVE TRAINING

The Baum-Welch and embedded training models we have presented for training the
HMM parameters (theA andB matrices) are based on maximizing the likelihood of
the training data. An alternative to thismaximum likelihood estimation (MLE ) is to

MAXIMUM
LIKELIHOOD
ESTIMATION

MLE focus not on fitting the best model to the data, but rather ondiscriminating the best
DISCRIMINATING model from all the other models. Such training procedures include Maximum Mu-

tual Information Estimation (MMIE) (Woodland and Povey, 2002) the use of neural
net/SVM classifiers (Bourlard and Morgan, 1994) as well as other techniques like Min-
imum Classification Error training (Chou et al., 1993; McDermott and Hazen, 2004) or
Minimum Bayes Risk estimation (Doumpiotis et al., 2003a). We summarize the first
two of these in the next two subsections.

10.4.1 Maximum Mutual Information Estimation

Recall that in Maximum Likelihood Estimation (MLE), we train our acoustic model
parameters (A andB) so as to maximize the likelihood of the training data. Consider a
particular observation sequenceO, and a particular HMM modelMk corresponding to
word sequenceWk, out of all the possible sentencesW′ ∈ L . The MLE criterion thus
maximizes

FMLE(λ ) = Pλ (O|Mk)(10.4)

Since our goal in speech recognition is to have the correct transcription for the
largest number of sentences, we’d like on average for the probability of thecorrect
word stringWk to be high; certainly higher than the probability of all thewrong word
stringsWjs.t. j 6= k. But the MLE criterion above does not guarantee this. Thus we’d
like to pick some other criterion which will let us chose the modelλ which assigns the
highest probability to the correct model, i.e. maximizesPλ (Mk|O). Maximizing the
probability of the word string rather than the probability of the observation sequence is
calledconditional maximum likelihood estimation or CMLE:

FCMLE(λ ) = Pλ (Mk|O)(10.5)

Using Bayes Law, we can express this as

FCMLE(λ ) = Pλ (Mk|O) =
Pλ (O|Mk)P(Mk)

Pλ (O)
(10.6)

Let’s now expandPλ (O) by marginalizing (summing over all sequences which
could have produced it). The total probability of the observation sequence is the
weighted sum over all word strings of the observation likelihood given that word string:

P(O) = ∑
W∈L

P(O|W)P(W)(10.7)

So a complete expansion of Eq. 10.6 is:

FCMLE(λ ) = Pλ (Mk|O) =
Pλ (O|Mk)P(Mk)

∑M∈L Pλ (O|M)P(M)
(10.8)
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In a slightly confusing bit of standard nomenclature, CMLE is generally referred to
instead as Maximum Mutual Information Estimation (MMIE). This is because it turns
out that maximizing the posteriorP(W|O) and maximizing the mutual information
I(W,O) are equivalent if we assume that the language model probability of each sen-
tenceW is constant (fixed) during acoustic training, an assumptionwe usually make.
Thus from here on we will refer to this criterion as the MMIE criterion rather than the
CMLE criterion, and so here is Eq. 10.8 restated:

FMMIE (λ ) = Pλ (Mk|O) =
Pλ (O|Mk)P(Mk)

∑M∈L Pλ (O|M)P(M)
(10.9)

In a nutshell, then, the goal of MMIE estimation is to maximize (10.9) rather than
(10.4). Now if our goal is to maximizePλ (Mk|O), we not only need to maximize the
numerator of (10.9), but also minimize the denominator. Notice that we can rewrite the
denominator to make it clear that it includes a term equal to the model we are trying to
maximize and a term for all other models:

Pλ (Mk|O) =
Pλ (O|Mk)P(Mk)

Pλ (O|Mk)P(Mk)+ ∑i 6=k Pλ (O|Mi)P(Mi)
(10.10)

Thus in order to maximizePλ (Mk|O), we will need to incrementally changeλ so
that it increases the probability of the correct model, while simultaneously decreasing
the probability of each of the incorrect models. Thus training with MMIE clearly
fulfills the important goal ofdiscriminating between the correct sequence and all other
sequences.

The implementation of MMIE is quite complex, and we don’t discuss it here except
to mention that it relies on a variant of Baum-Welch trainingcalled Extended Baum-
Welch that maximizes (10.9) instead of (10.4). Briefly, we can view this as a two step
algorithm; we first use standard MLE Baum-Welch to compute the forward-backward
counts for the training utterances. Then we compute anotherforward-backward pass
using all other possible utterances and subtract these fromthe counts. Of course it
turns out that computing this full denominator is computationally extremely expensive,
because it requires running a full recognition pass on all the training data. Recall that
in normal EM, we don’t need to run decoding on the training data, since we are only
trying to maximize the likelihood of thecorrect word sequence; in MMIE, we need
to compute the probabilities ofall possible word sequences. Decoding is very time-
consuming because of complex language models. Thus in practice MMIE algorithms
estimate the denominator by summing over only the paths thatoccur in a word lattice,
as an approximation to the full set of possible paths.

CMLE was first proposed by Nadas (1983) and MMIE by Bahl et al. (1986), but
practical implementations that actually reduced word error rate came much later; see
Woodland and Povey (2002) or Normandin (1996) for details.

10.4.2 Acoustic Models based on Posterior Classifiers

Another way to think about discriminative training is to choose a classifier at the frame
level which is discriminant. Thus while the Gaussian classifier is by far the most com-
monly used acoustic likelihood classifier, it is possible toinstead use classifiers that
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are naturally discriminative or posterior estimators, such as neural networks or SVMs
(support vector machines).

The posterior classifier (neural net or SVM) is generally integrated with an HMM
architecture, is often called aHMM-SVM or HMM-MLP hybrid approach (Bourlard
and Morgan, 1994).

The SVM or MLP approaches, like the Gaussian model, estimatethe probability
with respect to a cepstral feature vector at a single timet. Unlike the Gaussian model,
the posterior approaches often uses a larger window of acoustic information, relying
on cepstral feature vectors from neighboring time periods as well. Thus the input to a
typical acoustic MLP or SVM might be feature vectors for the current frame plus the
four previous and four following frames, i.e. a total of 9 cepstral feature vectors instead
of the single one that the Gaussian model uses. Because they have such a wide context,
SVM or MLP models generally use phones rather than subphonesor triphones, and
compute a posterior for each phone.

The SVM or MLP classifiers are thus computing the posterior probability of a state
j given the observation vectors, i.e.P(q j |ot). (also conditioned on the context, but let’s
ignore that for the moment). But the observation likelihoodwe need for the HMM,
b j(ot), is P(ot |q j). The Bayes rule can help us see how to compute one from the other.
The net is computing:

p(q j |ot) =
P(ot |q j)p(q j)

p(ot)
(10.11)

We can rearrange the terms as follows:

p(ot |q j)

p(ot)
=

P(q j |ot)

p(q j)
(10.12)

The two terms on the right-hand side of (10.12) can be directly computed from the
posterior classifier; the numerator is the output of the SVM or MLP, and the denomi-
nator is the total probability of a given state, summing overall observations (i.e., the
sum over allt of ξ j(t)). Thus although we cannot directly computeP(ot |q j), we can

use (10.12) to compute
p(ot |q j )

p(ot)
, which is known as ascaled likelihood(the likelihoodSCALED LIKELIHOOD

divided by the probability of the observation). In fact, thescaled likelihood is just
as good as the regular likelihood, since the probability of the observationp(ot) is a
constant during recognition and doesn’t hurt us to have in the equation.

The supervised training algorithms for training a SVM or MLPposterior phone
classifiers require that we know the correct phone labelq j for each observationot .
We can use the sameembedded training algorithm that we saw for Gaussians; we
start with some initial version of our classifier and a word transcript for the training
sentences. We run a forced alignment of the training data, producing a phone string,
and now we retrain the classifier, and iterate.
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10.5 MODELING VARIATION

As we noted at the beginning of this chapter, variation is oneof the largest obstacles to
successful speech recognition. We mentioned variation dueto speaker differences from
vocal characteristics or dialect, due to genre (such as spontaneous versus read speech),
and due to the environment (such as noisy versus quiet environments). Handling this
kind of variation is a major subject of modern research.

10.5.1 Environmental Variation and Noise

Environmental variation has received the most attention from the speech literature, and
a number of techniques have been suggested for dealing with environmental noise.
Spectral subtraction, for example, is used to combatadditive noise. Additive noiseSPECTRAL

SUBTRACTION

ADDITIVE NOISE is noise from external sound sources like engines or wind or fridges that is relatively
constant and can be modeled as a noise signal that is just added in the time domain to
the speech waveform to produce the observed signal. In spectral subtraction, we esti-
mate the average noise during non-speech regions and then subtract this average value
from the speech signal. Interestingly, speakers often compensate for high background
noise levels by increasing their amplitude, F0, and formantfrequencies. This change
in speech production due to noise is called theLombard effect, named for EtienneLOMBARD EFFECT

Lombard who first described it in 1911 (Junqua, 1993).
Other noise robustness techniques likecepstral mean normalizationare used toCEPSTRAL MEAN

NORMALIZATION

deal withconvolutional noise, noise introduced by channel characteristics like differ-CONVOLUTIONAL
NOISE

ent microphones. Here we compute the average of the cepstrumover time and subtract
it from each frame; the average cepstrum models the fixed spectral characteristics of
the microphone and the room acoustics (Atal, 1974).

Finally, some kinds of short non-verbal sounds like coughs,loud breathing, and
throat clearing, or environmental sounds like beeps, telephone rings, and door slams,
can be modeled explicitly. For each of these non-verbal sounds, we create a special
phone and add to the lexicon a word consisting only of that phone. We can then use
normal Baum-Welch training to train these phones just by modifying the training data
transcripts to include labels for these new non-verbal ‘words’ (Ward, 1989). These
words also need to be added to the language model; often by just allowing them to
appear in between any word.

10.5.2 Speaker and Dialect Adaptation: Variation due to speaker
differences

Speech recognition systems are generally designed to be speaker-independent, since
it’s rarely practical to collect sufficient training data tobuild a system for a single
user. But in cases where we have enough data to build speaker-dependent systems,
they function better than speaker-independent systems. This only makes sense; we can
reduce the variability and increase the precision of our models if we are guaranteed that
the test data will look more like the training data.

While it is rare to have enough data to train on an individual speaker, we do have
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enough data to train separate models for two important groups of speakers: men ver-
sus women. Since women and men have different vocal tracts and other acoustic and
phonetic characteristics, we can split the training data bygender, and train separate
acoustic models for men and for women. Then when a test sentence comes in, we use
a gender detector to decide if it is male or female, and switchto those acoustic models.
Gender detectors can be built out of binary GMM classifiers based on cepstral features.
Suchgender-dependent acoustic modelingis used in most LVCSR systems.

Although we rarely have enough data to train on a specific speaker, there are tech-
niques that work quite well at adapting the acoustic models to a new speaker very
quickly. For example theMLLR (Maximum Likelihood Linear Regression) tech-MLLR

nique (Leggetter and Woodland, 1995) is used to adapt Gaussian acoustic models to a
small amount of data from a new speaker. The idea is to use the small amount of data
to train a linear transform to warp the means of the Gaussians. MLLR and other such
techniques forspeaker adaptationhave been one of the largest sources of improve-SPEAKER

ADAPTATION

ment in ASR performance in recent years.
The MLLR algorithm begins with a trained acoustic model and asmall adaptation

dataset from a new speaker. The adaptation set can be as smallas 3 sentences or 10
seconds of speech. The idea is to learn a linear transform matrix (W) and a bias vector
(ω) to transform the means of the acoustic model Gaussians. If the old mean of a
Gaussian isµ , the equation for the new meanµ̂ is thus:

µ̂ = Wµ + ω(10.13)

In the simplest case, we can learn a single global transform and apply it to each Gaus-
sian models. The resulting equation for the acoustic likelihood is thus only very slightly
modified:

b j(ot) =
1

√

2π |Σ j|
exp

(

−
1
2
(ot − (Wµ j + ω))TΣ−1

j (ot − (Wµ j + ω))

)

(10.14)

The transform is learned by using linear regression to maximize the likelihood of
the adaptation dataset. We first run forward-backward alignment on the adaptation set
to compute the state occupation probabilitiesξ j(t). We then computeW by solving a
system of simultaneous equations involvingξ j(t). If enough data is available, it’s also
possible to learn a larger number of transforms.

MLLR is an example of thelinear transform approach to speaker adaptation, one
of the three major classes of speaker adaptation methods; the other two areMAP adap-
tation andSpeaker Clustering/Speaker Spaceapproaches. See Woodland (2001) for
a comprehensive survey of speaker adaptation which covers all three families.

MLLR and other speaker adaptation algorithms can also be used to address another
large source of error in LVCSR, the problem of foreign or dialect accented speakers.
Word error rates go up when the test set speaker speaks a dialect or accent (such as
Spanish-accented English or southern accented Mandarin Chinese) that differs from the
(usually standard) training set, Here we can take an adaptation set of a few sentences
from say 10 speakers, and adapt to them as a group, creating anMLLR transform that
addresses whatever characteristics are present in the dialect or accent (Huang et al.,
2000; Tomokiyo and Waibel, 2001; Wang et al., 2003; Zheng et al., 2005).
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Another useful speaker adaptation technique is to control for the differing vocal
tract lengths of speakers. Cues to the speaker’s vocal tractlength are present in the
signal; for example speakers with longer vocal tracts tend to have lower formants.
Vocal tract length can therefore be detected and normalized, in a process calledVTLNVTLN

(Vocal Tract Length Normalization ); see the end notes for details.

10.5.3 Pronunciation Modeling: Variation due to Genre

We said at the beginning of the chapter that recognizing conversational speech is harder
for ASR systems than recognizing read speech. What are the causes of this difference?
Is it the difference in vocabulary? Grammar? Something about the speaker themselves?
Perhaps it’s a fact about the microphones or telephone used in the experiment.

None of these seems to be the cause. In a well-known experiment, Weintraub et al.
(1996) compared ASR performance on natural conversationalspeech versus perfor-
mance on read speech, controlling for the influence of possible causal factors. Pairs of
subjects in the lab had spontaneous conversations on the telephone. Weintraub et al.
(1996) then hand-transcribed the conversations, and invited the participants back into
the lab to read their own transcripts to each other over the same phone lines as if they
were dictating. Both the natural and read conversations were recorded. Now Weintraub
et al. (1996) had two speech corpora from identical transcripts; one original natural
conversation, and one read speech. In both cases the speaker, the actual words, and
the microphone were identical; the only difference was the naturalness or fluency of
the speech. They found that read speech was much easier (WER=29%) than conver-
sational speech (WER=53%). Since the speakers, words, and channel were controlled
for, this difference must be modelable somewhere in the acoustic model or pronuncia-
tion lexicon.

Saraclar et al. (2000) tested the hypothesis that this difficulty with conversational
speech was due to changed pronunciations, i.e., to a mismatch between the phone
strings in the lexicon and what people actually said. Recallfrom Ch. 7 that conver-
sational corpora like Switchboard contain many different pronunciations for words,
(such as 12 different pronunciations forbecauseand hundreds forthe). Saraclar et al.
(2000) showed in an oracle experiment that if a Switchboard recognizer is told which
pronunciations to use for each word, the word error rate drops from 47% to 27%.

If knowing which pronunciation to use improves accuracy, could we improve recog-
nition by simply adding more pronunciations for each word tothe lexicon?

Alas, it turns out that adding multiple pronunciations doesn’t work well, even if the
list of pronunciation is represented as an efficient pronunciation HMM (Cohen, 1989).
Adding extra pronunciations adds more confusability; if a common pronunciation of
the word “of” is the single vowel [ax], it is now very confusable with the word “a”.
Another problem with multiple pronunciations is the use of Viterbi decoding. Recall
our discussion on 2 that since the Viterbi decoder finds the best phone string, rather than
the best word string, it biases against words with many pronunciations. Finally, using
multiple pronunciations to model coarticulatory effects may be unnecessary because
CD phones (triphones) are already quite good at modeling thecontextual effects in
phones due to neighboring phones, like the flapping and vowel-reduction handled by
Fig. ?? (Jurafsky et al., 2001).
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Instead, most current LVCSR systems use a very small number of pronunciations
per word. What is commonly done is to start with a multiple pronunciation lexicon,
where the pronunciations are found in dictionaries or are generated via phonological
rules of the type described in Ch. 7. A forced Viterbi phone alignment is then run of the
training set, using this dictionary. The result of the alignment is a phonetic transcription
of the training corpus, showing which pronunciation was used, and the frequency of
each pronunciation. We can then collapse similar pronunciations (for example if two
pronunciations differ only in a single phone substitution we chose the more frequent
pronunciation). We then chose the maximum likelihood pronunciation for each word.
For frequent words which have multiple high-frequency pronunciations, some systems
chose multiple pronunciations, and annotate the dictionary with the probability of these
pronunciations; the probabilities are used in computing the acoustic likelihood (Cohen,
1989; Hain et al., 2001; Hain, 2002).

Finding a better method to deal with pronunciation variation remains an unsolved
research problem. One promising avenue is to focus on non-phonetic factors that affect
pronunciation. For example words which are highly predictable, or at the beginning
or end of intonation phrases, or are followed by disfluencies, are pronounced very
differently (Jurafsky et al., 1998; Fosler-Lussier and Morgan, 1999; Bell et al., 2003).
Fosler-Lussier (1999) shows an improvement in word error rate by using these sorts
of factors to predict which pronunciation to use. Another exciting line of research
in pronunciation modeling uses a dynamic Bayesian network to model the complex
overlap in articulators that produces phonetic reduction (Livescu and Glass, 2004b,
2004a).

Another important issue in pronunciation modeling is dealing with unseen words.
In web-based applications such as telephone-based interfaces to the Web, the recog-
nizer lexicon must be automatically augmented with pronunciations for the millions
of unseen words, particularly names, that occur on the Web. Grapheme-to-phoneme
techniques like those described in Sec.??are used to solve this problem.

10.6 METADATA : BOUNDARIES, PUNCTUATION, AND DISFLUEN-
CIES

The output of the speech recognition process as we have described it so far is just
a string of raw words. Consider the following sample gold-standard transcript (i.e.,
assuming perfect word recognition) of part of a dialogue (Jones et al., 2003):

yeah actually um i belong to a gym down here a gold’s gym uh-huhand uh
exercise i try to exercise five days a week um and i usually do that uh what type
of exercising do you do in the gym

Compare the difficult transcript above with the following much clearer version:

A: Yeah I belong to a gym down here. Gold’s Gym. And I try to exercise five
days a week. And I usually do that.

B: What type of exercising do you do in the gym?
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The raw transcript is not divided up among speakers, there isno punctuation or
capitalization, and disfluencies are scattered among the words. A number of studies
have shown that such raw transcripts are harder for people toread Jones et al. (2003,
2005) and that adding, for example, commas back into the transcript improve sthe
accuracy of information extraction algorithms on the transcribed text (Makhoul et al.,
2005; Hillard et al., 2006). Post-processing ASR output involves tasks including the
following:

diarization: Many speech tasks have multiple speakers, such as telephoneconver-DIARIZATION

sations, business meetings, and news reports (with multiple broadcasters). Di-
arization is the task of breaking up a speech file by speaker assigning parts of the
transcript to the relevant speakers, like theA: andB: labels above.

sentence boundary detection:We discussed the task of breaking speech into sen-SENTENCE
SEGMENTATION

tences (sentence segmentation) in Ch. 3 and Ch. 8. But for those tasks we already
add punctuation like periods to help us; from speech we don’talready have punc-
tuation, just words. Sentence segmentation from speech hasthe added difficulty
that the transcribed words will be errorful, but has the advantage that prosodic
features like pauses and sentence-final intontation can be used as cues.

truecasing: Words in a clean transcript need to have sentence-initial words start-TRUECASING

ing with an upper-case letter, acronyms all in capitals, andso on. Truecasing
is the task of assigning the correct case for a word, and is often addressed as
a HMM classification task like part-of-speech tagging, withhidden states like
ALL -LOWER CASE, UPPER-CASE-INITIAL , all-caps, and so on.

punctuation detection: In addition to segmenting sentences, we need to choosePUNCTUATION
DETECTION

sentence-final punctuation (period, question mark, exclamation mark), and in-
sert commas and quotation marks and so on.

disfluency detection:Disfluencies can be removed from a transcript for readability,DISFLUENCY
DETECTION

or at least marked off with commas or font changes. Since standard recogniz-
ers don’t actually include disfluencies (like word fragments) in their transcripts,
disfluency detection algorithms can also play an important role in avoiding the
misrecognized words that may result.

Marking these features (punctuation, boundaries, diarization) in the text output is
often calledmetadataor sometimesrich transcription . Let’s look at a couple of theseMETADATA

RICH
TRANSCRIPTION

tasks in slightly more detail.
Sentence segmentationcan be modeled as a binary classification task, in which

each boundary between two words is judged as a sentence boundary or as sentence-
internal. Such classifiers can use similar features to the sentence segmentation dis-
cussed in Sec.??, such as words and part-of-speech tags around each candidate bound-
ary, or length features such as the distance from the previously found boundary. We
can also make use of prosodic features, especially pause duration, word duration (recall
that sentence-final words are lengthened), and pitch movements.

Fig. 10.17 shows the candidate boundary locations in a sample sentence. Com-
monly extracted features include:

pause features:duration of the interword pause at the candidate boundary.
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after a powerful earthquake hit last night   (pause)  at eleven we bring you live coverage

200ms200ms 200ms200ms

SENTENCE
BOUNDARY

Figure 10.17 Candidate sentence boundaries computed at each inter-wordboundary,
showing prosodic feature extraction regions. After Shriberg et al. (2000).

duration features: durations of the phone and rime (nucleus plus coda) preceding
the candidate boundary. Since some phones are inherently longer than others,
each phone is normalized to the mean duration for that phone.

F0 features: the change in pitch across the boundary; sentence boundaries often
havepitch reset (an abrupt change in pitch), while non-boundaries are more
likely to have continuous pitch across the boundary. Another useful F0 feature
is thepitch range of the preboundary word; sentences often end with afinal fall
(Sec.??) which is close to the speaker’s F0 baseline.

Forpunctuation detection, similar features are used as for sentence boundary de-
tection, but with multiple hidden classes (comma, sentence-final question mark, quota-
tion mark, no punctuation). instead of just two.

For both of these tasks, instead of a simple binary classifier, sequence informa-
tion can be incorporated by modeling sentence segmentationas an HMM in which the
hidden states correspond to sentence boundary or non-boundary decisions. We will
describe methods for combining prosodic and lexical features in more detail when we
introduce dialogue act detection in Sec.??.

Recall from Sec.?? thatdisfluenciesor repair in conversation include phenomenaDISFLUENCIES

REPAIR like the following:

Disfluency type Example
fillers (or filled pauses): But, uh, that was absurd
word fragments A guy went to ad-, a landfill
repetitions: it was just achange of, change oflocation
restarts it’s – I find it very strange

The ATIS sentence in Fig. 10.18 shows examples of a restart and the filler uh,
showing the

Detection methods for disfluencies are very similar to detecting sentence bound-
aries; a classifier is trained to make a decision at each word boundary, using both text
and prosodic features. HMM and CRF classifiers are commonly used, and features
are quite similar to the features for boundary detection, including neighoring words
and part-of-speech tags, the duration of pauses at the word boundary, the duration of
the word and phones preceding the boundary, the difference in pitch values across the
boundary, and so on.

For detecting fragments, features for detecting voice quality are used (Liu, 2004),
such asjitter , a measure of perturbation in the pitch period (Rosenberg, 1971),spectralJITTER
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Figure 10.18 Repeated from Fig.??An example of a disfluency (after Shriberg (1994); terminology is from
Levelt (1983)).

tilt , the slope of the spectrum, (see Sec.??), andopen quotient, the percentage of theSPECTRAL TILT

OPEN QUOTIENT glottal cycle in which the vocal folds are open (Fant, 1997).

10.7 SPEECHRECOGNITION BY HUMANS

Humans are of course much better at speech recognition than machines; current ma-
chines are roughly about five times worse than humans on cleanspeech, and the gap
seems to increase with noisy speech.

Speech recognition in humans shares some features with ASR algorithms. We men-
tioned above that signal processing algorithms like PLP analysis (Hermansky, 1990)
were in fact inspired by properties of the human auditory system. In addition, three
properties of humanlexical access(the process of retrieving a word from the mentalLEXICAL ACCESS

lexicon) are also true of ASR models:frequency, parallelism, andcue-based pro-
cessing. For example, as in ASR with itsN-gram language models, human lexical
access is sensitive to wordfrequency. High-frequency spoken words are accessed
faster or with less information than low-frequency words. They are successfully rec-
ognized in noisier environments than low frequency words, or when only parts of the
words are presented (Howes, 1957; Grosjean, 1980; Tyler, 1984, inter alia). Like ASR
models, human lexical access isparallel: multiple words are active at the same time
(Marslen-Wilson and Welsh, 1978; Salasoo and Pisoni, 1985,inter alia).

Finally, human speech perception iscue based: speech input is interpreted by in-
tegrating cues at many different levels. Human phone perception combines acous-
tic cues, such as formant structure or the exact timing of voicing, (Oden and Mas-
saro, 1978; Miller, 1994) visual cues, such as lip movement (McGurk and Macdon-
ald, 1976; Massaro and Cohen, 1983; Massaro, 1998) and lexical cues such as the
identity of the word in which the phone is placed (Warren, 1970; Samuel, 1981; Con-
nine and Clifton, 1987; Connine, 1990). For example, in whatis often called the
phoneme restoration effect, Warren (1970) took a speech sample and replaced one

PHONEME
RESTORATION

EFFECT

phone (e.g. the [s] inlegislature) with a cough. Warren found that subjects listening
to the resulting tape typically heard the entire wordlegislatureincluding the [s], and
perceived the cough as background. In theMcGurk effect , (McGurk and Macdon-MCGURK EFFECT

ald, 1976) showed that visual input can interfere with phoneperception, causing us to
perceive a completely different phone. They showed subjects a video of someone say-
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ing the syllablega in which the audio signal was dubbed instead with someone saying
the syllableba. Subjects reported hearing something likeda instead. It is definitely
worth trying this out yourself from video demos on the web; see for examplehttp:
//www.haskins.yale.edu/featured/heads/mcgurk.html. Other cues
in human speech perception include semanticword association(words are accessedWORD ASSOCIATION

more quickly if a semantically related word has been heard recently) andrepetition
priming (words are accessed more quickly if they themselves have just been heard).REPETITION PRIMING

The intuitions of both these results are incorporated into recent language models dis-
cussed in Ch. 4, such as the cache model of Kuhn and De Mori (1990), which models
repetition priming, or the trigger model of Rosenfeld (1996) and the LSA models of
Coccaro and Jurafsky (1998) and Bellegarda (1999), which model word association.
In a fascinating reminder that good ideas are never discovered only once, Cole and
Rudnicky (1983) point out that many of these insights about context effects on word
and phone processing were actually discovered by William Bagley (1901). Bagley
achieved his results, including an early version of the phoneme restoration effect, by
recording speech on Edison phonograph cylinders, modifying it, and presenting it to
subjects. Bagley’s results were forgotten and only rediscovered much later.2

One difference between current ASR models and human speech recognition is the
time-course of the model. It is important for the performance of the ASR algorithm
that the the decoding search optimizes over the entire utterance. This means that the
best sentence hypothesis returned by a decoder at the end of the sentence may be very
different than the current-best hypothesis, halfway into the sentence. By contrast, there
is extensive evidence that human processing ison-line: people incrementally segmentONLINE

and utterance into words and assign it an interpretation as they hear it. For example,
Marslen-Wilson (1973) studiedclose shadowers: people who are able to shadow (re-
peat back) a passage as they hear it with lags as short as 250 ms. Marslen-Wilson
found that when these shadowers made errors, they were syntactically and semanti-
cally appropriate with the context, indicating that word segmentation, parsing, and in-
terpretation took place within these 250 ms. Cole (1973) andCole and Jakimik (1980)
found similar effects in their work on the detection of mispronunciations. These results
have led psychological models of human speech perception (such as the Cohort model
(Marslen-Wilson and Welsh, 1978) and the computational TRACE model (McClelland
and Elman, 1986)) to focus on the time-course of word selection and segmentation.
The TRACE model, for example, is a connectionist interactive-activation model, based
on independent computational units organized into three levels: feature, phoneme, and
word. Each unit represents a hypothesis about its presence in the input. Units are acti-
vated in parallel by the input, and activation flows between units; connections between
units on different levels are excitatory, while connections between units on single level
are inhibitatory. Thus the activation of a word slightly inhibits all other words.

We have focused on the similarities between human and machine speech recogni-
tion; there are also many differences. In particular, many other cues have been shown
to play a role in human speech recognition but have yet to be successfully integrated
into ASR. The most important class of these missing cues is prosody. To give only
one example, Cutler and Norris (1988), Cutler and Carter (1987) note that most mul-

2 Recall the discussion on page?? of multiple independent discovery in science.
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tisyllabic English word tokens have stress on the initial syllable, suggesting in their
metrical segmentation strategy (MSS) that stress should beused as a cue for word
segmentation. Another difference is that human lexical access exhibitsneighborhood
effects (the neighborhood of a word is the set of words which closely resemble it).
Words with large frequency-weighted neighborhoods are accessed slower than words
with less neighbors (Luce et al., 1990). Current models of ASR don’t generally focus
on this word-level competition.

10.8 SUMMARY

• We introduced two advanced decoding algorithms: The multipass (N-best or
lattice) decoding algorithm, andstackor A∗ decoding.

• Advanced acoustic models are based on context-dependenttriphones rather than
phones. Because the complete set of triphones would be too large, we use a
smaller number of automatically clustered triphones instead.

• Acoustic models can beadaptedto new speakers.

• Pronunciation variation is a source of errors in human-human speech recogni-
tion, but one that is not successfully handled by current technology.
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See the previous chapter for most of the relevant speech recognition history. Note that
although stack decoding is equivalent to theA∗ searchdeveloped in artificial intelli-A

∗
SEARCH

gence, the stack decoding algorithm was developed independently in the information
theory literature and the link with AI best-first search was noticed only later (Jelinek,
1976). Useful references on vocal tract length normalization include (Cohen et al.,
1995; Wegmann et al., 1996; Eide and Gish, 1996; Lee and Rose,1996; Welling et al.,
2002; Kim et al., 2004).

There are many new directions in current speech recognitionresearch involving
alternatives to the HMM model. For example,there are new architectures based on
graphical models (dynamic bayes nets, factorial HMMs, etc)(Zweig, 1998; Bilmes,
2003; Livescu et al., 2003; Bilmes and Bartels, 2005; Frankel et al., 2007). There are
attempts to replace theframe-basedHMM acoustic model (that make a decision aboutFRAMEBASED

each frame) withsegment-based recognizersthat attempt to detect variable-lengthSEGMENTBASED
RECOGNIZERS

segments (phones) (Digilakis, 1992; Ostendorf et al., 1996; Glass, 2003). Landmark-
based recognizers and articulatory phonology-based recognizers focus on the use of
distinctive features, defined acoustically or articulatorily (respectively) (Niyogi et al.,
1998; Livescu, 2005; Hasegawa-Johnson and et al, 2005; Juneja and Espy-Wilson,
2003).

See Shriberg (2005) for an overview of metadata research. Shriberg (2002) and
Nakatani and Hirschberg (1994) are computationally-focused corpus studies of the
acoustic and lexical properties of disfluencies. Early papers on sentence segmenta-



DRAFT

Section 10.8. Summary 29

tion from speech include Wang and Hirschberg (1992), Ostendorf and Ross (1997) See
Shriberg et al. (2000), Liu et al. (2006a) for recent work on sentence segmentation,
Kim and Woodland (2001), Hillard et al. (2006) on punctuation detection, Nakatani
and Hirschberg (1994), Honal and Schultz (2003, 2005), Lease et al. (2006), and a
number of papers that jointly address multiple metadata extraction tasks (Heeman and
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EXERCISES

10.1 Implement the Stack decoding algorithm of Fig. 10.7 on page 9. Pick a very sim-
pleh∗ function like an estimate of the number of words remaining inthe sentence.

10.2 Modify the forward algorithm of Fig.?? from Ch. 9 to use the tree-structured
lexicon of Fig. 10.10 on page 12.

10.3 Many ASR systems, including the Sonic and HTK systems, use a different al-
gorithm for Viterbi called thetoken-passing Viterbi algorithm (Young et al., 1989).
Read this paper and implement this algorithm.
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11
COMPUTATIONAL
PHONOLOGY

bidakupadotigolabubidakutupiropadotigolabutupirobidaku...
Word segmentation stimulus (Saffran et al., 1996a)

Recall from Ch. 7 thatphonology is the area of linguistics that describes the sys-
tematic way that sounds are differently realized in different environments, and how
this system of sounds is related to the rest of the grammar. This chapter introduces
computational phonology, the use of computational models in phonological theory.COMPUTATIONAL

PHONOLOGY

One focus of computational phonology is on computational models of phonological
representation, and on how to use phonological models to mapfrom surface phonolog-
ical forms to underlying phonological representation. Models in (non-computational)
phonological theory are generative; the goal of the model isto represent how an under-
lying form can generate a surface phonological form. In computation, we are generally
more interested in the alternative problem ofphonological parsing; going from surface
form to underlying structure. One major tool for this task isthe finite-state automaton,
which is employed in two families of models:finite-state phonologyandoptimality
theory.

A related kind of phonological parsing task issyllabification: the task of assigning
syllable structure to sequences of phones. Besides its theoretical interest, syllabifi-
cation turns out to be a useful practical tool in aspects of speech synthesis such as
pronunciation dictionary design. We therefore summarize afew practical algorithms
for syllabification.

Finally, we spend the remainder of the chapter on the key problem of how phono-
logical and morphological representations can be learned.

11.1 FINITE-STATE PHONOLOGY

Ch. 3 showed that spelling rules can be implemented by transducers. Phonological
rules can be implemented as transducers in the same way; indeed the original work
by Johnson (1972) and Kaplan and Kay (1981) on finite-state models was based on
phonological rules rather than spelling rules. There are a number of different models
of computational phonologythat use finite automata in various ways to realize phono-
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logical rules. We will describe thetwo-level morphologyof Koskenniemi (1983) first
mentioned in Ch. 3. Let’s begin with the intuition, by seeingthe transducer in Fig. 11.1
which models the simplified flapping rule in (11.1):

/t/→ [dx] / V́ V(11.1)

0 1

3

2

other
V:@
t

V:@

t:dx

t

t   other

V: @
other

V:@

/

V: @

/

V: @

/

Figure 11.1 Transducer for English Flapping: ARPAbet “dx” indicates a flap, and the
“other” symbol means “any feasible pair not used elsewhere in the transducer”. “@” means
“any symbol not used elsewhere on any arc”.

The transducer in Fig. 11.1 accepts any string in which flaps occur in the correct
places (after a stressed vowel, before an unstressed vowel), and rejects strings in which
flapping doesn’t occur, or in which flapping occurs in the wrong environment.1

We’ve seen both transducers and rules before; the intuitionof two-level morphol-
ogy is to augment the rule notation to correspond more naturally to transducers. We
motivate his idea by beginning with the notion ofrule ordering . In a traditional phono-
logical system, many different phonological rules apply between the lexical form and
the surface form. Sometimes these rules interact; the output from one rule affects the
input to another rule. One way to implement rule-interaction in a transducer system
is to run transducers in acascade. Consider, for example, the rules that are needed to
deal with the phonological behavior of the English noun plural suffix -s. This suffix is
pronounced [ix z] after the phones [s], [sh], [z], [zh], [ch], or [jh] (so peachesis pro-
nounced [p iy ch ix z], andfaxesis pronounced [f ae k s ix z]), [z] after voiced sounds
(pigs is pronounced [p ih g z]), and [s] after unvoiced sounds (cats is pronounced [k
ae t s]). We model this variation by writing phonological rules for the realization of
the morpheme in different contexts. We first need to choose one of these three forms
([s], [z], [ix z]) as the “lexical” pronunciation of the suffix; we chose [z] only because
it turns out to simplify rule writing. Next we write two phonological rules. One, sim-
ilar to the E-insertion spelling rule of page??, inserts an [ix] after a morpheme-final
sibilant and before the plural morpheme [z]. The other makessure that the-s suffix is
properly realized as [s] after unvoiced consonants.

ǫ → ix / [+sibilant] ˆ z #(11.2)

1 For pedagogical purposes, this example assumes (incorrectly) that the factors that influence flapping are
purely phonetic and are non-stochastic.
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z → s / [-voice] ˆ #(11.3)

These two rules must beordered; rule (11.2) must apply before (11.3). This is
because the environment of (11.2) includesz, and the rule (11.3) changesz. Consider
running both rules on the lexical formfoxconcatenated with the plural-s:

Lexical form: f aa k ˆ z
(11.2) applies: f aa k s ˆ ix z
(11.3) doesn’t apply:f aa k sˆ ix z

If the devoicing rule (11.3) was ordered first, we would get the wrong result. This
situation, in which one rule destroys the environment for another, is calledbleeding:2BLEEDING

Lexical form: f aa k s ˆ z
(11.3) applies: f aa k s ˆ s
(11.2) doesn’t apply:f aa k s ˆ s

As was suggested in Ch. 3, each of these rules can be represented by a transducer.
Since the rules are ordered, the transducers would also needto be ordered. For example
if they are placed in acascade, the output of the first transducer would feed the input
of the second transducer.

Many rules can be cascaded together this way. As Ch. 3 discussed, running a cas-
cade, particularly one with many levels, can be unwieldy, and so transducer cascades
are usually replaced with a single more complex transducer by composingthe individ-
ual transducers.

Koskenniemi’s method oftwo-level morphology that was sketchily introduced in
Ch. 3 is another way to solve the problem of rule ordering. Koskenniemi (1983) ob-
served that most phonological rules in a grammar are independent of one another; that
feeding and bleeding relations between rules are not the norm.3 Since this is the case,
Koskenniemi proposed that phonological rules be run in parallel rather than in series.
The cases where there is rule interaction (feeding or bleeding) we deal with by slightly
modifying some rules. Koskenniemi’s two-level rules can bethought of as a way of
expressingdeclarative constraintson the well-formedness of the lexical-surface map-
ping.

Two-level rules also differ from traditional phonologicalrules by explicitly coding
when they are obligatory or optional, by using four differing rule operators; the⇔ rule
corresponds to traditionalobligatory phonological rules, while the⇒ rule implements
optional rules:

Rule type Interpretation
a:b⇐ c d a is alwaysrealized asb in the contextc d
a:b⇒ c d a may be realized asb only in the contextc d
a:b⇔ c d a must be realized asb in contextc d and nowhere else
a:b /⇐ c d a is never realized asb in the contextc d

2 If we had chosen to represent the lexical pronunciation of-s as [s] rather than [z], we would have written
the rule inversely to voice the-safter voiced sounds, but the rules would still need to be ordered; the ordering
would simply flip.
3 Feeding is a situation in which one rule creates the environment for another rule and so must be run
beforehand.
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The most important intuition of the two-level rules, and themechanism that lets
them avoid feeding and bleeding, is their ability to represent constraints ontwo levels.
This is based on the use of the colon (“:”), which was touched on very briefly in Ch. 3.
The symbola:b means a lexicala that maps to a surfaceb. Thusa:b⇔ :c means
a is realized asb after asurfacec. By contrasta:b⇔ c: means thata is realized
asb after alexical c. As discussed in Ch. 3, the symbolc with no colon is equivalent
to c:c that means a lexicalc which maps to a surfacec.

Fig. 11.2 shows an intuition for how the two-level approach avoids ordering for the
ix-insertion and z-devoicing rules. The idea is that the z-devoicing rule maps alexical
z-insertion to asurfaces and the ix rule refers to thelexical z.

lexical level

surface level

ix-insertion

[+sib]

[-voice]
^ z

ix s

z devoicing

Figure 11.2 The constraints for the1-insertion andz-devoicing rules both refer to a
lexicalz, not asurfacez.

The two-level rules that model this constraint are shown in (11.4) and (11.5):

ǫ : ix ⇔ [+sibilant]: ˆ z: #(11.4)

z : s ⇔ [-voice]: ˆ #(11.5)

As Ch. 3 discussed, there are compilation algorithms for creating automata from
rules. Kaplan and Kay (1994) give the general derivation of these algorithms, and
Antworth (1990) gives one that is specific to two-level rules. The automata corre-
sponding to the two rules are shown in Fig. 11.3 and Fig. 11.4.Fig. 11.3 is based on
Figure 3.14 of Ch. 3; see page 78 for a reminder of how this automaton works. Note in
Fig. 11.3 that the plural morpheme is represented by z:, indicating that the constraint is
expressed about a lexical rather than surface z.

Fig. 11.5 shows the two automata run in parallel on the input [f aa k s ˆ z]. Note that
both the automata assumes the default mapping ˆ:ǫ to remove the morpheme boundary,
and that both automata end in an accepting state.

11.2 ADVANCED FINITE-STATE PHONOLOGY

11.2.1 Harmony

Finite-state models of phonology have also been applied to more sophisticated phono-
logical and morphological phenomena. Let’s consider a finite-state model of a well-



DRAFT

Section 11.2. Advanced Finite-State Phonology 5

30 41 2

5

other

^:   
other
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z::ix
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^:

s, sh

##, other

#,other

[+sib]

[+sib]

[+sib]

∋ ∋

∋

∋

Figure 11.3 The transducer for the ix-insertion rule 11.2. The rule can be readwhenever
a morpheme ends in a sibilant, and the following morpheme is word-final z, insert [ix].

3210

z

^:   
other

z:s^:

z, sh,

##, other

#,other

:[-voice]

:[-voice]

∋

∋

#

s, zh

Figure 11.4 The transducer for the z-devoicing rule 11.3. This rule might be summa-
rizedDevoice the morpheme z if it follows a morpheme-final voiceless consonant.

known complex interaction of three phonological rules in the Yawelmani dialect of
Yokuts, a Native American language spoken in California.4

First, Yokuts (like many other languages including for example Turkish and Hun-
garian) hasvowel harmony. Vowel harmony is a process in which a vowel changes itsVOWEL HARMONY

form to look like a neighboring vowel. In Yokuts, a suffix vowel changes its form to
agree in backness and roundness with the preceding stem vowel. That is, a front vowel
like /i/ will appear as a back vowel[u] if the stem vowel is/u/. ThisHarmony rule
applies if the suffix and stem vowels are of the same height (e.g.,/u/ and/i/ both high,
/o/ and/a/ both low): 5

4 These rules were first drawn up in the traditional Chomsky andHalle (1968) format by Kisseberth (1969)
following the field work of Newman (1944).
5 Examples from Cole and Kisseberth (1995). Some parts of system such as vowel underspecification have
been removed for pedagogical simplification (Archangeli, 1984).
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f aa k s ^ z #Intermediate

f aa k s ix zSurface

ix-insertion 0

1 0

0

1

4

0

2

0

0 0

1z-devoicing

0

0

3

02

1

Figure 11.5 The transducer for the ix-insertion rule 11.2 and the z-devoicing rule 11.3
run in parallel.

High Stem Low Stem
Lexical Surface Gloss Lexical Surface Gloss

Harmony dub+hin → dubhun “tangles” bok’+al → bok’ol “might eat”
No Harmony xil+hin → xilhin “leads by the hand”xat ’+al → xat ’al “might find”

The second relevant rule,Lowering, causes long high vowels to become low;/u:/
becomes[o:] and/i:/ becomes[e:], while the third rule,Shortening, shortens long
vowels in closed syllables:

Lowering Shortening
Pu:t ’+it → Po:t ’ut “steal, passive aorist” s:ap+hin → saphin
mi:k’+it → me:k’+it “swallow, passive aorist”sudu:k+hin → sudokhun

The three Yokuts rules must be ordered, just as the ix-insertion and z-devoicing
rules had to be ordered. Harmony must be ordered before Lowering because the/u:/
in the lexical form/Pu:t ’+it/ causes the/i/ to become[u] before it lowers in the
surface form[Po:t ’ut]. Lowering must be ordered before Shortening because the/u:/
in /sudu:k+hin/ lowers to[o]; if it was ordered after shortening it would appear on the
surface as[u].

The Yokuts data can be modeled either as a cascade of three rules in series, or in
the two-level formalism as three rules in parallel; Fig. 11.6 shows the two architectures
(Goldsmith, 1993; Lakoff, 1993; Karttunen, 1998). Just as in the two-level examples
presented earlier, the rules work by referring sometimes tothe lexical context, some-
times to the surface context; writing the rules is left as Exercise 11.4 for the reader.

11.2.2 Templatic Morphology

Finite-state models of phonology and morphology have also been proposed for the
templatic (non-concatenative) morphology (discussed on page??) common in Semitic
languages like Arabic, Hebrew, and Syriac.

There are a number of computational finite-state implementations of non-concatenative
morphology. Many of them draw on the the CV approach of McCarthy (1981), in which
a word like /katab/ is represented by three separate morphemes; aroot morphemecon-
sisting of consonants (ktb), a vocalic morphemeconsisting of vowels (a), and a CV
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? u: t + h i n

? o t h u n

Rounding
o

Lowering
o

Shortening

rounding shortening

? u: t + h i n

? o t h u n

lowering

.

. .

.

Figure 11.6 Combining the rounding, lowering, and shortening rules forYawelmani
Yokuts.

pattern morpheme (sometimes called abinyan or aCV skeleton) (CVCVC). McCarthy
represented this morphemes on three separate morphological tiers (Goldsmith, 1976).TIERS

An influential model by Kay (1987), for example, uses separate tapes for each of
McCarthy’s tiers. A high-level intuition of Kay’s model is shown in Fig. 11.7, which
shows his special transducer that reads four tapes instead of two.

a k t a b i b

k t b

V C C V C V C

a i

lexical tape

consonantal root tape

vocalic morpheme tape

binyan tape

Figure 11.7 A finite-state model of templatic (“non-concatenative”) morphology.
Adapted from Kay (1987) and Sproat (1993).

The complication with such a multi-tape model is designing amachine which aligns
the various strings on the tapes in the correct way; Kay proposed that the binyan tape
could act as a sort of guide for alignment. Kay’s intuition has led to a number of more
fully worked out finite-state models of Semitic morphology;see the end of the chapter
for details of these models, as well as alternatives based onnew finite-state operations.

11.3 COMPUTATIONAL OPTIMALITY THEORY

In a traditional phonological derivation, we are given an underlying lexical form and
a surface form. The phonological system then consists of a sequence of rules which
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map the underlying form to the surface form.Optimality Theory (OT) (Prince andOPTIMALITY THEORY

OT Smolensky, 1993) offers an alternative way of viewing phonological derivation, based
on the metaphor of filtering rather than transforming. An OT model includes two func-
tions (GEN and EVAL) and a set of ranked violable constraints(CON). Given an un-
derlying form, the GEN function produces all imaginable surface forms, even those
which couldn’t possibly be a legal surface form for the input. The EVAL function then
applies each constraint in CON to these surface forms in order of constraint rank. The
surface form which best meets the constraints is chosen.

Let’s briefly introduce OT, using some Yawlemani data, and then turn to the com-
putational ramifications.6 In addition to the interesting vowel harmony phenomena
discussed above, Yawelmani has phonotactic constraints that rule out sequences of
consonants; three consonants in a row (CCC) are not allowed to occur in a surface
word. Sometimes, however, a word contains two consecutive morphemes such that the
first one ends in two consonants and the second one starts withone consonant (or vice
versa). What does the language do to solve this problem? It turns out that Yawelmani
either deletes one of the consonants or inserts a vowel in between.

If a stem ends in a C, and its suffix starts with CC, the first C of the suffix is deleted
(“+” here means a morpheme boundary):

C-deletion: C→ ǫ / C + C(11.6)

For example, simplifying somewhat, the CCVC “passive consequent adjunctive” mor-
phemehne:l drops the initial C if the previous morpheme ends in a consonant. Thus
afterdiyel “guard”, we would get the formdiyel-ne:l-aw, “guard - passive consequent
adjunctive - locative”.

If a stem ends in CC and the suffix starts with C, the language instead inserts a
vowel to break up the first two consonants:

V-insertion: ǫ → V / C C +C(11.7)

For example ini is inserted into the rootPilk- “sing” when it is followed by the C-initial
suffix -hin, “past”, producingPilik-hin, “sang”, but not when followed by a V-initial
suffix like -en, “future” in Pilken “will sing”.

Kisseberth (1970) proposed that these two rules have the same function: avoiding
three consonants in a row. Let’s restate this in terms of syllable structure. It happens
that Yawelmani syllables can only be of the form CVC or CV; complex onsets or com-
plex codas i.e., with multiple consonants, aren’t allowed.Since CVCC syllables aren’t
allowed on the surface, CVCC roots must beresyllabified when they appear on theRESYLLABIFIED

surface. From the point of view of syllabification, then, these insertions and deletions
all happen so as to allow Yawelmani words to be properly syllabified. Here’s examples
of resyllabifications with no change, with an insertion, andwith a deletion:

6 The following explication of OT via the Yawelmani example draws heavily from Archangeli (1997) and
a lecture by Jennifer Cole at the 1999 LSA Linguistic Institute.
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underlying surface gloss
morphemes syllabification
Pilk-en Pil.ken “will sing”
Pilk-hin Pi.lik.hin “sang”
diyel-hnil-aw di.yel.ne:.law “guard - pass. cons. adjunct. - locative”

The intuition of Optimality Theory is to try to directly represent these kind of con-
straints on syllable structure directly, rather than usingidiosyncratic insertion and dele-
tion rules. One such constraint, *COMPLEX, says “No complex onsets or codas”.
Another class of constraints requires the surface form to beidentical to (faithful to) the
underlying form. Thus FAITH V says “Don’t delete or insert vowels” and FAITH C says
“Don’t delete or insert consonants”. Given an underlying form, the GEN function pro-
duces all possible surface forms (i.e., every possible insertion and deletion of segments
with every possible syllabification) and they are ranked by the EVAL function using
these (violable) constraints. The idea is that while in general insertion and deletion are
dispreferred, in some languages and situations they are preferred over violating other
constraints, such as those of syllable structure. Fig. 11.8shows the architecture.

/?ilk−hin/

[?i.lik.hin]

?ilk.hin ?i.lik.hin?il.khin ?il.hin ?ak.pid

GEN

EVAL (*COMPLEX, FAITHC, FAITHV)

Figure 11.8 The architecture of a derivation in Optimality Theory (after Archangeli
(1997)).

The EVAL function works by applying each constraint in ranked order to each
candidate. Starting with the highest-ranked constraints,if one candidate either does
not violate no constraints or violates less of them than all the other candidates, that
candidate is declared optimal. If two candidates tie (have the same highest ranked vio-
lation), then the next-highest ranked violation is considered. This evaluation is usually
shown on atableau (plural tableaux). The top left-hand cell shows the input, the con-TABLEAU

straints are listed in order of rank across the top row, and the possible outputs along
the left-most column.7 If a form violates a constraint, the relevant cell contains* ; a*

*! indicates the fatal violation which causes a candidate to beeliminated. Cells for*!

7 Although there are an infinite number of candidates, it is traditional to show only the ones which are
‘close’; in the tableau below we have shown the outputPak.pid just to make it clear that even very different
surface forms are to be included.
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constraints which are irrelevant (since a higher-level constraint is already violated) are
shaded.

/Pilk-hin/ *COMPLEX FAITH C FAITH V

Pilk.hin *!
Pil.khin *!
Pil.hin *!

☞ Pi.lik.hin *
Pak.pid *!

One appeal of Optimality Theoretic derivations is that the constraints are presumed
to be cross-linguistic generalizations. That is all languages are presumed to have some
version of faithfulness, some preference for simple syllables, and so on. Languages
differ in how they rank the constraints; thus English, presumably, ranks FAITH C higher
than *COMPLEX. (How do we know this?)

11.3.1 Finite-State Transducer Models of Optimality Theory

Now that we’ve sketched the linguistic motivations for Optimality Theory, let’s turn to
the computational implications. We’ll explore two: implementation of OT via finite-
state models, and stochastic versions of OT.

Can a derivation in Optimality Theory be implemented by finite-state transducers?
Frank and Satta (1998), following the foundational work of Ellison (1994), showed
that (1) if GEN is a regular relation (for example assuming the input doesn’t contain
context-free trees of some sort), and (2) if the number of allowed violations of any
constraint has some finite bound, then an OT derivation can becomputed by finite-
state means. This second constraint is relevant because of aproperty of OT that we
haven’t mentioned: if two candidates violate exactly the same number of constraints,
the winning candidate is the one which has the smallest number of violations of the
relevant constraint.

One way to implement OT as a finite-state system was worked outby Karttunen
(1998), following the above-mentioned work and that of Hammond (1997). In Kart-
tunen’s model, GEN is implemented as a finite-state transducer which is given an un-
derlying form and produces a set of candidate forms. For example for the syllabifica-
tion example above, GEN would generate all strings that are variants of the input with
consonant deletions or vowel insertions, and their syllabifications.

Each constraint is implemented as a filter transducer that lets pass only strings
which meet the constraint. For legal strings, the transducer thus acts as the iden-
tity mapping. For example, *COMPLEX would be implemented via a transducer that
mapped any input string to itself, unless the input string had two consonants in the
onset or coda, in which case it would be mapped to null.

The constraints can then be placed in a cascade, in which higher-ranked constraints
are simply run first, as suggested in Fig. 11.9.

There is one crucial flaw with the cascade model in Fig. 11.9. Recall that the
constraints-transducers filter out any candidate which violates a constraint. But in many
derivations, including the proper derivation ofPi.lik.hin, even the optimal form still vi-
olates a constraint. The cascade in Fig. 11.8 would incorrectly filter it out, leaving
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GEN

o

*COMPLEX

o

FAITHC

o

FAITHV

Figure 11.9 Version #1 (“merciless cascade”) of Karttunen’s finite-state cascade imple-
mentation of OT.

no surface form at all! Frank and Satta (1998) and Hammond (1997) both point out
that it is essential to only enforce a constraint if it does not reduce the candidate set
to zero. Karttunen (1998) formalizes this intuition with the lenient compositionop-LENIENT

COMPOSITION

erator. Lenient composition is a combination of regular composition and an operation
calledpriority union . The basic idea is that if any candidates meet the constraintthese
candidates will be passed through the filter as usual. If no output meets the constraint,
lenient composition retainsall of the candidates. Fig. 11.10 shows the general idea; the
interested reader should see Karttunen (1998) for the details.

GEN

oL

*COMPLEX
oL

FAITHC
oL

FAITHV

/?ilk-hin/

GEN
?ilk.hin ?il.khin ?il.hin ?ak.pid ?i.lik.hin

*COMPLEX
?il.hin  ?ak.pid  ?i.lik.hin

FAITHC
?i.lik.hin

FAITHV

[?i.lik.hin]

Figure 11.10 Version #2 (“lenient cascade”) of Karttunen’s finite-statecascade imple-
mentation of OT, showing a visualization of the candidate populations that would be passed
through each FST constraint.

11.3.2 Stochastic Models of Optimality Theory

Classic OT was not designed to handle variation of the kind wesaw in Sec.??, since
it assigns a single most-harmonic output for each input. Dealing with variation re-
quires a more dynamic concept of constraint ranking. We mentioned in that section the
variationist model in sociolinguistics, in which logisticregression is used to combine
phonetic, contextual, and social factors to predict a probability of a particular phonetic
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variant. Part of this variationist intuition can be absorbed into an Optimality Theory
framework through probabilistic augmentations.

One such augmentation isStochastic OT(Boersma and Hayes, 2001). In Stochas-STOCHASTIC OT

tic OT, instead of the constraints being rank-ordered, eachconstraint is associated with
a value on a continuous scale. The continuous scale offers one thing a ranking cannot:
the relative importance or weight of two constraints can be proportional to the distance
between them. Fig. 11.11 shows a sketch of such a continuous scale.

Figure 11.11 Continuous scale in Stochastic OT. After Boersma and Hayes (2001).

How can the distance between constraints play a role in evaluation? Stochastic OT
makes a further assumption about the values of constraints.Instead of each constraint
having a fixed value as shown in Fig. 11.11. it has a Gaussian distribution of values
centered on a fixed value, as shown in Fig. 11.12. At evaluation time, a value for
the constraint is drawn (aselection point) with a probability defined by the mean and
variance of the Gaussian associated with each constraint.

Figure 11.12 Three constraints in Stochastic OT which are strictly ranked; thus non-
stochastic OT is a special case of Stochastic OT. After Boersma and Hayes (2001).

If the distribution for two constraints is far enough apart,as shown in Fig. 11.12
there will be little or no probability of the lower ranked constraint outranking the
higher-ranked one. Thus Stochastic OT includes non-stochastic OT as a special case.

The interesting cases arise when two constraints in Stochastic OT overlap in their
distribution, when there is some probability that a lower-ranked constraint will override
a higher-ranked constraint. In Fig. 11.13, for example, constraintC2 will generally
outrankC3 but occasionally outrankC2. This allows Stochastic OT to model variation,
since for the same underlying form differing selection points can cause different surface
variants to be most highly ranked.

In addition to the advantage of modeling variation, Stochastic OT differs from
non-stochastic OT in having a stochastic learning theory, which we will return to in
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Figure 11.13 Three constraints in Stochastic OT in whichC3 will sometimes outrank
C2. . After Boersma and Hayes (2001).

Sec. 11.5.3.
We can see stochastic OT itself as a special case of the general linear models of

Ch. 6.

11.4 SYLLABIFICATION

Syllabification, the task of segmenting a sequence of phones into syllables,is impor-SYLLABIFICATION

tant in a variety of speech applications. In speech synthesis, syllables are important in
predicting prosodic factors like accent; the realization of a phone is also dependent on
its position in the syllable (onset [l] is pronounced differently than coda [l]). In speech
recognition syllabification has been used to build recognizers which represent pronun-
ciations in terms of syllables rather than phones. Syllabification can help find errors in
pronunciation dictionaries, by finding words that can’t be syllabified, and can help an-
notate corpora with syllable boundaries for corpus linguistics research. Syllabification
also plays an important role in theoretical generative phonology.

One reason syllabification is a difficult computational taskis that there is no com-
pletely agreed-upon definition of syllable boundaries. Different on-line syllabified dic-
tionaries (such as the CMU and the CELEX lexicons) sometimeschoose different syl-
labifications. Indeed, as Ladefoged (1993) points out, sometimes it isn’t even clear
how many syllables a word has; some words (meal, teal, seal, hire, fire, hour) can be
viewed either as having one syllable or two.

Like much work in speech and language processing, syllabifiers can be based on
hand-written rules, or on machine learning from hand-labeled training sets. What kinds
of knowledge can we use in designing either kind of syllabifier? One possible con-
straint is theMaximum Onset principle, which says that when a series of consonantsMAXIMUM ONSET

occur word-medially before a vowel (VCCV), as many as possible (given the other
constraints of the language) should be syllabified into the onset of the second syllable
rather than the coda of the first syllable. Thus the Maximum Onset principle favors the
syllabification V.CCV over the syllabifications VC.CV or VCC.V.

Another principle is to use thesonority of a sound, which is a measure of howSONORITY

perceptually salient, loud or vowel-like it is. There are various attempts to define a
sonority hierarchy; in general, all things being equal, vowels are more sonorous thanSONORITY

HIERARCHY
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glides (w, y), which are more sonorous than liquids (l, r), followed by nasals (n, m,
ng), fricatives (z, s, sh, zh, v, f th, dh), and stops. The sonority constraint on syllable
structure says that the nucleus of the syllable must be the most sonorous phone in a
sequence (thesonority peak), and that sonority decreases monotonically out from the
nucleus (toward the coda and toward the onset). Thus in a syllable C1C2VC3C4, the
nucleusV will be the most sonorous element, consonantC2 will be more sonorous than
C1 and consonantC3 will be more sonorant than consonantC4.

Goldwater and Johnson (2005) implement a simple rule-basedlanguage-independent
classifier based only on maximum onset and sonority sequencing. Given a cluster of
consonants between two syllable nuclei, sonority constrains the syllable boundary to
be either just before or just after the consonant with the lowest sonority. Combining
sonority with maximum onset, their parser predicts a syllable boundary just before the
consonant with the lowest sonority. They show that this simple syllabifier correctly
syllabifies 86-87% of multisyllabic words in English and German.

While this error rate is not unreasonable, and there is further linguistic and some
psychological evidence that these principles play a role insyllable structure, both
Maximum Onset and sonority sequencing seem to have exceptions. For example in
the English syllable-initial clusters /sp st sk/ in words like spell, the less sonorous
/p/ occurs between the more sonorous /s/ and the vowel, violating sonority sequenc-
ing (Blevins, 1995). Without some way to rule out onset clusters that are disallowed
language-specifically like /kn/ in English, the combination of sonority sequencing plus
maximum onset incorrectly predicts the syllabification of words likeweaknessto be
wea.knessrather thanweak.ness. Furthermore, other constraints seem to be important,
including whether a syllable is stressed (stressed syllables tend to have more complex
codas), the presence or absence of morphological boundaries, and even the spelling of
the word (Titone and Connine, 1997; Treiman et al., 2002).

Achieving higher performance thus requires the use of thesesorts of language-
specific knowledge. The most commonly used rule-based syllabifier is based on the
dissertation of Kahn (1976), available in an implementation by Fisher (1996). The
Kahn algorithm makes use of language-specific information in the form of lists of al-
lowable English initial initial clusters, allowable English final clusters, and ’universally
bad’ clusters. The algorithm takes strings of phones, together with other information
like word boundaries and stress if they are available, and assigns syllable boundaries
between the phones. Syllables are built up incrementally based on three rules, as
sketched out in Fig. 11.14. Rule 1 forms nuclei at each syllabic segment, Rule 2a
attaches onset consonants to the nucleus, and Rule 2b attaches coda consonants.8 Rule
2a and 2b make use of lists of legal onset consonant sequences(including e.g. [b], [b
l], [b r], [b y], [ch], [d], [d r], [d w], [d y], [dh], [f], [f l], [f r], [f y], [g], [g l], [g r],
[g w], etc). and legal coda clusters. There are a very large number of coda consonant
clusters in English; some of the longer (4-consonant) clusters include:

k s t s l f th s m f s t n d th s n k s t r k t s r p t s
k s th s l k t s m p f t n t s t n k t s r l d z r s t s

l t s t m p s t n t th s n k th s r m p th r t s t

The algorithm also takes a parameter indicating how fast or casual the speech is;

8 Note that the fact that Rule 2a precedes Rule 2b can be seen as an implementation of Maximum Onset.
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the faster or more informal the speech, the more resyllabification happens, based on
further rules we haven’t shown.

m i s i s i p i

S S S S

C1 ... Cn V −→ C1 ... Ci Ci+1 ... Cn V

S S

V C1 ... Cn −→ V C1 ... Cj C j+1 ... Cn

S S

Rule 1: Form Nuclei:
link S with each [+syl-
labic] segment

Rule 2a: Add Onsets: where
Ci+1...Cn is a permissible initial
cluster but CiCi+1...Cn is not

Rule 2b: Add Codas: where
C1...Cj is a permissible coda cluster
but C1...CjC j +1 is not

Figure 11.14 First three syllabification rules of Kahn (1976). Rule 2b maynot apply across word boundaries.

Instead of hand-written rules, we can apply a machine learning approach, using
a hand-syllabified dictionary as a supervised training set.For example the CELEX
syllabified lexicon discussed in Sec.?? is often used this way, selecting some words
as a training set, and reserving others as a dev-test and testset. Statistical classifiers
can be used to predict syllabifications, including decisiontrees (van den Bosch, 1997),
weighted finite-state transducers (Kiraz and Möbius, 1998), and probabilistic context-
free grammars (Seneff et al., 1996; Müller, 2002, 2001; Goldwater and Johnson, 2005).

For example the Kiraz and Möbius (1998) algorithm is a weighted finite-state trans-
ducer which inserts a syllable boundary in a sequence of phones (akin to the morpheme-
boundaries we saw in Ch. 3). Aweighted FST(Pereira et al., 1994) is a simple aug-WEIGHTED FST

mentation of the finite transducer in which each arc is associated with a probability as
well as a pair of symbols. The probability indicates how likely that path is to be taken;
the probability on all the arcs leaving a node must sum to 1.

The syllabification automaton of Kiraz and Möbius (1998) iscomposed of three
separate weighted transducers, one for onsets, one for nuclei, and one for codas, con-
catenated together into an FST that inserts a syllable marker after the end of the coda.
Kiraz and Möbius (1998) compute path weights from frequencies in the training set;
each path (for example the nucleus [iy]) of frequencyf is assigned a weight of 1/ f .
Another way to convert frequencies to costs is to use log probabilities. Fig. 11.15
shows a sample automaton, simplified from Kiraz and Möbius (1998). We have shown
the weights only for some of the nuclei. The arcs for each possible onset, nucleus, and
coda, are drawn from a language-dependent list like the one used in the Kahn algorithm
above.

The automaton shown in Fig. 11.15 can be used to map from an input sequence like
the phonetic representation ofweakness[w iy k n eh s] into an output sequence that
includes the syllabification marker like “-”: [w iy k - n eh s].If there are multiple pos-
sible legal syllabifications of a word, the Viterbi algorithm is used to choose the most
likely path through the FST, and hence the most probable segmentation. For exam-
ple, the German wordFenster, “window”, has three possible syllabifications: [fEns-t5]
<74>, [fEn-st5] <75>, and [fEnst-5] <87> (with costs shown in angle brackets).
Their syllabifier correctly chooses the lowest cost syllabificationfEns-t5, based on the
frequencies of onsets and codas from the training set. Note that since morphological
boundaries also are important for syllabification, the Kiraz and Möbius (1998) syl-
labification transducer can be placed after a morphologicalparsing transducer, so that
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Figure 11.15 Syllabifier automaton, showing onset (o), coda (c), and nucleus arcs.
Costs on each arc shown only for some sample nucleus arcs. Thesyllable boundary marker
‘-’ is inserted after every non-final syllable. eps stands for ǫ. Simplified from Kiraz and
Möbius (1998).

syllabification can be influenced by morphological structure.
More recent syllabifiers based on probabilistic context-free grammars (PCFGs) can

model more complex hierarchical probabilistic dependencies between syllables (Seneff
et al., 1996; Müller, 2002, 2001; Goldwater and Johnson, 2005). Together with other
machine learning approaches like van den Bosch (1997), modern statistical syllabifi-
cation approaches have a word accuracy of around 97–98% correct, and probabilistic
model of syllable structure have also been shown to predict human judgments of the
acceptability of nonsense words (Coleman and Pierrehumbert, 1997).

There are a number of other directions in syllabification. One is the use of unsuper-
vised machine learning algorithms (Ellison, 1992; Mülleret al., 2000; Goldwater and
Johnson, 2005) Another is the use of other cues for syllabification such as allophonic
details from a narrow phonetic transcription (Church, 1983).

11.5 LEARNING PHONOLOGY & M ORPHOLOGY

Machine learning of phonological structures is an active research area in computational
phonology above and beyond the induction of syllable structure discussed in the pre-
vious section. Supervised learning work is based on a training set that is explicitly
labeled for the phonological (or morphological) structureto be induced. Unsupervised
work attempts to induce phonological or morphological structure without labeled train-
ing data. Let’s look at three representative areas of learning: learning of phonological
rules, learning of morphological rules, and learning of OT constraint rankings

11.5.1 Learning Phonological Rules

In this section we briefly summarize some early literature inlearning phonological
rules, generally couched either in terms of finite state models of two-level phonology
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or classic Chomsky-Halle rules.
Johnson (1984) gives one of the first computational algorithms for phonological

rule induction. His algorithm works for rules of the form

(11.8) a→ b/C

whereC is the feature matrix of the segments arounda. Johnson’s algorithm sets
up a system of constraint equations whichC must satisfy, by considering both the
positive contexts, i.e., all the contextsCi in which ab occurs on the surface, as well
as all the negative contextsCj in which ana occurs on the surface. Touretzky et al.
(1990) extended Johnsons work in various ways, including dealing with epenthesis and
deletion rules.

The algorithm of Gildea and Jurafsky (1996) was designed to induce transducers
representing two-level rules of the type we have discussed earlier. Gildea and Juraf-
sky’s supervised algorithm was trained on pairs of underlying and surface forms. For
example, they attempted to learn the rule of English flapping, (focusing only on the
phonetic context and ignoring social and other factors). The training set thus consisted
of underlying/surface pairs, either with an underlying /t/and surface flap [dx], or an
underlying /t/ and surface [t], as follows:

flapping non-flapping
butter /b ah t axr/ → [b ah dx axr] stop /s t aa p/→ [s t aa p]
meter /m iy t axr/ → [m iy dx axr] cat /k ae t/ → [k ae t]

The algorithm was based on OSTIA (Oncina et al., 1993), a general learning al-
gorithm for thesubsequential transducersdefined on page??. Gildea and Jurafsky
showed that by itself, the OSTIA algorithm was too general tolearn phonological trans-
ducers, even given a large corpus of underlying-form/surface-form pairs. For example,
given 25,000 underlying/surface pairs like the examples above, the algorithm ended up
with the huge and incorrect automaton in Fig. 11.16(a). Gildea and Jurafsky then aug-
mented the domain-independent OSTIA system with learning biases which are specific
to natural language phonology. For example they added aFaithfulnessbias that un-
derlying segments tend to be realized similarly on the surface (i.e. that all things being
equal, an underlying /p/ was likely to emerge as a surface [p]). They did this by start-
ing OSTIA with the underlying and surface strings aligned using Levenshtein distance.
They also added knowledge about phonetic features (vowel versus consonant, reduced
versus non-reduced vowel, etc). Together, adding these biases enabled OSTIA to learn
the automaton in Fig. 11.16(b), as well as correct automatons for other phonological
rules like German consonant devoicing.

This phonological learning experiment illustrates that successful learning requires
two components: a model which fits some empirical data and some prior knowledge or
biases about the structure of the model.

Recent work on learning has focused either on morphologicallearning, or on rank-
ing of OT constraints rather than on the induction of rules and constraints, and will be
discussed in the next two sections.
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Figure 11.16 Induction of a flapping rule transducer (after Gildea and Jurafsky (1996)).
The transducer in (a) is the initial attempt at learning. Thetransducer in (b) is the correct
transducer induced after a faithfulness bias.

11.5.2 Learning Morphology

We discussed in Ch. 3 the use of finite-state transducers for morphological parsing.
In general, these morphological parsers are built by hand and have relatively high ac-
curacy, although there has also been some work on supervisedmachine learning of
morphological parsers (van den Bosch, 1997). Recent work, however, has focused on
unsupervised ways to automatically bootstrap morphological structure. The unsuper-
vised (or weakly supervised) learning problem has practical applications, since there
are many languages for which a hand-built morphological parser, or a morphological
segmented training corpus, does not yet exist. In addition,the learnability of linguistic
structure is a much-discussed scientific topic in linguistics; unsupervised morphologi-
cal learning may help us understand what makes language learning possible.

Approaches to unsupervised morphology induction have employed a wide variety
of heuristics or cues to a proper morphological parse. Earlyapproaches were all es-
sentially segmentation-based; given a corpus of words theyattempted to segment each
word into a stem and an affix using various unsupervised heuristics. For example the
earliest work hypothesized morpheme boundaries at the point in a word where there
is large uncertainty about the following letters (Harris, 1954, 1988; Hafer and Weiss,
1974). For example, Fig. 11.17 shows atrie9 which stores the wordscar, care, cars,TRIE

cares, cared, etc. Note that there there are certain nodes in the tree in Fig. 11.17 that
have a wide branching factor (aftercar and aftercare). If we think of the task of pre-
dicting the next letter giving the path in the trie so far, we can say that these points have

9 A trie is a tree structure used for storing strings, in which a string is represented as a path from the root
to a leaf. Each non-terminal node in the tree thus stores a prefix of a string; every common prefix is thus
represented by a node. The wordtrie comes fromretrieval and is pronounced either [t r iy] or [t r ay].
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a high conditional entropy; there are many possible continuations.10 While this is a
useful heuristic, it is not sufficient; in this example we would need a way to rule out the
morphemecar as well ascarebeing part of the wordcareful; this requires a complex
set of thresholds.

Figure 11.17 Example of a letter trie. A Harris style algorithm would insert morpheme
boundaries aftercar andcare. After Schone and Jurafsky (2000).

Another class of segmentation-based approaches to morphology induction focuses
on globally optimizing a single criterion for the whole grammar, the criterion ofmin-
imum description length, or MDL . The MDL principle is widely used in language

MINIMUM
DESCRIPTION

LENGTH

MDL learning, and we will see it again in grammar induction in Ch.14. The idea is that we
are trying to learn the optimal probabilistic model of some data. Given any proposed
model, we can assign a likelihood to the entire data set. We can also use the proposed
model to assign a compressed length to this data (with probabilistic models we can use
the intuition that the compressed length of the data is related to the entropy, which we
can estimate from the log probability). We can also assign a length to the proposed
model itself. The MDL principle says to choose the model for which the sum of the
data length and the model length is the smallest. The principle is often viewed from a
Bayesian perspective; If we are attempting to learn the bestmodelM̂ out of all models
M for some dataD which has the maximum a posteriori probabilityP(M|D), we can
use Bayes Rule to express the best modelM̂ as:

M̂ = argmaxMP(M|D) = argmaxM
P(D|M)P(M)

P(D)
= argmaxMP(D|M)P(M)(11.9)

Thus the best model is the one which maximizes two terms: the likelihood of the data
P(D|M) and the prior of the modelP(M). The MDL principle can be viewed as saying
that the prior term on the model should be related to the length of the model.

MDL approaches to segmentation induction were first proposed by de Marcken
(1996) and Brent (1999), as well as Kazakov (1997); let’s summarize from a more
recent instantiation by Goldsmith (2001). The MDL intuition can be seen from the
schematic example in Fig. 11.18 inspired by Goldsmith.

10 Interestingly, this idea of placing boundaries at regions of low predictability has been shown to be used
by infants for word segmentation (Saffran et al., 1996b).



DRAFT

20 Chapter 11. Computational Phonology







cooked cooks cooking
played plays playing
boiled boils boiling













cook
play
boil













ed
s
ing







(a) Word list with no structure (b) Word list with morphological structure
Total letter count: 54 Total letter count: 18 letters

Figure 11.18 Naive version of MDL, showing the reduction in the description length
of a lexicon with morphological structure; adapted from Goldsmith (2001).

As we see in Fig. 11.18, using morphological structure makesit possible to rep-
resent a lexicon with far fewer letters. Of course this example doesn’t represent the
true complexity of morphological representations, since in reality not every word is
combinable with every affix. One way to represent slightly more complexity is to use
signatures. A signature is a list of suffixes that can appear with a particular stem. HereSIGNATURES

are some sample signatures from Goldsmith (2001):

Signature Example
NULL.ed.ing.s remain remained remaining remains
NULL.s cow cows
e.ed.es.ing notice noticed notices noticing

The Goldsmith (2001) version of MDL considers all possible segmentations of
every word into a stem and a suffix. It then chooses the set of segmentations for the
whole corpus that jointly minimize the compressed length ofthe corpus and the length
of the model. The length of the model is the sum of the lengths of the affixes, the stems,
and the signatures. The length of the corpus is computed by using the model to assign
a probability to the corpus and using this probably to compute the cross-entropy of the
corpus given the model.

While approaches based solely on stem and affix statistics like MDL have been
quite successful in morphological learning, they do have a number of limitations.
For example Schone and Jurafsky (2000, 2001) noted in an error analysis that MDL
sometimes segments valid affixes inappropriately (such as segmenting the wordally
to all+y), or fails to segment valid but non-productive affixes (missing the relation-
ship betweendirt anddirty). They argued that such problems stemmed from a lack
of semantic or syntactic knowledge, and showed how to use relatively simple semantic
features to address them. The Schone and Jurafsky (2000) algorithm uses a trie to come
up with “pairs of potential morphological variants”, (PPMVs) words which differ only
in potential affixes. For each pair, they compute the semantic similarity between the
words, using the Latent Semantic Analysis (LSA) algorithm of Ch. 23. LSA is an un-
supervised model of word similarity which is induced directly from the distributions of
word in context. Schone and Jurafsky (2000) showed that using the semantic similarity
alone was at least as good a predictor of morphological structure as MDL. The table
below shows the LSA-based similarity between PPMVs; in thisexample the similarity
is high only for words that are morphologically related.
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PPMVs ScorePPMV Score PPMV Score PPMV Score
ally/allies 6.5 dirty/dirt 2.4 car/cares -0.14car/cared -.096
car/cars 5.6 rating/rate 0.97 car/caring -0.71 ally/all -1.3

Schone and Jurafsky (2001) extended the algorithm to learn prefixes and circum-
fixes, and incorporated other useful features, including syntactic and other effects of
neighboring word context (Jacquemin, 1997), and the Levenshtein distance between
the PPMVs (Gaussier, 1999).

The algorithms we have mentioned so far have focused on the problem of learning
regular morphology. Yarowsky and Wicentowski (2000) focused on the more complex
problem of learning irregular morphology. Their idea was toprobabilistically align an
inflected form (such as Englishtookor Spanishjuegan) with each potential stem (such
as Englishtakeor Spanishjugar). The result of their alignment-based algorithm was
a inflection-root mapping, with both an optional stem changeand a suffix, as shown in
the following table:

English Spanish
root inflection stem changesuffix root inflection stem changesuffix
take took ake→ook +ǫ jugar juega gar→eg +a
take taking e→ ǫ +ing jugar jugamos ar→ ǫ +amos
skip skipped ǫ→p +ed tener tienen ener→ien +en

The Yarowsky and Wicentowski (2000) algorithm requires somewhat more infor-
mation than the algorithms for inducing regular morphology. In particular it assumes
knowledge of the regular inflectional affixes of the languageand a list of open class
stems; both are things that might be induced by the MDL or other algorithms men-
tioned above. Given an inflected form, the Yarowsky and Wicentowski (2000) algo-
rithm uses various knowledge sources to weight the potential stem, including the rela-
tive frequency of the inflected form and potential stem, the similarity in lexical context,
and the Levenshtein distance between them.

11.5.3 Learning in Optimality Theory

Let’s conclude with a brief sketch of work which addresses the learning problem in
Optimality Theory. Most work on OT learning has assumed thatthe constraints are
already given, and the task is to learn the ranking. Two algorithms for learning rankings
have been worked out in some detail; theconstraint demotion algorithm of Tesar
and Smolensky (2000) and theGradual Learning Algorithm of Boersma and Hayes
(2001).

TheConstraint Demotion algorithm makes two assumptions: that we know all theCONSTRAINT
DEMOTION

possible OT constraints of the language, and that each surface form is annotated with
its complete parse and underlying form. The intuition of thealgorithm is that each of
these surface observations gives us implicit evidence about the constraint ranking.

Given the underlying form, we can use the GEN algorithm to implicitly form the set
of competitors. Now we can construct a set of pairs consisting of the correct observed
grammatical form and each competitor. The learner must find aconstraint ranking
that prefers the observed learningwinnerover each (non-observed) competitorloser.
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Because the set of constraints is given, we can use the standard OT parsing architecture
to determine for each winner or loser exactly which constraints they violate.

For example, consider the learning algorithm that has observed Candidate 1, but
whose current constraint ranking prefers Candidate 2, as follows (this example and the
following tables are modified from Boersma and Hayes (2001)):

/underlying form/ C1 C2 C3 C4 C5 C6 C7 C8

Candidate 1 (learning observation) *! ** * * *
☞ Candidate 2 (learner’s output) * * * * *

Given a set of suchwinner/loserpairs, the Constraint Demotion algorithm needs to
demote each constraint that is violated by the winner Candidate 2, until the observed
form (Candidate 1) is preferred. The algorithm first cancelsany marks due to violations
that are identical between the two candidates:

/underlying form/ C1 C2 C3 C4 C5 C6 C7 C8

Candidate 1 (learning observation) ∗! ∗∗ ∗ ∗ ∗
☞ Candidate 2 (learner’s output) ∗ ∗ ∗ ∗ ∗

These constraints are pushed down in the hierarchy until they are dominated by the
constraints violated by the loser. The algorithm divides constraints intostrata, and
tries to find a lower strata to move the constraints into. Here’s shows a simplification
of this intuition, asC1 andC2 get moved belowC8.

/underlying form/ C3 C4 C5 C6 C7 C8 C1 C2

☞ Candidate 1 (learning observation) * * *
Candidate 2 (learner’s output) *! *

TheGradual Learning Algorithm (GLA) of (Boersma and Hayes, 2001) is a gen-GRADUAL LEARNING
ALGORITHM

eralization of Constraint Demotion that learns constraintrankings in Stochastic Opti-
mality Theory. Since OT is a special case of Stochastic OT, the algorithm also implic-
itly learns OT rankings. It generalizes Constraint Demotion by being able to learn from
cases of free variation. Recall from Sec. 11.3 that in Stochastic OT each constraint is
associated with aranking value on a continuous scale. The ranking value is defined
as the mean of the Gaussian distribution that constitutes the constraint. The goal of the
GLA is to assign a ranking value for each constraint. The algorithm is a simple exten-
sion to the Constraint Demotion algorithm, and follows exactly the same steps until the
final step. Inside of demoting constraints to a lower strata,the ranking value of each
constraint violated by the learning observation (Candidate 1) is decreased slightly, and
the ranking value of each constraint violated by the learner’s output (Candidate 2) is
increased slightly, as shown below:

/underlying form/ C1 C2 C3 C4 C5 C6 C7 C8

Candidate 1 (learning observation)∗!→ ∗→ ∗→
☞ Candidate 2 (learner’s output) ←∗ ← ∗
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11.6 SUMMARY

This chapter has introduced many of the important concepts of phonetics and compu-
tational phonology.

• Transducerscan be used to model phonological rules just as they were usedin
Ch. 3 to model spelling rules.Two-level morphology is a theory of morphol-
ogy/phonology which models phonological rules as finite-statewell-formedness
constraintson the mapping between lexical and surface form.

• Optimality theory is a theory of phonological well-formedness; there are com-
putational implementations, and relationships to transducers.

• Computational models exist forsyllabification, inserting syllable boundaries in
phone strings.

• There are numerous algorithms for learning phonological and morphological
rules, both supervised and unsupervised.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Computational phonology is a fairly recent field. The idea that phonological rules
could be modeled as regular relations dates to Johnson (1972), who showed that any
phonological system that didn’t allow rules to apply to their own output (i.e., systems
that did not have recursive rules) could be modeled with regular relations (or finite-state
transducers). Virtually all phonological rules that had been formulated at the time had
this property (except some rules with integral-valued features, like early stress and tone
rules). Johnson’s insight unfortunately did not attract the attention of the community,
and was independently discovered by Ronald Kaplan and Martin Kay; see Ch. 3 for the
rest of the history of two-level morphology. Karttunen (1993) gives a tutorial introduc-
tion to two-level morphology that includes more of the advanced details than we were
able to present here, and the definitive text on finite-state morphology is Beesley and
Karttunen (2003). Other FSA models of phonology include Bird and Ellison (1994).

Earlier computational finite-state models that deal with templatic morphology in
languages like Arabic include Kataja and Koskenniemi (1988), Kornai (1991), Bird and
Ellison (1994), and Beesley (1996). Extensions of the Kay (1987) model include Kiraz
(1997, 2000, 2001). Recent models based on extensions to thefinite-state calculus
include Beesley and Karttunen (2000).

Optimality theory was developed by Prince and Smolensky andcirculated as a tech-
nical report (Prince and Smolensky, 1993) until its publication more than a decade later
(Prince and Smolensky, 2004). A selection from the extensive finite-state literature in
OT includes Eisner (1997, 2000, 2002), Gerdemann and van Noord (2000), and Riggle
(2005).

Recent work on phonological learning has focused on some newareas. One is
learningphonotactic constraintson the allowable word-internal sequences in the lan-
guage, including probabilistic (Coleman and Pierrehumbert, 1997; Frisch et al., 2000;
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Bailey and Hahn, 2001; Hayes and Wilson, 2007; Albright, 2007) as well as non-
probabilistic phonotactic constraints (Hayes, 2004; Prince and Tesar, 2004; Tesar and
Prince, 2007). A related task is the learning ofunderlying forms and phonological
alternations given the observed surface forms and the set ofconstraints. Many of the
unsupervised algorithms for learning underlying forms arebased on a constraint satis-
faction approach, in which sets of possible underlying forms are proposed by examin-
ing alternating surface forms, and then iteratively rulingout possible underlying forms
(Tesar and Prince, 2007; Alderete et al., 2005; Tesar, 2006a, 2006b). The recent un-
supervised Maximum Likelihood Learning of Lexicons and Grammars (MLG) model
of Jarosz (2006, 2008) learns underlying forms and constraint rankings given surface
forms in a probabilistic version of OT using the Expectation-Maximization (EM) algo-
rithm described in Ch. 6.

Indeed, in addition to this probabilistic model of Jarosz (2008), as well as the
Stochastic OT described earlier in the chapter, much recentwork in computational
phonology has focused on models with weighted constraints,including Harmonic
Grammar andMaximum Entropy Models . For exampleHarmonic Grammar isHARMONIC

GRAMMAR

an extension to Optimality Theory (indeed is the theory thatOptimality Theory orig-
inally grew out of) in which optimality for a form is defined asmaximalharmony.HARMONY

Harmony is defined by the sum of weighted constraints (Smolensky and Legendre,
2006). In using sums of weight rather than OT-style rankings, Harmony Theory resem-
bles the log-linear models of Ch. 6. Recent computational work include the application
to OT of Maximum Entropy Models (Goldwater and Johnson, 2003) and the Harmonic
Grammar related models of Pater et al. (2007) and Pater (2007).

Word segmentation is one of the earliest problems in computational linguistics,
and models date back to Harris (1954). Among the many modern models are Bayesian
ones like Brent (1999) and Goldwater et al. (2006). The word segmentation problem
is important also in computational developmental psycholinguistics; for representative
recent work see Christiansen et al. (1998), Kuhl et al. (2003), Thiessen and Saffran
(2004) and Thiessen et al. (2005). Recent work on morphologyinduction includes
Baroni et al. (2002), Clark (2002), and Albright and Hayes (2003).

Readers with further interest in phonology should consult phonology textbooks like
Odden (2005) and Kager (2000).

EXERCISES

11.1 Build an automaton for rule (11.3).

11.2 One difference between one dialect of Canadian English and most dialects of
American English is calledCanadian raising. Bromberger and Halle (1989) note thatCANADIAN RAISING

some Canadian dialects of English raise/aI/ to [2I]and/aU/ to [2U] in stressed position
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before a voiceless consonant. A simplified version of the rule dealing only with/aI/
can be stated as:

/aI/→ [2I] /

[

C
−voice

]

(11.10)

This rule has an interesting interaction with the flapping rule. In some Canadian
dialects the wordrider and writer are pronounced differently:rider is pronounced
[raIRÄ] while writer is pronounced[r2IRÄ]. Write a two-level rule and an automaton for
both the raising rule and the flapping rule which correctly models this distinction. You
may make simplifying assumptions as needed.

11.3 Write the lexical entry for the pronunciation of the Englishpast tense (preterite)
suffix -d, and the two level-rules that express the difference in its pronunciation de-
pending on the previous context. Don’t worry about the spelling rules. (Hint: make
sure you correctly handle the pronunciation of the past tenses of the wordsadd, pat,
bake, andbag.)

11.4 Write two-level rules for the Yawelmani Yokuts phenomena ofHarmony, Short-
ening, and Lowering introduced on page 5. Make sure your rules are capable of running
in parallel.
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12
FORMAL GRAMMARS OF
ENGLISH

Sentence

NP VP

the man Verb NP

took the book

The first context-free grammar parse tree
(Chomsky, 1956)

If on a winter’s night a travelerby Italo Calvino
Nuclear and Radiochemistryby Gerhart Friedlander et al.
The Fire Next Timeby James Baldwin
A Tad Overweight, but Violet Eyes to Die Forby G. B. Trudeau
Sometimes a Great Notionby Ken Kesey
Dancer from the Danceby Andrew Holleran

Six books in English whose titles are not con-
stituents, from Pullum (1991, p. 195)

The study of grammar has an ancient pedigree; Panini’s grammar of Sanskrit was writ-
ten over two thousand years ago, and is still referenced today in teaching Sanskrit.
By contrast, Geoff Pullum noted in a recent talk that “almosteverything most edu-
cated Americans believe about English grammar is wrong”. Inthis chapter we make a
preliminary stab at addressing some of these gaps in our knowledge of grammar and
syntax, as well as introducing some of the formal mechanismsthat are available for
capturing this knowledge.

The wordsyntax comes from the Greeksýntaxis, meaning “setting out togetherSYNTAX

or arrangement”, and refers to the way words are arranged together. We have seen
various syntactic notions in previous chapters. The regular languages introduced in
Ch. 2 offered a simple way to represent the ordering of strings of words, and Ch. 4
showed how to compute probabilities for these word sequences. Ch. 5 showed that
part-of-speech categories could act a kind of equivalence class for words. This chapter
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and the following ones introduce sophisticated notions of syntax and grammar that go
well beyond these simpler notions. In this chapter, we introduce three main new ideas:
constituency, grammatical relations, andsubcategorization and dependency.

The fundamental idea of constituency is that groups of wordsmay behave as a
single unit or phrase, called a constituent. For example we will see that a group of
words called anoun phraseoften acts as a unit; noun phrases include single words
like sheor Michael and phrases likethe house, Russian Hill, anda well-weathered
three-story structure. This chapter will introduce the use ofcontext-free grammars, a
formalism that will allow us to model these constituency facts.

Grammatical relations are a formalization of ideas from traditional grammar such
asSUBJECTSandOBJECTS, and other related notions. In the following sentence the
noun phraseSheis theSUBJECTanda mammoth breakfastis theOBJECT:

(12.1) She ate a mammoth breakfast.

Subcategorizationanddependency relationsrefer to certain kinds of relations
between words and phrases. For example the verbwantcan be followed by an infini-
tive, as inI want to fly to Detroit, or a noun phrase, as inI want a flight to Detroit. But
the verbfind cannot be followed by an infinitive (*I found to fly to Dallas). These are
called facts about thesubcategorizationof the verb.

As we’ll see, none of the syntactic mechanisms that we’ve discussed up until now
can easily capture such phenomena. They can be modeled much more naturally by
grammars that are based on context-free grammars. Context-free grammars are thus
the backbone of many formal models of the syntax of natural language (and, for that
matter, of computer languages). As such they are integral tomany computational appli-
cations including grammar checking, semantic interpretation, dialogue understanding
and machine translation. They are powerful enough to express sophisticated relations
among the words in a sentence, yet computationally tractable enough that efficient al-
gorithms exist for parsing sentences with them (as we will see in Ch. 13). Later in
Ch. 14 we’ll show that adding probability to context-free grammars gives us a model
of disambiguation, and also helps model certain aspects of human parsing.

In addition to an introduction to the grammar formalism, this chapter also provides
an brief overview of the grammar of English. We have chosen a domain which has rel-
atively simple sentences, the Air Traffic Information System (ATIS) domain (Hemphill
et al., 1990). ATIS systems are an early example of spoken language systems for help-
ing book airline reservations. Users try to book flights by conversing with the system,
specifying constraints likeI’d like to fly from Atlanta to Denver. The U.S. government
funded a number of different research sites to collect data and build ATIS systems in
the early 1990s. The sentences we will be modeling in this chapter are drawn from the
corpus of user queries to the system.

12.1 CONSTITUENCY

How do words group together in English? Consider thenoun phrase, a sequence ofNOUN PHRASE

words surrounding at least one noun. Here are some examples of noun phrases (thanks
to Damon Runyon):
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Harry the Horse a high-class spot such as Mindy’s
the Broadway coppers the reason he comes into the Hot Box
they three parties from Brooklyn

How do we know that these words group together (or “form constituents”)? One
piece of evidence is that they can all appear in similar syntactic environments, for
example before a verb.

three parties from Brooklynarrive. . .
a high-class spot such as Mindy’sattracts. . .
the Broadway copperslove. . .
theysit

But while the whole noun phrase can occur before a verb, this is not true of each of
the individual words that make up a noun phrase. The following are not grammatical
sentences of English (recall that we use an asterisk (*) to mark fragments that are not
grammatical English sentences):

*from arrive. . . *asattracts. . .
*the is. . . *spotis. . .

Thus to correctly describe facts about the ordering of thesewords in English, we must
be able to say things like “Noun Phrases can occur before verbs”.

Other kinds of evidence for constituency come from what are calledpreposedorPREPOSED

postposedconstructions. For example, the prepositional phraseon September sev-POSTPOSED

enteenthcan be placed in a number of different locations in the following examples,
including preposed at the beginning, and postposed at the end:

On September seventeenth, I’d like to fly from Atlanta to Denver
I’d like to fly on September seventeenthfrom Atlanta to Denver
I’d like to fly from Atlanta to Denveron September seventeenth

But again, while the entire phrase can be placed differently, the individual words
making up the phrase cannot be:

*On September, I’d like to fly seventeenthfrom Atlanta to Denver
*On I’d like to fly September seventeenthfrom Atlanta to Denver
*I’d like to fly on Septemberfrom Atlanta to Denver seventeenth

Section 12.6 will give other motivations for context-free grammars based on their
ability to model recursive structures. See Radford (1988) for further examples of
groups of words behaving as a single constituent.

12.2 CONTEXT-FREE GRAMMARS

The most commonly used mathematical system for modeling constituent structure in
English and other natural languages is theContext-Free Grammar, orCFG. Context-CFG

free grammars are also calledPhrase-Structure Grammars, and the formalism is
equivalent to what is also calledBackus-Naur Form or BNF. The idea of basing
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a grammar on constituent structure dates back to the psychologist Wilhelm Wundt
(1900), but was not formalized until Chomsky (1956) and, independently, Backus
(1959).

A context-free grammar consists of a set ofrules or productions, each of whichRULES

expresses the ways that symbols of the language can be grouped and ordered together,
and alexicon of words and symbols. For example, the following productions expressLEXICON

that aNP (or noun phrase), can be composed of either aProperNounor a determinerNP

(Det) followed by aNominal; a Nominalcan be one or moreNouns.

NP → Det Nominal
NP → ProperNoun

Nominal → Noun | Nominal Noun

Context-free rules can be hierarchically embedded, so we can combine the previous
rules with others like the following which express facts about the lexicon:

Det → a
Det → the

Noun → flight

The symbols that are used in a CFG are divided into two classes. The symbols that
correspond to words in the language (“the”, “nightclub”) are calledterminal symbols;TERMINAL

the lexicon is the set of rules that introduce these terminalsymbols. The symbols that
express clusters or generalizations of these are callednon-terminals. In each context-NONTERMINAL

free rule, the item to the right of the arrow (→) is an ordered list of one or more
terminals and non-terminals, while to the left of the arrow is a single non-terminal
symbol expressing some cluster or generalization. Notice that in the lexicon, the non-
terminal associated with each word is its lexical category,or part-of-speech, which we
defined in Ch. 5.

A CFG can be thought of in two ways: as a device for generating sentences, and
as a device for assigning a structure to a given sentence. We saw this same dualism in
our discussion of finite-state transducers in Ch. 3. As a generator, we can read the→
arrow as “rewrite the symbol on the left with the string of symbols on the right”.

So starting from the symbol: NP,
we can use rule 12.2 to rewriteNP as: Det Nominal
and then rule 12.2: Det Noun
and finally via rules 12.2 and 12.2 as: a flight

We say the stringa flight can bederived from the non-terminalNP. Thus a CFGDERIVED

can be used to generate a set of strings. This sequence of ruleexpansions is called a
derivation of the string of words. It is common to represent a derivationby a parseDERIVATION

tree (commonly shown inverted with the root at the top). Fig. 12.1shows the treePARSE TREE

representation of this derivation.
In the parse tree shown in Fig. 12.1 we say that the nodeNP immediately dom-

inates the nodeDet and the nodeNom. We say that the nodeNP dominatesall theIMMEDIATELY
DOMINATES

DOMINATES nodes in the tree (Det, Nom, Noun, a, flight).
The formal language defined by a CFG is the set of strings that are derivable from

the designatedstart symbol. Each grammar must have one designated start symbol,START SYMBOL
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NP

Det

a

Nom

Noun

flight

Figure 12.1 A parse tree for “a flight”.

which is often calledS. Since context-free grammars are often used to define sentences,
S is usually interpreted as the “sentence” node, and the set ofstrings that are derivable
from S is the set of sentences in some simplified version of English.

Let’s add to our list of rules a few higher-level rules that expandS, and a couple of
others. One will express the fact that a sentence can consistof a noun phrase followed
by averb phrase:VERB PHRASE

S → NP VP I prefer a morning flight

A verb phrase in English consists of a verb followed by assorted other things; for
example, one kind of verb phrase consists of a verb followed by a noun phrase:

VP → Verb NP prefer a morning flight

Or the verb phrase may have a verb followed by a noun phrase anda prepositional
phrase:

VP → Verb NP PP leave Boston in the morning

Or the verb may be followed by a prepositional phrase alone:

VP → Verb PP leaving on Thursday

A prepositional phrase generally has a preposition followed by a noun phrase. For
example, a very common type of prepositional phrase in the ATIS corpus is used to
indicate location or direction:

PP → Preposition NP from Los Angeles

TheNP inside aPPneed not be a location;PPsare often used with times and dates,
and with other nouns as well; they can be arbitrarily complex. Here are ten examples
from the ATIS corpus:

to Seattle on these flights
in Minneapolis about the ground transportation in Chicago
on Wednesday of the round trip flight on United Airlines
in the evening of the AP fifty seven flight
on the ninth of July with a stopover in Nashville
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Noun → f lights | breeze| trip | morning| . . .

Verb → is | pre f er| like | need| want | f ly
Adjective → cheapest| non−stop| f irst | latest

| other| direct | . . .

Pronoun → me| I | you| it | . . .

Proper-Noun→ Alaska| Baltimore| Los Angeles
| Chicago| United| American| . . .

Determiner → the| a | an | this | these| that | . . .

Preposition → f rom | to | on | near| . . .

Conjunction → and | or | but | . . .

Figure 12.2 The lexicon forL0.

S → NP VP I + want a morning flight

NP → Pronoun I
| Proper-Noun Los Angeles
| Det Nominal a + flight

Nominal → Nominal Noun morning + flight
| Noun flights

VP → Verb do
| Verb NP want + a flight
| Verb NP PP leave + Boston + in the morning
| Verb PP leaving + on Thursday

PP → Preposition NP from + Los Angeles

Figure 12.3 The grammar forL0, with example phrases for each rule.

Fig. 12.2 gives a sample lexicon and Fig. 12.3 summarizes thegrammar rules we’ve
seen so far, which we’ll callL0. Note that we can use the or-symbol| to indicate that
a non-terminal has alternate possible expansions.

We can use this grammar to generate sentences of this “ATIS-language”. We start
with S, expand it toNP VP, then choose a random expansion ofNP (let’s say toI),
and a random expansion ofVP (let’s say toVerb NP), and so on until we generate the
stringI prefer a morning flight. Fig. 12.4 shows a parse tree that represents a complete
derivation ofI prefer a morning flight.

It is sometimes convenient to represent a parse tree in a morecompact format
calledbracketed notation, essentially the same as LISP tree representations; here isBRACKETED

NOTATION

the bracketed representation of the parse tree of Fig. 12.4:

(12.2) [S [NP [Pro I]] [ VP [V prefer] [NP [Det a] [Nom [N morning] [Nom [N flight]]]]]]
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S

NP

Pro

I

VP

Verb

prefer

NP

Det

a

Nom

Nom

Noun

morning

Noun

flight

Figure 12.4 The parse tree for “I prefer a morning flight” according to grammarL0.

A CFG like that ofL0 defines a formal language. We saw in Ch. 2 that a formal
language is a set of strings. Sentences (strings of words) that can be derived by a gram-
mar are in the formal language defined by that grammar, and arecalledgrammaticalGRAMMATICAL

sentences. Sentences that cannot be derived by a given formal grammar are not in the
language defined by that grammar, and are referred to asungrammatical. This hardUNGRAMMATICAL

line between “in” and “out” characterizes all formal languages but is only a very simpli-
fied model of how natural languages really work. This is because determining whether
a given sentence is part of a given natural language (say English) often depends on the
context. In linguistics, the use of formal languages to model natural languages is called
generative grammar, since the language is defined by the set of possible sentencesGENERATIVE

GRAMMAR

“generated” by the grammar.

12.2.1 Formal definition of context-free grammar

We conclude this section by way of summary with a quick formaldescription of a
context-free grammar and the language it generates. A context-free grammarG is
defined by four parametersN, Σ, P, S( technically “is a 4-tuple”):

N a set ofnon-terminal symbols(or variables)

Σ a set ofterminal symbols (disjoint fromN)

R a set ofrules or productions, each of the formA→ β , whereA is a non-
terminal,β is a string of symbols from the infinite set of strings(Σ∪N)∗

S a designatedstart symbol

For the remainder of the book we’ll adhere to the following conventions when dis-
cussing the formal properties (as opposed to explaining particular facts about English
or other languages) of context-free grammars.
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Capital letters likeA, B, andS Non-terminals

S The start symbol

Lower-case Greek letters likeα, β , andγ Strings drawn from(Σ∪N)∗

Lower-case Roman letters likeu, v, andw Strings of terminals

A language is defined via the concept ofderivation. One stringderives another
one if it can be rewritten as the second one via some series of rule applications. More
formally, following Hopcroft and Ullman (1979),

if A→ β is a production ofP andα andγ are any strings in the set(Σ∪
N)∗, then we say thatαAγ directly derives αβ γ, or αAγ ⇒ αβ γ.DIRECTLY DERIVES

Derivation is then a generalization of direct derivation:

Let α1, α2, . . . , αm be strings in(Σ∪N)∗,m≥ 1, such that

α1 ⇒ α2,α2 ⇒ α3, . . . ,αm−1 ⇒ αm(12.3)

We say thatα1 derivesαm, or α1
∗
⇒ αm.DERIVES

We can then formally define the languageLG generated by a grammarG as the
set of strings composed of terminal symbols which can be derived from the designated
start symbolS.

LG = {w|w is in Σ∗ andS
∗
⇒ w}(12.4)

The problem of mapping from a string of words to its parse treeis calledparsing;PARSING

we will define algorithms for parsing in Ch. 13 and in Ch. 14.

12.3 SOME GRAMMAR RULES FORENGLISH

In this section we introduce a few more aspects of the phrase structure of English; for
consistency we will continue to focus on sentences from the ATIS domain. Because of
space limitations, our discussion will necessarily be limited to highlights. Readers are
strongly advised to consult a good reference grammar of English, such as Huddleston
and Pullum (2002).

12.3.1 Sentence-Level Constructions

In the small grammarL0, we provided only one sentence-level construction for declar-
ative sentences likeI prefer a morning flight. There are a large number of constructions
for English sentences, but four are particularly common andimportant: declarative
structure, imperative structure, yes-no-question structure, and wh-question structure.

Sentences withdeclarative structure have a subject noun phrase followed by aDECLARATIVE

verb phrase, like “I prefer a morning flight”. Sentences withthis structure have a great
number of different uses that we will follow up on in Ch. 23. Here are a number of
examples from the ATIS domain:
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The flight should be eleven a.m. tomorrow
The return flight should leave at around seven p.m.
I’d like to fly the coach discount class
I want a flight from Ontario to Chicago
I plan to leave on July first around six thirty in the evening

Sentences withimperative structure often begin with a verb phrase, and have noIMPERATIVE

subject. They are called imperative because they are almostalways used for commands
and suggestions; in the ATIS domain they are commands to the system.

Show the lowest fare
Show me the cheapest fare that has lunch
Give me Sunday’s flights arriving in Las Vegas from New York City
List all flights between five and seven p.m.
Show me all flights that depart before ten a.m. and have first class fares
Please list the flights from Charlotte to Long Beach arrivingafter lunch time
Show me the last flight to leave

We can model this sentence structure with another rule for the expansion ofS:

S → VP

Sentences withyes-no questionstructure are often (though not always) used to askYESNO QUESTION

questions (hence the name), and begin with an auxiliary verb, followed by a subject
NP, followed by aVP. Here are some examples (note that the third example is not
really a question but a command or suggestion; Ch. 23 will discuss the uses of these
question forms to perform differentpragmatic functions such as asking, requesting, or
suggesting.)

Do any of these flights have stops?
Does American’s flight eighteen twenty five serve dinner?
Can you give me the same information for United?

Here’s the rule:

S → Aux NP VP

The most complex of the sentence-level structures we will examine are the various
wh- structures. These are so named because one of their constituents is awh-phrase,WHPHRASE

that is, one that includes awh-word (who, whose, when, where, what, which, how,WHWORD

why). These may be broadly grouped into two classes of sentence-level structures. The
wh-subject-questionstructure is identical to the declarative structure, except that the
first noun phrase contains some wh-word.

What airlines fly from Burbank to Denver?
Which flights depart Burbank after noon and arrive in Denver by six p.m?
Whose flights serve breakfast?
Which of these flights have the longest layover in Nashville?

Here is a rule. Exercise 12.10 discusses rules for the constituents that make up the
Wh-NP.

S → Wh-NP VP
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In thewh-non-subject questionstructure, the wh-phrase is not the subject of theWHNONSUBJECT
QUESTION

sentence, and so the sentence includes another subject. In these types of sentences the
auxiliary appears before the subjectNP, just as in the yes-no-question structures. Here
is an example followed by a sample rule:

What flights do you have from Burbank to Tacoma Washington?

S → Wh-NP Aux NP VP

Constructions like thewh-non-subject-questioncontain what are calledlong-
distance dependenciesbecause theWh-NP what flightsis far away from the predi-LONGDISTANCE

DEPENDENCIES

cate that it is semantically related to, the main verbhavein the VP. In some models
of parsing and understanding compatible with the grammar rule above, long-distance
dependencies like the relation betweenflights andhaveare thought of as a semantic
relation. In such models, the job of figuring out thatflights is the argument ofhave
is done during semantic interpretation. In other models of parsing, the relationship
betweenflightsandhaveis considered to be a syntactic relation, and the grammar is
modified to insert a small marker called atrace or empty categoryafter the verb.
We’ll return to such empty-category models when we introduce the Penn Treebank on
page 21.

There are other sentence-level structures we won’t try to model here, liketopical-
ization or other fronting constructions. In topicalization (also treated as a long-distance
dependency in the Penn Treebank), a phrase is placed at the beginning of the sentence
for discourse purposes.

On Tuesday, I’d like to fly from Detroit to Saint Petersburg

12.3.2 Clauses and Sentences

Before we move on, we should clarify the status of theS rules in the grammars we
just described.S rules are intended to account for entire sentences that stand alone
as fundamental units of discourse. However, as we’ll see,S can also occur on the
right-hand side of grammar rules and hence can be embedded within larger sentences.
Clearly then there’s more to being anSthen just standing alone as a unit of discourse.

What differentiates sentence constructions (i.e., theS rules) from the rest of the
grammar is the notion that they are in some sensecomplete. In this way they correspond
to the notion of aclausein traditional grammars, which are often described as formingCLAUSE

a complete thought. One way of making this notion of ‘complete thought’ more precise
is to say anS is a node of the parse tree below which the main verb of theS has all
of its arguments. We’ll define verbal arguments later, but for now let’s just see an
illustration from the tree forI prefer a morning flightin Fig. 12.4. The verbpreferhas
two arguments: the subjectI and the objecta morning flight. One of the arguments
appears below theVP node, but the other one, the subjectNP, appears only below the
Snode.

12.3.3 The Noun Phrase

Our L0 grammar introduced three of the most frequent types of noun phrases that
occur in English: pronouns, proper-nouns and theNP→ Det Nominalconstruction.
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While pronouns and proper-nouns can be complex in their own ways, the central focus
of this section is on the last type since that is where the bulkof the syntactic complexity
resides. We can view these noun phrases consisting of a head,the central noun in the
noun phrase, along with various modifiers that can occur before or after the head noun.
Let’s take a close look at the various parts.

The Determiner

Noun phrases can begin with simple lexical determiners, as in the following examples:
a stop the flights this flight
those flights any flights some flights

The role of the determiner in English noun phrases can also befilled by more com-
plex expressions, as follows:

United’s flight
United’s pilot’s union
Denver’s mayor’s mother’s canceled flight

In these examples, the role of the determiner is filled by a possessive expression con-
sisting of a noun phrase followed by an’s as a possessive marker, as in the following
rule.

Det → NP ′s

The fact that this rule is recursive (since anNPcan start with aDet), will help us model
the latter two examples above, where a sequence of possessive expressions serves as a
determiner.

There are also circumstances under which determiners are optional in English. For
example, determiners may be omitted if the noun they modify is plural:

(12.5) Show meflightsfrom San Francisco to Denver on weekdays

As we saw in Ch. 5,mass nounsalso don’t require determination. Recall that mass
nouns often (not always) involve something that is treated like a substance (including
e.g.,waterandsnow), don’t take the indefinite article “a”, and don’t tend to pluralize.
Many abstract nouns are mass nouns (music, homework). Mass nouns in the ATIS
domain includebreakfast, lunch, anddinner:

(12.6) Does this flight serve dinner?

Exercise 12.4 asks the reader to represent this fact in the CFG formalism.

The Nominal

The nominal construction follows the determiner and contains any pre- and post-head
noun modifiers. As indicated in grammarL0, in its simplest form a nominal can consist
of a single noun.

Nominal → Noun

As we’ll see, this rule also provides the basis for the bottomof various recursive rules
used to capture more complex nominal constructions.
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Before the Head Noun

A number of different kinds of word classes can appear beforethe the head noun (the
“postdeterminers”) in a nominal. These includecardinal numbers, ordinal numbers,CARDINAL NUMBERS

ORDINAL NUMBERS andquantifiers. Examples of cardinal numbers:
QUANTIFIERS two friends one stop

Ordinal numbers includefirst, second, third, and so on, but also words likenext,
last, past, other, andanother:

the first one the next day the second leg
the last flight the other American flight

Some quantifiers (many, (a) few, several) occur only with plural count nouns:

many fares

The quantifiersmuchanda little occur only with noncount nouns.
Adjectives occur after quantifiers but before nouns.

a first-classfare anonstopflight
the longestlayover theearliestlunch flight

Adjectives can also be grouped into a phrase called anadjective phraseor AP.ADJECTIVE PHRASE

AP APs can have an adverb before the adjective (see Ch. 5 for definitions of adjectives and
adverbs):

the least expensivefare

We can combine all the options for prenominal modifiers with one rule as follows:

NP → (Det) (Card) (Ord) (Quant) (AP) Nominal

This simplified noun phrase rule has a flatter structure and hence is simpler than
would be assumed by most modern generative theories of grammar; as we will see
in Sec. 12.4, flat structures are often used for simplicity incomputational applications
(and indeed, there is no universally agreed-upon internal constituency for the noun
phrase).

Note the use of parentheses “( )” to markoptional constituents. A rule with one
set of parentheses is really a shorthand for two rules, one with the parentheses, one
without.

After the Head Noun

A head noun can be followed bypostmodifiers. Three kinds of nominal postmodifiers
are very common in English:

prepositional phrases all flightsfrom Cleveland
non-finite clauses any flightsarriving after eleven a.m.
relative clauses a flightthat serves breakfast

Prepositional phrase postmodifiers are particularly common in the ATIS corpus,
since they are used to mark the origin and destination of flights. Here are some exam-
ples, with brackets inserted to show the boundaries of each PP; note that more than one
PP can be strung together:
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any stopovers[for Delta seven fifty one]
all flights [from Cleveland] [to Newark]
arrival [in San Jose] [before seven p.m.]
a reservation[on flight six oh six] [from Tampa] [to Montreal]

Here’s a new nominal rule to account for postnominalPPs:

Nominal → Nominal PP

The three most common kinds ofnon-finite postmodifiers are the gerundive (-ing),NONFINITE

-ed, and infinitive forms.
Gerundive postmodifiers are so-called because they consist of a verb phrase thatGERUNDIVE

begins with the gerundive (-ing) form of the verb. In the following examples, the verb
phrases happen to all have only prepositional phrases afterthe verb, but in general
this verb phrase can have anything in it (anything, that is, which is semantically and
syntactically compatible with the gerund verb).

any of those[leaving on Thursday]
any flights[arriving after eleven a.m.]
flights [arriving within thirty minutes of each other]

We can define theNominalswith gerundive modifiers as follows, making use of a new
non-terminalGerundVP:

Nominal → Nominal GerundVP

We can make rules forGerundVPconstituents by duplicating all of our VP productions,
substitutingGerundVfor V.

GerundVP→ GerundV NP

| GerundV PP| GerundV | GerundV NP PP

GerundVcan then be defined as:

GerundV → being| arriving | leaving| . . .

The phrases in italics below are examples of the two other common kinds of non-finite
clauses, infinitives and-edforms:

the last flightto arrive in Boston
I need to have dinnerserved
Which is the aircraftused by this flight?

A postnominal relative clause (more correctly arestrictive relative clause), is a
clause that often begins with arelative pronoun (thatandwhoare the most common).RELATIVE PRONOUN

The relative pronoun functions as the subject of the embedded verb (is asubject rela-
tive) in the following examples:

a flight that serves breakfast
flights that leave in the morning
the United flightthat arrives in San Jose around ten p.m.
the onethat leaves at ten thirty five



14 Chapter 12. Formal Grammars of English

We might add rules like the following to deal with these:

Nominal → Nominal RelClause

RelClause→ (who| that) VP

The relative pronoun may also function as the object of the embedded verb, as in
the following example; we leave as an exercise for the readerwriting grammar rules
for more complex relative clauses of this kind.

the earliest American Airlines flight that I can get

Various postnominal modifiers can be combined, as the following examples show:

a flight [from Phoenix to Detroit] [leaving Monday evening]
I need a flight[to Seattle] [leaving from Baltimore] [making a stop in Minneapolis]
evening flights[from Nashville to Houston] [that serve dinner]
a friend[living in Denver] [that would like to visit me here in Washington DC]

Before the Noun Phrase

Word classes that modify and appear beforeNPs are calledpredeterminers. Many ofPREDETERMINERS

these have to do with number or amount; a common predeterminer is all:

all the flights all flights all non-stop flights

The example noun phrase given in Fig. 12.5 illustrates some of the complexity that
arises when these rules are combined.

12.3.4 Agreement

In Ch. 3 we discussed English inflectional morphology. Recall that most verbs in En-
glish can appear in two forms in the present tense: the form used for third-person,
singular subjects (the flight does), and the form used for all other kinds of subjects (all
the flights do, I do). The third-person-singular (3sg) form usually has a final-s where
the non-3sg form does not. Here are some examples, again using the verbdo, with
various subjects:

Do [NP all of these flights] offer first class service?
Do [NP I] get dinner on this flight?
Do [NP you] have a flight from Boston to Forth Worth?
Does [NP this flight] stop in Dallas?

Here are more examples with the verbleave:

What flightsleavein the morning?
What flight leavesfrom Pittsburgh?

This agreement phenomenon occurs whenever there is a verb that has some noun
acting as its subject. Note that sentences in which the subject does not agree with the
verb are ungrammatical:

*[What flight] leavein the morning?
*Does [NP you] have a flight from Boston to Forth Worth?
*Do [NP this flight] stop in Dallas?
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Nom

Nom

Nom

Nom

Noun
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PP
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GerundiveVP

leaving before 10

Figure 12.5 A parse tree for “all the morning flights from Denver to Tampa leaving before 10”.

How can we modify our grammar to handle these agreement phenomena? One way
is to expand our grammar with multiple sets of rules, one ruleset for3sgsubjects, and
one for non-3sgsubjects. For example, the rule that handled these yes-no-questions
used to look like this:

S → Aux NP VP

We could replace this with two rules of the following form:

S → 3sgAux 3sgNP VP

S → Non3sgAux Non3sgNP VP

We could then add rules for the lexicon like these:

3sgAux → does| has| can| . . .

Non3sgAux→ do | have| can| . . .

But we would also need to add rules for3sgNPandNon3sgNP, again by making
two copies of each rule forNP. While pronouns can be first, second, or third person, full
lexical noun phrases can only be third person, so for them we just need to distinguish
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between singular and plural (dealing with the first and second person pronouns is left
as an exercise):

3SgNP → Det SgNominal

Non3SgNP→ Det PlNominal

SgNominal→ SgNoun

PlNominal → PlNoun

SgNoun→ flight | fare | dollar | reservation| . . .

PlNoun → flights| fares| dollars | reservations| . . .

The problem with this method of dealing with number agreement is that it doubles
the size of the grammar. Every rule that refers to a noun or a verb needs to have a
“singular” version and a “plural” version. Unfortunately,subject-verb agreement is
only the tip of the iceberg. We’ll also have to introduce copies of rules to capture the
fact that head nouns and their determiners have to agree in number as well:

this flight *this flights
those flights *those flight

Rule proliferation will also have to happen for the noun’scase; for example EnglishCASE

pronouns havenominative (I, she, he, they) andaccusative(me, her, him, them) ver-NOMINATIVE

ACCUSATIVE sions. We will need new versions of everyNP andN rule for each of these.
These problems are compounded in languages like German or French, which not

only have number-agreement as in English, but also havegender agreement. WeGENDER
AGREEMENT

mentioned briefly in Ch. 3 that the gender of a noun must agree with the gender of its
modifying adjective and determiner. This adds another multiplier to the rule sets of the
language.

Ch. 16 will introduce a way to deal with these agreement problems without ex-
ploding the size of the grammar, by effectivelyparameterizing each non-terminal of
the grammar withfeature structuresandunification. But for many practical compu-
tational grammars, we simply rely on CFGs and make do with thelarge numbers of
rules.

12.3.5 The Verb Phrase and Subcategorization

The verb phrase consists of the verb and a number of other constituents. In the simple
rules we have built so far, these other constituents includeNPs andPPs and combina-
tions of the two:

VP → Verb disappear
VP → Verb NP prefer a morning flight
VP → Verb NP PP leave Boston in the morning
VP → Verb PP leaving on Thursday

Verb phrases can be significantly more complicated than this. Many other kinds
of constituents can follow the verb, such as an entire embedded sentence. These are
calledsentential complements:SENTENTIAL

COMPLEMENT
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You [VP [V said [S there were two flights that were the cheapest ]]]
You [VP [V said [S you had a two hundred sixty six dollar fare]]
[VP [V Tell] [NP me] [S how to get from the airport in Philadelphia to downtown]]
I [VP [V think [S I would like to take the nine thirty flight]]

Here’s a rule for these:

VP → Verb S

Another potential constituent of the VP is another VP. This is often the case for
verbs likewant, would like, try, intend, need:

I want [VP to fly from Milwaukee to Orlando]
Hi, I want [VP to arrange three flights]
Hello, I’m trying [VP to find a flight that goes from Pittsburgh to Denver after
two p.m.]

Recall from Ch. 5 that verbs can also be followed byparticles, words that resemble
a preposition but that combine with the verb to form aphrasal verblike take off. These
particles are generally considered to be an integral part ofthe verb in a way that other
post-verbal elements are not; phrasal verbs are treated as individual verbs composed of
two words.

While a verb phrase can have many possible kinds of constituents, not every verb
is compatible with every verb phrase. For example, the verbwantcan either be used
with an NP complement (I want a flight . . .), or with an infinitive VP complement (I
want to fly to . . .). By contrast, a verb likefindcannot take this sort of VP complement.
(* I found to fly to Dallas).

This idea that verbs are compatible with different kinds of complements is a very
old one; traditional grammar distinguishes betweentransitive verbs likefind, whichTRANSITIVE

take a direct object NP (I found a flight), andintransitive verbs likedisappear, whichINTRANSITIVE

do not (*I disappeared a flight).
Where traditional grammarssubcategorizeverbs into these two categories (transi-SUBCATEGORIZE

tive and intransitive), modern grammars distinguish as many as 100 subcategories. (In
fact, tagsets for many such subcategorization frames exist; see Macleod et al. (1998)
for the COMLEX tagset, Sanfilippo (1993) for the ACQUILEX tagset, and further dis-
cussion in Ch. 16). We say that a verb likefind subcategorizes foran NP, while aSUBCATEGORIZES

FOR

verb like want subcategorizes for either anNP or a non-finiteVP. We also call these
constituents thecomplementsof the verb (hence our use of the termsentential com-COMPLEMENTS

plement above). So we say thatwantcan take aVP complement. These possible sets
of complements are called thesubcategorization framefor the verb. Another way ofSUBCATEGORIZATION

FRAME

talking about the relation between the verb and these other constituents is to think of
the verb as a logical predicate and the constituents as logical arguments of the predi-
cate. So we can think of such predicate-argument relations as FIND(I, A FLIGHT), or
WANT(I, TO FLY). We will talk more about this view of verbs and arguments in Ch. 17
when we talk about predicate calculus representations of verb semantics.

Subcategorization frames for a set of example verbs are given in Fig. 12.6. Note
that a verb can subcategorize for a particular type of verb phrase, such as a verb phrase
whose verb is an infinitive (VPto), or a verb phrase whose verb is a bare stem (un-
inflected: VPbrst). Note also that a single verb can take different subcategorization
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Frame Verb Example
/0 eat, sleep I want to eat
NP prefer, find, leave, Find [NP the flight from Pittsburgh to Boston]
NP NP show, give Show [NP me] [NP airlines with flights from Pittsburgh]
PPfrom PPto fly, travel I would like to fly [PP from Boston] [PP to Philadelphia]
NP PPwith help, load, Can you help [NP me] [PP with a flight]
VPto prefer, want, need I would prefer [VPto to go by United airlines]
VPbrst can, would, might I can [VPbrstgo from Boston]
S mean Does this mean [S AA has a hub in Boston]?

Figure 12.6 Subcategorization frames for a set of example verbs.

frames. The verbfind, for example, can take anNP NPframe (find me a flight) as well
as anNP frame.

How can we represent the relation between verbs and their complements in a
context-free grammar? One thing we could do is to do what we did with agreement
features: make separate subtypes of the class Verb (Verb-with-NP-complement, Verb-
with-Inf-VP-complement, Verb-with-S-complement, and so on):

Verb-with-NP-complement→ find | leave| repeat| . . .

Verb-with-S-complement→ think | believe| say| . . .

Verb-with-Inf-VP-complement→ want| try | need| . . .

Then eachVP rule could be modified to require the appropriate verb subtype:

VP → Verb-with-no-complementdisappear

VP → Verb-with-NP-comp NP prefer a morning flight

VP → Verb-with-S-comp Ssaid there were two flights

The problem with this approach, as with the same solution to the agreement feature
problem, is a vast explosion in the number of rules. The standard solution to both of
these problems is thefeature structure, which will be introduced in Ch. 16 where we
will also discuss the fact that nouns, adjectives, and prepositions can subcategorize for
complements just as verbs can.

12.3.6 Auxiliaries

The subclass of verbs calledauxiliaries or helping verbs have particular syntacticAUXILIARIES

constraints which can be viewed as a kind of subcategorization. Auxiliaries include the
modal verbscan, could, may, might, must, will, would, shall, andshould, theperfectMODAL

PERFECT auxiliary have, the progressiveauxiliary be, and thepassiveauxiliary be. Each of
PROGRESSIVE

PASSIVE

these verbs places a constraint on the form of the following verb, and each of these
must also combine in a particular order.

Modal verbs subcategorize for aVP whose head verb is a bare stem; for example,
can go in the morning, will try to find a flight. The perfect verbhavesubcategorizes for
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aVPwhose head verb is the past participle form:have booked 3 flights. The progressive
verbbesubcategorizes for aVPwhose head verb is the gerundive participle:am going
from Atlanta. The passive verbbesubcategorizes for aVP whose head verb is the past
participle:was delayed by inclement weather.

A sentence can have multiple auxiliary verbs, but they must occur in a particular
order:modal< perfect< progressive< passive. Here are some examples of multiple
auxiliaries:

modal perfect could have beena contender
modal passive will be married
perfect progressive have beenfeasting
modal perfect passivemight have beenprevented

Auxiliaries are often treated just like verbs such aswant, seem, or intend, which
subcategorize for particular kinds ofVPcomplements. Thuscanwould be listed in the
lexicon as averb-with-bare-stem-VP-complement. One way of capturing the ordering
constraints among auxiliaries, commonly used in thesystemic grammarof HallidaySYSTEMIC GRAMMAR

(1985), is to introduce a special constituent called theverb group, whose subcon-VERB GROUP

stituents include all the auxiliaries as well as the main verb. Some of the ordering
constraints can also be captured in a different way. Since modals, for example, do not
have a progressive or participle form, they simply will never be allowed to follow pro-
gressive or passivebeor perfecthave. Exercise 12.8 asks the reader to write grammar
rules for auxiliaries.

The passive construction has a number of properties that make it different than
other auxiliaries. One important difference is a semantic one; while the subject of non-
passive (active) sentence is often the semantic agent of the event describedby the verbACTIVE

(I prevented a catastrophe) the subject of the passive is often the undergoer or patient
of the event (a catastrophewas prevented). This will be discussed further in Ch. 18.

12.3.7 Coordination

The major phrase types discussed here can beconjoined with conjunctions like and,CONJUNCTIONS

or, andbut to form larger constructions of the same type. For example acoordinateCOORDINATE

noun phrase can consist of two other noun phrases separated by a conjunction:

Please repeat [NP [NP the flights]and[NP the costs]]
I need to know [NP [NP the aircraft]and[NP the flight number]]

Here’s a rule that allows these structures:

NP → NP and NP

Note that the ability to form coordinate phrases via conjunctions is often used as
a test for constituency. Consider the following examples which differ from the ones
given above in that they lack the second determiner.

Please repeat the [Nom [Nomflights] and[Nomcosts]]
I need to know the [Nom [Nomaircraft]and[Nomflight number]]
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The fact that these phrases can be conjoined is evidence for the presence of the under-
lying Nominalconstituent we have been making use of. Here’s a new rule for this:

Nominal → Nominal and Nominal

The following examples illustrate conjunctions involvingVPs andSs.

What flights do you have [VP [VP leaving Denver]and[VP arriving in San
Francisco]]
[S [S I’m interested in a flight from Dallas to Washington]and[S I’m also
interested in going to Baltimore]]

The rules forVPandSconjunctions mirror theNP one given above.

VP → VP and VP

S → S and S

Since all the major phrase types can be conjoined in this fashion it is also possible
to represent this conjunction fact more generally; a numberof grammar formalisms
such as (Gazdar et al., 1985) do this viametarulessuch as the following:METARULES

X → X and X

This metarule simply states that any non-terminal can be conjoined with the same non-
terminal to yield a constituent of the same type. Of course, the variableX must be
designated as a variable that stands for any non-terminal rather than a non-terminal
itself.

12.4 TREEBANKS

Context-free grammar rules of the type that we have exploredso far in this chapter
can be used, in principle, to assign a parse tree to any sentence. This means that it
is possible to build a corpus in which every sentence is syntactically annotated with
a parse tree. Such a syntactically annotated corpus is called a treebank. TreebanksTREEBANK

play an important roles in parsing, as we will see in Ch. 13, and in various empirical
investigations of syntactic phenomena.

A wide variety of treebanks have been created, generally by using parsers (of the
sort described in the next two chapters) to automatically parse each sentence, and
then using humans (linguists) to hand-correct the parses. ThePenn TreebankprojectPENN TREEBANK

(whose POS tagset we introduced in Ch. 5) has produced treebanks from the Brown,
Switchboard, ATIS, and Wall Street Journal corpora of English, as well as treebanks
in Arabic and Chinese. Other treebanks include the Prague Dependency Treebank for
Czech, the Negra treebank for German, and the Susanne treebank for English.
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12.4.1 Example: The Penn Treebank Project

Fig. 12.7 shows sentences from the Brown and ATIS portions ofthe Penn Treebank.1

Note the formatting differences for the part-of-speech tags; such small differences are
common and must be dealt with in processing treebanks. The Penn Treebank part-
of-speech tagset was defined in Ch. 5. The use of LISP-style parenthesized notation
for trees is extremely common, and resembles the bracketed notation we saw above in
(12.2). For those who are not familiar with it we show a standard node-and-line tree
representation in Fig. 12.8.

((S

(NP-SBJ (DT That)

(JJ cold) (, ,)

(JJ empty) (NN sky) )

(VP (VBD was)

(ADJP-PRD (JJ full)

(PP (IN of)

(NP (NN fire)

(CC and)

(NN light) ))))

(. .) ))

((S

(NP-SBJ The/DT flight/NN )

(VP should/MD

(VP arrive/VB

(PP-TMP at/IN

(NP eleven/CD a.m/RB ))

(NP-TMP tomorrow/NN )))))

(a) (b)

Figure 12.7 Parsed sentences from the LDC Treebank3 version of the Brown(a) and
ATIS (b) corpora.

Fig. 12.9 shows a tree from the Wall Street Journal. This treeshows another feature
of the Penn Treebanks: the use oftraces(-NONE- nodes) to marklong-distance de-TRACES

pendenciesor syntactic movement. For example, quotations often follow a quotativeLONGDISTANCE
DEPENDENCIES

SYNTACTIC
MOVEMENT verb likesay. But in this example the quotation “We would have to wait until we have

collected on those assets” precedes the wordshe said. An empty S containing only
the node-NONE- is used to mark the position aftersaidwhere the quotation sentence
often occurs. This empty node is marked (in Treebanks II and III) with the index 2,
as is the quotation S at the beginning of the sentence. Such coindexing may make it
easier for some parsers to recover the fact that this frontedor topicalized quotation is
the complement of the verbsaid. A similar -NONE- node is used mark the fact that
there is no syntactic subject right before the verbto wait; instead, the subject is the
earlier NPWe. Again, they are both coindexed with the index 1.

The Penn Treebank II and Treebank III releases added furtherinformation to make
it easier to recover the relationships between predicates and arguments. Certain phrases
were marked with tags indicating the grammatical function of the phrase (as surface
subject, logical topic, cleft, non-VP predicates) whetherit appeared in particular text

1 The Penn Treebank project released treebanks in multiple languages and in various stages; for example
there were Treebank I (Marcus et al., 1993), Treebank II (Marcus et al., 1994), and Treebank III releases of
English treebanks. We will use Treebank III for our examples.
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S

NP-SBJ

DT
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JJ
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,

,

JJ
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NN
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JJ
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NN
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.

.

Figure 12.8 The tree corresponding to the Brown corpus sentence in the previous figure.

( (S (‘‘ ‘‘)

(S-TPC-2

(NP-SBJ-1 (PRP We) )

(VP (MD would)

(VP (VB have)

(S

(NP-SBJ (-NONE- *-1) )

(VP (TO to)

(VP (VB wait)

(SBAR-TMP (IN until)

(S

(NP-SBJ (PRP we) )

(VP (VBP have)

(VP (VBN collected)

(PP-CLR (IN on)

(NP (DT those) (NNS assets) ))))))))))))

(, ,) (’’ ’’)

(NP-SBJ (PRP he) )

(VP (VBD said)

(S (-NONE- *T*-2) ))

(. .) ))

Figure 12.9 A sentence from the Wall Street Journal portion of the LDC Penn Tree-
bank. Note the use of the empty-NONE- nodes.
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S → NP VP . PRP → we| he
NP VP DT → the| that | those
” S ” , NP VP . JJ → cold | empty| full
-NONE- NN → sky| fire | light | flight
DT NN NNS → assets
DT NN NNS CC → and
NN CC NN IN → of | at | until | on
CD RB CD → eleven

NP → DT JJ , JJ NN RB → a.m
PRP VB → arrive | have| wait
-NONE- VBD → said

VP → MD VP VBP → have
VBD ADJP VBN → collected
VBD S MD → should| would
VB PP TO → to
VB S
VB SBAR
VBP VP
VBN VP
TO VP

SBAR → IN S
ADJP → JJ PP
PP → IN NP

Figure 12.10 A sample of the CFG grammar that would be extracted from the three
treebank sentences in Fig. 12.7 and Fig. 12.9.

categories (headlines, titles), and its semantic function(temporal phrases, locations)
(Marcus et al., 1994; Bies et al., 1995). Fig. 12.9 shows examples of the-SBJ (surface
subject) and-TMP (temporal phrase) tags. Fig. 12.8 shows in addition the-PRD tag,
which is used for predicates which are not VPs (the one in Fig.12.8 is an ADJP).
Fig. 12.19 shows the tag-UNF in NP-UNFmeaning ‘unfinished or incomplete phrase’.

12.4.2 Using a Treebank as a Grammar

The sentences in a treebank implicitly constitute a grammarof the language. For ex-
ample, we can take the three parsed sentences in Fig. 12.7 andFig. 12.9 and extract
each of the CFG rules in them. For simplicity, let’s strip offthe rule suffixes (-SBJ
and so on). The resulting grammar is shown in Fig. 12.10.

The grammar used to parse the Penn Treebank is relatively flat, resulting in very
many and very long rules. For example among the approximately 4,500 different rules
for expanding VP are separate rules for PP sequences of any length, and every possible
arrangement of verb arguments:

VP → VBD PP
VP → VBD PP PP
VP → VBD PP PP PP
VP → VBD PP PP PP PP
VP → VB ADVP PP
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VP → VB PP ADVP
VP → ADVP VB PP

as well as even longer rules, such a:

VP → VBP PP PP PP PP PP ADVP PP

which comes from the VP marked in italics:

(12.7) This mostly happens because wego from football in the fall to lifting in the winter to
football again in the spring.

Some of the many thousands of NP rules include:

NP → DT JJ NN
NP → DT JJ NNS
NP → DT JJ NN NN
NP → DT JJ JJ NN
NP → DT JJ CD NNS
NP → RB DT JJ NN NN
NP → RB DT JJ JJ NNS
NP → DT JJ JJ NNP NNS
NP → DT NNP NNP NNP NNP JJ NN
NP → DT JJ NNP CC JJ JJ NN NNS
NP → RB DT JJS NN NN SBAR
NP → DT VBG JJ NNP NNP CC NNP
NP → DT JJ NNS , NNS CC NN NNS NN
NP → DT JJ JJ VBG NN NNP NNP FW NNP
NP → NP JJ , JJ ‘‘ SBAR ’’ NNS

The last two of those rules, for example, come from the following two NPs:

(12.8) [DT The] [JJ state-owned] [JJ industrial] [VBG holding] [NN company] [NNP Instituto] [NNP

Nacional] [FW de] [NNP Industria]

(12.9) [NP Shearson’s] [JJ easy-to-film], [JJ black-and-white] “ [SBAR Where We Stand]” [NNS

commercials]

Viewed as a large grammar in this way, the Penn Treebank III Wall Street Journal
corpus, which contains about 1 million words, also has about1 million non-lexical rule
tokens, consisting of about 17,500 distinct rule types.

Various facts about the treebank grammars, such as their large numbers of flat rules,
pose problems for probabilistic parsing algorithms. For this reason, it is common to
make various modifications to a grammar extracted from a treebank. We will discuss
these further in Ch. 14.

12.4.3 Searching Treebanks

It is often important to search through a treebank to find examples of particular gram-
matical phenomena, either for linguistic research or for answering analytic questions
about a computational application. But neither the regularexpressions used for text
search nor the boolean expressions over words used for web search are a sufficient
search tool. What is needed is a language that can specify constraints about nodes and
links in a parse tree, so as to search for specific patterns.
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Various such tree-searching languages exist in different tools. Tgrep (Pito, 1993)
andTGrep2 (Rohde, 2005) are publicly-available tools for searching treebanks that
use a similar language for expressing tree constraints. We’ll describe the more recent
language used byTGrep2, drawing from the online manual (Rohde, 2005).

A pattern intgrep or TGrep2 consists of a specification of a node, possibly fol-
lowed by links to other nodes. A node specification can then beused to return the
subtree rooted at that node. For example, the pattern

NP

returns all subtrees in a corpus whose root is NP. Nodes can bespecified by a name,
a regular expression inside slashes, or a disjunction of these. For example, we can
specify a singular or plural noun (NN or NNS) using Penn Treebank notation as either
of the following:

/NNS?/ NN|NNS

A node which either is the wordbushor else ends in the stringtreecan be expressed
as:

/tree$/|bush

The power oftgrep/TGrep2 patterns is the ability to specify information about
links. The operator< meansimmediately dominates; the following pattern thus
matches an NP immediately dominating a PP

NP < PP

The relation<< is used to specify dominance; this pattern matches an NP dominating
a PP:

NP << PP

This previous pattern would thus match either of the following trees:

(12.10) (NP (NP (NN reinvestment))

(PP (IN of)

(NP (NNS dividends))))

(12.11) (NP (NP (DT the) (JJ austere) (NN company) (NN dormitory))

(VP (VBN run)

(PP (IN by) (NP (DT a) (JJ prying) (NN caretaker)))))

The relation. is used to mark linear precedence. The following pattern matches an
NP that immediately dominates a JJ and is immediately followed by a PP, for example
matching the NP dominatingthe austere company dormitoryin (12.11) above:2

NP < JJ . VP

Each of the relations in atgrep/TGrep2 expression is interpreted as referring to
the first or root node. Thus for example the following expression means an NP which
both precedes a PP and dominates an S:

NP . PP < S

2 The definition of linear precedence differs slightly between tgrep andTGrep2. See Rohde (2005) for
more details.
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If we wanted instead to specify that the PP dominated the S, wecould use parentheses
as follows:

NP . (PP < S)

Fig. 12.11 gives the major link operations forTGrep2.

A < B A is the parent of (immediately dominates) B.
A > B A is the child of B.
A <N B B is the Nth child of A (the first child is<1).
A >N B A is the Nth child of B (the first child is>1).
A <, B Synonymous withA <1 B.
A >, B Synonymous withA >1 B.
A <-N B B is the Nth-to-last child of A (the last child is<-1).
A >-N B A is the Nth-to-last child of B (the last child is>-1).
A <- B B is the last child of A (synonymous withA <-1 B).
A >- B A is the last child of B (synonymous withA >-1 B).
A <‘ B B is the last child of A (also synonymous withA <-1 B).
A >‘ B A is the last child of B (also synonymous withA >-1 B).
A <: B B is the only child of A
A >: B A is the only child of B
A << B A dominates B (A is an ancestor of B).
A >> B A is dominated by B (A is a descendant of B).
A <<, B B is a left-most descendant of A.
A >>, B A is a left-most descendant of B.
A <<‘ B B is a right-most descendant of A.
A >>‘ B A is a right-most descendant of B.
A <<: B There is a single path of descent from A and B is on it.
A >>: B There is a single path of descent from B and A is on it.
A . B A immediately precedes B.
A , B A immediately follows B.
A .. B A precedes B.
A ,, B A follows B.
A $ B A is a sister of B (and A6= B).
A $. B A is a sister of and immediately precedes B.
A $, B A is a sister of and immediately follows B.
A $.. B A is a sister of and precedes B.
A $,, B A is a sister of and follows B.

Figure 12.11 Links in TGrep2, summarized from Rohde (2005).

12.4.4 Heads and Head Finding

We suggested informally earlier that syntactic constituents could be associated with a
lexical head; N is the head of anNP, V is the head of aVP. This idea of a head for
each constituent dates back to Bloomfield (1914). It is central to such linguistic for-
malisms such as Head-Driven Phrase Structure Grammar (Pollard and Sag, 1994), and
has become extremely popular in computational linguisticswith the rise of lexicalized
grammars (Ch. 14).
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In one simple model of lexical heads, each context-free ruleis associated with
a head (Charniak, 1997; Collins, 1999). The head is the word in the phrase which
is grammatically the most important. Heads are passed up theparse tree; thus each
non-terminal in a parse-tree is annotated with a single wordwhich is its lexical head.
Fig. 12.12 shows an example of such a tree from Collins (1999), in which each non-
terminal is annotated with its head. “Workers dumped sacks into a bin” is a shortened
form of a WSJ sentence.

S(dumped)

NP(workers) VP(dumped)

NNS(workers) VBD(dumped) NP(sacks) PP(into)

NNS(sacks) P(into) NP(bin)

DT(a) NN(bin)

workers dumped sacks into a bin

Figure 12.12 A lexicalized tree from Collins (1999).

In order to generate such a tree, each CFG rule must be augmented to identify one
right-hand-side constituent to be the head daughter. The headword for a node is then
set to the headword of its head daughter. Choosing these headdaughters is simple for
textbook examples (NN is the head ofNP) but is complicated and indeed controversial
for most phrases. (Should the complementizerto or the verb be the head of an infinite
verb-phrase?) Modern linguistic theories of syntax generally include a component that
defines heads (see e.g., Pollard and Sag, 1994).

An alternative approach to head-finding is used in most practical computational
systems. Instead of specifying head rules in the grammar itself, heads are identified
dynamically in the context of trees for specific sentences. In other words, once a sen-
tence is parsed, the resulting tree is walked to decorate each node with the appropriate
head. Most current systems rely on a simple set of hand-written rules, such as a practi-
cal one for Penn Treebank grammars given in Collins (1999) but developed originally
by Magerman (1995). For example their rule for finding the head of an NP is as follows
Collins (1999, 238):

• If the last word is tagged POS, return last-word.
• Else search from right to left for the first child which is an NN, NNP, NNPS, NX, POS,

or JJR.
• Else search from left to right for the first child which is an NP.
• Else search from right to left for the first child which is a $, ADJP, or PRN.
• Else search from right to left for the first child which is a CD.
• Else search from right to left for the first child which is a JJ,JJS, RB or QP.
• Else return the last word
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Selected other rules from their set are shown in Fig. 12.13. For example, for VP
rules of the formVP→ Y1 · · · Yn, the algorithm would start from the left ofY1 · · · Yn

looking for the firstYi of type TO; if no TOs are found it would search for the firstYi

of type VBD; if no VBDs are found it would search for a VBP, and so on. See Collins
(1999) for more details.

Parent
Non-terminal

Direction Priority List

ADJP Left NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DT
FW RBR RBS SBAR RB

ADVP Right RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN
PRN Left
PRT Right RP
QP Left $ IN NNS NN JJ RB DT CD NCD QP JJR JJS
S Left TO IN VP S SBAR ADJP UCP NP
SBAR Left WHNP WHPP WHADVP WHADJP IN DT S SQ SINV

SBAR FRAG
VP Left TO VBD VBN MD VBZ VB VBG VBP VP ADJP NN NNS

NP

Figure 12.13 Selected head rules from Collins (1999). The set of head rules is often
called ahead percolation table.

12.5 GRAMMAR EQUIVALENCE AND NORMAL FORM

A formal language is defined as a (possibly infinite) set of strings of words. This
suggests that we could ask if two grammars are equivalent by asking if they generate
the same set of strings. In fact it is possible to have two distinct context-free grammars
generate the same language.

We usually distinguish two kinds of grammar equivalence:weak equivalenceand
strong equivalence. Two grammars are strongly equivalent if they generate the same
set of stringsand if they assign the same phrase structure to each sentence (allowing
merely for renaming of the non-terminal symbols). Two grammars are weakly equiva-
lent if they generate the same set of strings but do not assignthe same phrase structure
to each sentence.

It is sometimes useful to have anormal form for grammars, in which each ofNORMAL FORM

the productions takes a particular form. For example a context-free grammar is in
Chomsky Normal Form (CNF) (Chomsky, 1963) if it isε-free and if in additionCHOMSKY NORMAL

FORM

each production is either of the formA→ B C or A→ a. That is, the right-hand side
of each rule either has two non-terminal symbols or one terminal symbol. Chomsky
normal form grammars arebinary branching , i.e. have binary trees (down to theBINARY BRANCHING

prelexical nodes). We will make use of this binary branchingproperty in the CKY
parsing algorithm in Ch. 13.

Any grammar can be converted into a weakly-equivalent Chomsky normal form
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grammar. For example, a rule of the form

A → B C D

can be converted into the following two CNF rules (Exercise 12.11 asks the reader to
formulate the complete algorithm):

A → B X

X → C D

Sometimes using binary branching can actually produce smaller grammars. For
example the sentences that might be characterized as follows:

VP -> VBD NP PP*

are represented in the Penn Treebank by this series of rules:

VP → VBD PP

VP → VBD PP PP

VP → VBD PP PP PP

VP → VBD PP PP PP PP

...

but could also be generated by the following two-rule grammar:

(12.12) VP → VBD PP
VP → VP PP

To generate a symbol A with a potentially infinite sequence ofsymbols B by using a
rule of the formA → A B is known asChomsky-adjunction.CHOMSKY

ADJUNCTION

12.6 FINITE-STATE AND CONTEXT-FREE GRAMMARS

We argued in Sec. 12.1 that adequate models of grammar need tobe able to represent
complex interrelated facts about constituency, subcategorization, and dependency re-
lations, and we implied that at the least the power of context-free grammars is needed
to accomplish this. But why is it that we can’t just use finite-state methods to cap-
ture these syntactic facts? The answer to this question is critical since, as we’ll see in
Ch. 13, there is a considerable price to be paid in terms of processing speed when one
switches from regular languages to context-free ones.

There are two answers to this question. The first is mathematical; we’ll show in
Ch. 15 that given certain assumptions, that certain syntactic structures present in En-
glish (and other natural languages) make them not regular languages. The second an-
swer is more subjective and has to do with notions of expressiveness; even when finite-
state methods are capable of dealing with the syntactic facts in question, they often
don’t express them in ways that make generalizations obvious, lead to understandable
formalisms, or produce structures of immediate use in subsequent semantic processing.

The mathematical objection will be discussed more fully in Ch. 15, but we’ll briefly
review it here. We mentioned in passing in Ch. 2 that there is acompletely equivalent
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alternative to finite-state machines and regular expressions for describing regular lan-
guages, calledregular grammars. The rules in a regular grammar are a restricted form
of the rules in a context-free grammar because they are in right-linear or left-linear
form. In a right-linear grammar, for example, the rules are all of the form A→ w∗ or
A→ w∗B, that is the non-terminals either expand to a string of terminals or to a string
of terminals followed by a non-terminal. These rules look anawful lot like the rules
we’ve been using throughout this chapter, so what can’t theydo? What they can’t do is
express recursivecenter-embeddingrules like the following, where a non-terminal is
rewritten as itself, surrounded by (non-empty) strings:

A
∗
⇒ αAβ(12.13)

In other words, a language can be generated by a finite-state machine if and only
if the grammar that generatesL that does not have anycenter-embeddedrecursions
of this form (Chomsky, 1959; Bar-Hillel et al., 1961; Nederhof, 2000). Intuitively,
this is because grammar rules in which the non-terminal symbols are always on either
the right or left edge of a rule can be processed iteratively rather than recursively. Such
center-embedding rules are needed to deal with artificial problems such as the language
anbn, or for practical problems such as checking for correctly matching delimiters in
programming and markup languages. It turns out that there are no slam-dunk examples
of this for English, but examples like the following give a flavor of the problem.

(12.14) The luggage arrived.

(12.15) The luggage that the passengers checked arrived.

(12.16) The luggage that the passengers that the storm delayed checked arrived.

At least in theory, this kind of embedding could go on, although it gets increasingly
difficult to process such examples and they are luckily fairly rare outside textbooks
like this one. Ch. 15 will discuss this and related issues as to whether or not even
context-free grammars are up to the task.

So is there no role for finite-state methods in syntactic analysis? A quick review
of the rules used for noun-phrases in this chapter, as well asthose used in the Penn
treebank grammar, reveals that a considerable portion of them can be handled by finite-
state methods. Consider the following rule for anoun group, the pre-nominal andNOUN GROUP

nominal portions of a noun phrase:

Nominal→ (Det) (Card) (Ord) (Quant) (AP) Nominal

Assuming we convert the pre-nominal elements of this rule into terminals, this rule
is effectively right-linear and can be captured by a finite-state machine. Indeed, it
is possible to automatically build a regular grammar which is an approximation of a
given context-free grammar; see the references at the end ofthe chapter. Thus for
many practical purposes where matching syntactic and semantic rules aren’t necessary,
finite-state rules are quite sufficient.



Section 12.7. Dependency Grammars 31

12.7 DEPENDENCYGRAMMARS

We have focused in this chapter on context-free grammars because many available
treebanks and parsers produce these kinds of syntactic representation. But in a class of
grammar formalisms calleddependency grammarsthat are becoming quite importantDEPENDENCY

GRAMMARS

in speech and language processing, constituents and phrase-structure rules do not play
any fundamental role. Instead, the syntactic structure of asentence is described purely
in terms of words and binary semantic or syntactic relationsbetween these words.
Dependency grammars often draw heavily from the work of Tesnière (1959), and the
namedependencymight have been used first by early computational linguist DavidDEPENDENCY

Hays. But this lexical dependency notion of grammar is in fact older than the relatively
recent phrase-structure or constituency grammars, and hasits roots in the ancient Greek
and Indian linguistic traditions. Indeed the notion in traditional grammar of “parsing a
sentence into subject and predicate” is based on lexical relations rather than constituent
relations.

Figure 12.14 A sample dependency grammar parse, using the dependency formalism
of Karlsson et al. (1995), after Järvinen and Tapanainen (1997).

Fig. 12.14 shows an example parse of the sentenceI gave him my address, using the
dependency grammar formalism of Järvinen and Tapanainen (1997) and Karlsson et al.
(1995). Note that there are no non-terminal or phrasal nodes; each link in the parse
tree holds between two lexical nodes (augmented with the special <ROOT> node).
The links are drawn from a fixed inventory of around 35 relations, most of which
roughly represent grammatical functions or very general semantic relations. Other
dependency-based computational grammars, such asLink Grammar (Sleator andLINK GRAMMAR

Temperley, 1993), use different but roughly overlapping links. The following table
shows a few of the relations used in Järvinen and Tapanainen(1997):

Dependency Description
subj syntactic subject
obj direct object (incl. sentential complements)
dat indirect object
pcomp complement of a preposition
comp predicate nominals (complements of copulas)
tmp temporal adverbials
loc location adverbials
attr premodifying (attributive) nominals (genitives, etc.)
mod nominal postmodifiers (prepositional phrases, etc.)

As we will see in Ch. 14, one advantage of dependency formalisms is the strong
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predictive parsing power that words have for their dependents. Knowing the identity of
the verb is often a very useful cue for deciding which noun is likely to be the subject
or the object. Dependency grammar researchers argue that one of the main advantages
of pure dependency grammars is their ability to handle languages with relativelyfree
word order . For example the word order in languages like Czech is much more flexibleFREE WORD ORDER

than in English; anobjectmight occur before or after alocation adverbialor acomp.
A phrase-structure grammar would need a separate rule for each possible place in the
parse tree that such an adverbial phrase could occur. A dependency grammar would just
have one link-type representing this particular adverbialrelation. Thus a dependency
grammar abstracts away from word-order variation, representing only the information
that is necessary for the parse.

There are a number of computational implementations of dependency grammars;
Link Grammar (Sleator and Temperley, 1993) and Constraint Grammar (Karlsson et al.,
1995) are easily-available broad-coverage dependency grammars and parsers for En-
glish. Dependency grammars are also often used for other languages. Hajič (1998), for
example, describes the 500,000 word Prague Dependency Treebank for Czech which
has been used to train probabilistic dependency parsers (Collins et al., 1999).

12.7.1 The Relationship Between Dependencies and Heads

The reader may have noticed the similarity between dependency graphs like Fig. 12.14
and head structures like Fig. 12.12. In fact an (unlabeled) dependency graph can be
automatically derived from a context-free parse by using the head rules; here’s an al-
gorithm from Xia and Palmer (2001):

1. Mark the head child of each node in a phrase structure, using the head percolation
table.

2. In the dependency structure, make the head of each non- head-child depend on
the head of the head-child.

This algorithm applied to the parse tree in Fig. 12.15 would produce the dependency
structure in Fig. 12.16.

We will return to the discussion of heads and dependencies when we discuss lex-
icalized parsing in Ch. 14 and again when we introduce head features and subcatego-
rization in Ch. 16.

12.7.2 Categorial Grammar

Categorial grammar is an early lexicalized grammar model (Adjukiewicz, 1935; Bar-CATEGORIAL
GRAMMAR

Hillel, 1953). In this section we will give a simplified overview of one important ex-
tension to categorial grammar,combinatory categorial grammaror CCG (Steedman,

COMBINATORY
CATEGORIAL

GRAMMAR

CCG 1989, 2000). A categorial grammar has two components. Thecategorial lexiconas-
sociates each word with a syntactic and semantic category. The combinatory rules
allow functions and arguments to be combined. There are two types of categories:
functors and arguments. Arguments, like nouns, have simplecategories like N. Verbs
or determiners act as functors. For example, a determiner can be thought of as a func-
tion that applies to an N on its right to produce an NP. Such complex categories are
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Figure 12.15 A phrase structure tree from the Wall Street Journal component of the
Penn Treebank 3
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Figure 12.16 The dependency tree produced from Fig. 12.15 by the algorithm given
above.

built using the X/Y and X\Y operators. X/Y means a function from Y to X, that is,
something which combines with a Y on its right to produce an X.Determiners thus
receive the category NP/N: something that combines with an Non its right to produce
an NP. Transitive verbs might have the category VP/NP; something that combines with
an NP on the right to produce a VP. Ditransitive verbs likegivemight have the category
(VP/NP)/NP; something which combines with an NP on its rightto yield a transitive
verb. The simplestcombination rules just combine an X/Y with a Y on its right to
produce an X or a X\Y with a Y on its left to produce an X.

Consider the simple sentenceHarry eats applesfrom Steedman (1989). Instead
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the . [exhale] . . . [inhale] . . uh does American airlines . offer any . one way
flights . uh one way fares, for one hundred and sixty one dollars
[mm] i’d like to leave i guess between um . [smack] . five o’clock no, five o’clock
and uh, seven o’clock . P M
all right, [throatclear] . . i’d like to know the . give me the flight . times . in the
morning . for September twentieth . nineteen ninety one
uh one way
. w- wha- what is the lowest, cost, fare
[click] . i need to fly, betwee- . leaving . Philadelphia . to, Atlanta [exhale]
on United airlines . . give me, the . . time . . from New York . [smack] . to
Boise-, to . I’m sorry . on United airlines . [uh] give me the flight, numbers, the
flight times from . [uh] Boston . to Dallas

Figure 12.17 Sample spoken utterances from users interacting with an ATIS system.

of using a primitive VP category, let’s assume that a finite verb phrase likeeat apples
has the category (S\NP); something which combines with an NP on the left to produce
a sentence.Harry and applesare both NPs.Eats is a finite transitive verb which
combines with an NP on the right to produce a finite VP: (S\NP)/NP. The derivation
of S proceeds as follows:

(12.17) Harry eats apples
NP (S\NP)/NP NP

S\NP
S

Modern categorial grammars include more complex combinatory rules which are
needed for coordination and other complex phenomena, and also include composition
of semantic categories as well as syntactic ones. See the endof the chapter for a pointer
to useful references.

12.8 SPOKEN LANGUAGE SYNTAX

The grammar of written English and the grammar of conversational spoken English
share many features, but also differ in a number of respects.This section gives a quick
sketch of a number of the characteristics of the syntax of spoken English.

We usually use the termutterance rather thansentencefor the units of spokenUTTERANCE

language. Fig. 12.17 shows some sample spoken ATIS utterances that exhibit many
aspects of spoken language grammar.

This is a standard style of transcription used in transcribing speech corpora for
speech recognition. The comma “,” marks a short pause, and each period “.” marks a
long pause.Fragments(incomplete words likewha-for incompletewhat) are marked
with with a dash, and the square brackets “[smack]” mark non-verbal events (lips-
macks, breaths, etc.).

There are a number of ways these utterances differ from written English sentences.
One is in the lexical statistics; for example spoken Englishis much higher in pronouns
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than written English; the subject of a spoken sentence is almost invariably a pronoun.
Spoken sentences often consist of short fragments or phrases (one wayor around four
p.m., which are less common in written English. Spoken sentenceshave phonological,
prosodic, and acoustic characteristics that of course written utterances don’t have; we
will return to these in Ch. 8. Finally, spoken sentences havevarious kinds of disfluen-
cies (hesitations, repairs, restarts, etc) to be discussedbelow.

12.8.1 Disfluencies and Repair

Perhaps the most salient syntactic feature that distinguishes spoken and written lan-
guage is the class of phenomena known individual asdisfluenciesand collectively asDISFLUENCIES

the phenomenon ofrepair .REPAIR

Disfluencies include the use of the wordsuh andum, word repetitions,restarts,UH

UM

RESTARTS

andword fragments. The ATIS sentence in Fig. 12.18 shows examples of a restart and
the use ofuh. The restart here occurs when the speaker starts by asking for one-way
flights. and then stops and corrects herself, restarting and askingaboutone-way fares.

Figure 12.18 An example of a disfluency (after Shriberg (1994); terminology is from Levelt (1983)).

The segmentone-way flightsis referred to as thereparandum, and the replacingREPARANDUM

sequenceone-way faresis referred to as therepair . The repair is also called theflu-REPAIR

ent region. Theinterruption point , where the speaker breaks off the original wordINTERRUPTION
POINT

sequence, here occurs right after the wordflights. In the editing phase we see what are
often callededit terms, such asyou know, I mean, uh, andum.EDIT TERMS

The wordsuh and um (sometimes calledfilled pausesor fillers) are generallyFILLED PAUSES

treated like regular words in speech recognition lexicons and grammars.
Incomplete words likewha- andbetwee-in Fig. 12.17 are known asfragments.FRAGMENTS

Fragments are extremely problematic for speech recognition systems, since they are
often incorrectly attached to previous or following words,resulting in word misseg-
mentation.

Disfluencies are very common. One count in the Switchboard Treebank corpus
found that 37% of the sentences with more than two words were disfluent in some way.
Indeed, the worduh is one of the most frequent words in Switchboard.

For applications like speech understanding, where our goalis to build a meaning
for the input sentence, it may be useful to detect these restarts in order to edit out what
the speaker probably considered the “corrected” words. Forexample in the sentence
above, if we could detect that there was a restart, we could just delete the reparandum,
and parse the remaining parts of the sentence:
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Does American airlines offer any one-way flights uhone-way fares for 160
dollars?

How do disfluencies interact with the constituent structureof the sentence? Hindle
(1983) showed that the repair often has the same structure asthe constituent just before
the interruption point. Thus in the example above, the repair is an NP, as is the reparan-
dum. This means that if it is possible to automatically find the interruption point, it is
also often possible to automatically detect the boundariesof the reparandum.

There are other interactions between disfluencies and syntactic structure. For ex-
ample when there is a disfluency immediately after a subject NP, the repair always
repeats the subject but not the preceding discourse marker.If the repair happens after
an auxiliary or main verb, the verb and subject are (almost) always recycled together
(Fox and Jasperson, 1995).

12.8.2 Treebanks for Spoken Language

Treebanks for spoken corpora like Switchboard use an augmented notation to deal
with spoken language phenomena like disfluencies. Fig. 12.19 shows the parse tree
for Switchboard sentence (12.18). This sentence shows how the Treebank marks dis-
fluencies; square brackets are used to separate out the entire repair area, including
the reparandum, editing phase, and the repair. The plus symbol marks the end of the
reparandum.

(12.18) But I don’t have [ any, +{F uh,} any ] real idea
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Figure 12.19 Penn Treebank III parse tree for a Switchboard sentence, showing how
the disfluency information is represented in the parse tree.Note the .EDITED node, with
the .RM and .RS nodes marking the beginning and end of the repair portion, and the use
of the filled pauseuh.
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12.9 GRAMMARS AND HUMAN PROCESSING

Do people use context-free grammars in their mental processing of language? It has
proved very difficult to find clear-cut evidence that they do.For example, some early
experiments asked subjects to judge which words in a sentence were more closely con-
nected (Levelt, 1970), finding that their intuitive groupings corresponded to syntactic
constituents. Other experimenters examined the role of constituents in auditory com-
prehension by having subjects listen to sentences while also listening to short “clicks”
at different times. Fodor and Bever (1965) found that subjects often mis-heard the
clicks as if they occurred at constituent boundaries. They argued that the constituent
was thus a “perceptual unit” which resisted interruption. Unfortunately there were
severe methodological problems with the click paradigm (see e.g., Clark and Clark
(1977) for a discussion).

A broader problem with all these early studies is that they donot control for the
fact that constituents are often semantic units as well as syntactic units. Thus, as will
be discussed further in Ch. 18,a single odd blockis a constituent (anNP) but also a
semantic unit (an object of typeBLOCK which has certain properties). Thus experi-
ments which show that people notice the boundaries of constituents could simply be
measuring a semantic rather than a syntactic fact.

Thus it is necessary to find evidence for a constituent which is nota semantic unit.
Furthermore, since there are many non-constituent-based theories of grammar based
on lexical dependencies, it is important to find evidence that cannot be interpreted as a
lexical fact; that is, evidence for constituency that is not based onparticular words.

One suggestive series of experiments arguing for constituency has come from Kathryn
Bock and her colleagues. Bock and Loebell (1990), for example, avoided all these ear-
lier pitfalls by studying whether a subject who uses a particular syntactic constituent
(e.g., a verb-phrase of a particular type, likeV NP PP), is more likely to use the con-
stituent in following sentences. In other words, they askedwhether use of a constituent
primesits use in subsequent sentences. As we saw in previous chapters, priming is a
common way to test for the existence of a mental structure. Bock and Loebell relied
on the Englishditransitive alternation . A ditransitive verb is one likegivewhich can
take two arguments:

(12.19) The wealthy widow gave [NP the church] [NP her Mercedes].

The verbgive allows another possible subcategorization frame, called apreposi-
tional dative in which the indirect object is expressed as a prepositionalphrase:

(12.20) The wealthy widow gave [NP her Mercedes] [PP to the church].

As we discussed on page 18, many verbs other thangive have suchalternationsALTERNATIONS

(send, sell, etc.; see Levin (1993) for a summary of many different alternation patterns).
Bock and Loebell relied on these alternations by giving subjects a picture, and asking
them to describe it in one sentence. The picture was designedto elicit verbs likegive
or sell by showing an event such as a boy handing an apple to a teacher.Since these
verbs alternate, subjects might, for example, sayThe boy gave the apple to the teacher
or The boy gave the teacher an apple.
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Before describing the picture, subjects were asked to read an unrelated “priming”
sentence out loud; the priming sentences either hadV NP NPor V NP PPstructure.
Crucially, while these priming sentences had the sameconstituent structureas the da-
tive alternation sentences, they did not have the samesemantics. For example, the
priming sentences might be prepositionallocatives, rather thandatives:

(12.21) IBM moved [NP a bigger computer] [PP to the Sears store].

Bock and Loebell found that subjects who had just read aV NP PPsentence were
more likely to use aV NP PPstructure in describing the picture. This suggested that
the use of a particular constituentprimed the later use of that constituent, and hence
that the constituent must be mentally represented in order to prime and be primed.

In more recent work, Bock and her colleagues have continued to find evidence for
this kind of constituency structure.

12.10 SUMMARY

This chapter has introduced a number of fundamental concepts in syntax via thecontext-
free grammar.

• In many languages, groups of consecutive words act as a groupor aconstituent,
which can be modeled bycontext-free grammars(also known asphrase-structure
grammars).

• A context-free grammar consists of a set ofrules or productions, expressed
over a set ofnon-terminal symbols and a set ofterminal symbols. Formally, a
particularcontext-free languageis the set of strings which can bederived from
a particularcontext-free grammar.

• A generative grammaris a traditional name in linguistics for a formal language
which is used to model the grammar of a natural language.

• There are many sentence-level grammatical constructions in English; declar-
ative, imperative, yes-no-question, andwh-question are four very common
types, which can be modeled with context-free rules.

• An English noun phrase can havedeterminers, numbers, quantifiers, and
adjective phrasespreceding thehead noun, which can be followed by a number
of postmodifiers; gerundiveVPs,infinitives VPs, andpast participial VPs are
common possibilities.

• Subjectsin Englishagreewith the main verb in person and number.

• Verbs can besubcategorizedby the types ofcomplementsthey expect. Sim-
ple subcategories aretransitive andintransitive ; most grammars include many
more categories than these.

• The correlate ofsentencesin spoken language are generally calledutterances.
Utterances may bedisfluent, containingfilled pauseslike umanduh, restarts,
andrepairs.

• Treebanksof parsed sentences exist for many genres of English and for many
languages. Treebanks can be searched using tree-search tools.
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• Any context-free grammar can be converted toChomsky normal form, in which
the right-hand-side of each rule has either two non-terminals or a single terminal.

• Context-free grammars are more powerful than finite-state automata, but it is
nonetheless possible toapproximate a context-free grammar with a FSA.

• There is some evidence that constituency plays a role in the human processing
of language.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

“den sprachlichen Ausdruck für die willkürliche Gliederung einer Gesammt-
vorstellung in ihre in logische Beziehung zueinander gesetzten Bestandteile”
“the linguistic expression for the arbitrary division of a total idea into its con-
stituent parts placed in logical relations to one another”

Wundt’s (1900:240) definition of the sentence; the origin of
the idea of phrasal constituency, cited in Percival (1976).

According to Percival (1976), the idea of breaking up a sentence into a hierarchy
of constituents appeared in theVölkerpsychologieof the groundbreaking psychologist
Wilhelm Wundt (Wundt, 1900). Wundt’s idea of constituency was taken up into lin-
guistics by Leonard Bloomfield in his early bookAn Introduction to the Study of Lan-
guage(Bloomfield, 1914). By the time of his later bookLanguage(Bloomfield, 1933),
what was then called “immediate-constituent analysis” wasa well-established method
of syntactic study in the United States. By contrast, traditional European grammar, dat-
ing from the Classical period, defined relations betweenwordsrather than constituents,
and European syntacticians retained this emphasis on suchdependencygrammars.

American Structuralism saw a number of specific definitions of the immediate con-
stituent, couched in terms of their search for a “discovery procedure”; a methodological
algorithm for describing the syntax of a language. In general, these attempt to capture
the intuition that “The primary criterion of the immediate constituent is the degree in
which combinations behave as simple units” (Bazell, 1966, p. 284). The most well-
known of the specific definitions is Harris’ idea of distributional similarity to individual
units, with thesubstitutabilitytest. Essentially, the method proceeded by breaking up a
construction into constituents by attempting to substitute simple structures for possible
constituents—if a substitution of a simple form, sayman, was substitutable in a con-
struction for a more complex set (likeintense young man), then the formintense young
manwas probably a constituent. Harris’s test was the beginningof the intuition that a
constituent is a kind of equivalence class.

The first formalization of this idea of hierarchical constituency was thephrase-
structure grammar defined in Chomsky (1956), and further expanded upon (and
argued against) in Chomsky (1957) and Chomsky (1975). From this time on, most
generative linguistic theories were based at least in part on context-free grammars
or generalizations of them (such as Head-Driven Phrase Structure Grammar (Pollard
and Sag, 1994), Lexical-Functional Grammar (Bresnan, 1982), Government and Bind-
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ing (Chomsky, 1981), and Construction Grammar (Kay and Fillmore, 1999), inter
alia); many of these theories used schematic context-free templates known asX-bar
schematawhich also relied on the notion of syntactic head.XBAR SCHEMATA

Shortly after Chomsky’s initial work, the context-free grammar was rediscovered
by Backus (1959) and independently by Naur et al. (1960) in their descriptions of
the ALGOL programming language; Backus (1996) noted that hewas influenced by
the productions of Emil Post and that Naur’s work was independent of his (Backus’)
own. (Recall the discussion on page?? of multiple invention in science.) After this
early work, a great number of computational models of natural language processing
were based on context-free grammars because of the early development of efficient
algorithms to parse these grammars (see Ch. 13).

As we have already noted, grammars based on context-free rules are not ubiquitous.
Various classes of extensions to CFGs are designed specifically to handle long-distance
dependencies. We noted earlier that some grammars treat long-distance-dependent
items as being related semantically but not syntactically;the surface syntax does not
represent the long-distance link (Kay and Fillmore, 1999; Culicover and Jackendoff,
2005). But there are alternatives. One extended formalism is Tree Adjoining Gram-
mar (TAG) (Joshi, 1985). The primary data structure in Tree Adjoining Grammar is
the tree, rather than the rule. Trees come in two kinds;initial trees and auxiliary
trees. Initial trees might, for example, represent simple sentential structures, while
auxiliary trees are used to add recursion into a tree. Trees are combined by two oper-
ations calledsubstitution andadjunction. The adjunction operation is used to handle
long-distance dependencies. See Joshi (1985) for more details. An extension of Tree
Adjoining Grammar called Lexicalized Tree Adjoining Grammars will be discussed
in Ch. 14. Tree Adjoining Grammar is a member of the family ofmildly context-
sensitive languagesto be introduced in Ch. 15.

We mentioned on page 21 another way of handling long-distance dependencies,
based on the use of empty categories and co-indexing. The Penn Treebank uses this
model, which draws (in various Treebank corpora) from the Extended Standard Theory
and Minimalism (Radford, 1997).

Representative examples of grammars that are based on word relations rather than
constituency include the dependency grammar of Mel’čuk (1979), the Word Grammar
of Hudson (1984), and the Constraint Grammar of Karlsson et al. (1995).

There are a variety of algorithms for building a regular grammar which approxi-
mates a CFG (Pereira and Wright, 1997; Johnson, 1998; Langendoen and Langsam,
1987; Nederhof, 2000; Mohri and Nederhof, 2001).

Readers interested in the grammar of English should get one of the three large
reference grammars of English: Huddleston and Pullum (2002), Biber et al. (1999),
and Quirk et al. (1985), Another useful reference is McCawley (1998).

There are many good introductory textbooks on syntax from different perspectives.
Sag et al. (2003) is an introduction to syntax from agenerativeperspective, focusing onGENERATIVE

the use of phrase-structure, unification, and the type-hierarchy in Head-Driven Phrase
Structure Grammar. Van Valin and La Polla (1997) is an introduction from afunc-
tional perspective, focusing on cross-linguistic data and on the functional motivationFUNCTIONAL

for syntactic structures.
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See Bach (1988) for an introduction to basic categorial grammar. Various exten-
sions to categorial grammars are presented in Lambek (1958), Dowty (1979), and Ades
and Steedman (1982) inter alia; the other papers in Oehrle etal. (1988) give a survey of
extensions. Combinatory categorial grammar is presented in Steedman (1989, 2000);
see Steedman and Baldridge (2003) for a tutorial introduction. See Ch. 18 for a discus-
sion of semantic composition.

EXERCISES

12.1 Draw tree structures for the following ATIS phrases:

a. Dallas
b. from Denver
c. after five p.m.
d. arriving in Washington
e. early flights
f. all redeye flights
g. on Thursday
h. a one-way fare
i. any delays in Denver

12.2 Draw tree structures for the following ATIS sentences:

a. Does American airlines have a flight between five a.m. and sixa.m.
b. I would like to fly on American airlines.
c. Please repeat that.
d. Does American 487 have a first class section?
e. I need to fly between Philadelphia and Atlanta.
f. What is the fare from Atlanta to Denver?
g. Is there an American airlines flight from Philadelphia to Dallas?

12.3 Augment the grammar rules on page 16 to handle pronouns. Dealproperly with
person and case.

12.4 Modify the noun phrase grammar of Sections 12.3.3–12.3.4 tocorrectly model
mass nouns and their agreement properties

12.5 How many types ofNPs would the rule on page 12 expand to if we didn’t allow
parentheses in our grammar formalism?

12.6 Assume a grammar that has manyVP rules for different subcategorizations, as
expressed in Sec. 12.3.5, and differently subcategorized verb rules likeVerb-with-NP-
complement. How would the rule for post-nominal relative clauses (12.7) need to be
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modified if we wanted to deal properly with examples likethe earliest flight that you
have? Recall that in such examples the pronounthat is the object of the verbget. Your
rules should allow this noun phrase but should correctly rule out the ungrammatical S
*I get.

12.7 Does your solution to the previous problem correctly model the NPthe earliest
flight that I can get? How aboutthe earliest flight that I think my mother wants me to
book for her? Hint: this phenomenon is calledlong-distance dependency.

12.8 Write rules expressing the verbal subcategory of English auxiliaries; for exam-
ple you might have a ruleverb-with-bare-stem-VP-complement→ can.

12.9 NPs like Fortune’s officeor my uncle’s marksare calledpossessiveor genitivePOSSESSIVE

GENITIVE noun phrases. A possessive noun phrase can be modeled by treating the sub-NP like
Fortune’sor my uncle’sas a determiner of the following head noun. Write grammar
rules for English possessives. You may treat’s as if it were a separate word (i.e., as if
there were always a space before’s).

12.10 Page 9 discussed the need for aWh-NPconstituent. The simplestWh-NPis
one of theWh-pronouns(who, whom, whose, which). The Wh-wordswhatandwhich
can be determiners:which four will you have?, what credit do you have with the Duke?
Write rules for the different types ofWh-NPs.

12.11 Write an algorithm for converting an arbitrary context-free grammar into Chom-
sky normal form.
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13
PARSING WITH
CONTEXT-FREE
GRAMMARS

There are and can exist but two ways of investigating and discov-
ering truth. The one hurries on rapidly from the senses and par-
ticulars to the most general axioms, and from them. . . derives and
discovers the intermediate axioms. The other constructs its ax-
ioms from the senses and particulars, by ascending continually and
gradually, till it finally arrives at the most general axioms.

Francis Bacon, Novum Organum Book I.19 (1620)

We defined parsing in Ch. 3 as a combination of recognizing an input string and as-
signing a structure to it. Syntactic parsing, then, is the task of recognizing a sentence
and assigning a syntactic structure to it. This chapter focuses on the kind of structures
assigned by context-free grammars of the kind described in Ch. 12. However, since
they are a purely declarative formalism, context-free grammars don’t specify how the
parse tree for a given sentence should be computed, therefore we’ll need to specify
algorithms that employ these grammars to produce trees. This chapter presents three
of the most widely used parsing algorithms for automatically assigning a complete
context-free (phrase structure) tree to an input sentence.

These kinds of parse trees are directly useful in applications such as grammar
checking in word-processing systems; a sentence which cannot be parsed may have
grammatical errors (or at least be hard to read). More typically, however, parse trees
serve as an important intermediate stage of representation for semantic analysis (as
we will see in Ch. 18), and thus plays an important role in applications like question
answering and information extraction. For example, to answer the question

What books were written by British women authors before 1800?

we’ll need to know that the subject of the sentence was what books and that the by-
adjunct was British women authors to help us figure out that the user wants a list of
books (and not a list of authors).

Before presenting any parsing algorithms, we begin by describing some of the
factors that motivate the standard algorithms. First, we revisit the search metaphor for
parsing and recognition, which we introduced for finite-state automata in Ch. 2, and
talk about the top-down and bottom-up search strategies. We then discuss how the
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S → NP VP Det → that | this | a
S → Aux NP VP Noun → book | flight | meal | money
S → VP Verb → book | include | prefer
NP → Pronoun Pronoun → I | she | me
NP → Proper-Noun Proper-Noun → Houston | TWA
NP → Det Nominal Aux → does
Nominal → Noun Preposition → from | to | on | near | through
Nominal → Nominal Noun
Nominal → Nominal PP
VP → Verb
VP → Verb NP
VP → Verb NP PP
VP → Verb PP
VP → VP PP
PP → Preposition NP

Figure 13.1 The L1 miniature English grammar and lexicon.

ambiguity problem rears its head again in syntactic processing, and how it ultimately
makes simplistic approaches based on backtracking infeasible.

The sections that follow then present the Cocke-Kasami-Younger (CKY) algo-
rithm (Kasami, 1965; Younger, 1967), the Earley algorithm (Earley, 1970), and the
Chart Parsing approach (Kay, 1986; Kaplan, 1973). These approaches all combine in-
sights from bottom-up and top-down parsing with dynamic programming to efficiently
handle complex inputs. Recall that we’ve already seen several applications of dynamic
programming algorithms in earlier chapters — Minimum-Edit-Distance, Viterbi, For-
ward. Finally, we discuss partial parsing methods, for use in situations where a
superficial syntactic analysis of an input may be sufficient.

13.1 PARSING AS SEARCH

Chs. 2 and 3 showed that finding the right path through a finite-state automaton, or
finding the right transduction for an input, can be viewed as a search problem. For
finite-state automata, the search is through the space of all possible paths through a
machine. In syntactic parsing, the parser can be viewed as searching through the space
of possible parse trees to find the correct parse tree for a given sentence. Just as the
search space of possible paths was defined by the structure of an automata, so the
search space of possible parse trees is defined by a grammar. Consider the following
ATIS sentence:

(13.1) Book that flight.

Fig. 13.1 introduces the L1 grammar, which consists of the L0 grammar from
the last chapter with a few additional rules. Given this grammar, the correct parse tree
for this example would be the one shown in Fig. 13.2.
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S

VP

Verb

Book

NP

Det

that

Nominal

Noun

flight

Figure 13.2 The parse tree for the sentence Book that flight according to grammar L1.

How can we use L1 to assign the parse tree in Fig. 13.2 to this example? The
goal of a parsing search is to find all the trees whose root is the start symbol S and
which cover exactly the words in the input. Regardless of the search algorithm we
choose, there are two kinds of constraints that should help guide the search. One set of
constraints comes from the data, that is, the input sentence itself. Whatever else is true
of the final parse tree, we know that there must be three leaves, and they must be the
words book, that, and flight. The second kind of constraint comes from the grammar.
We know that whatever else is true of the final parse tree, it must have one root, which
must be the start symbol S.

These two constraints, invoked by Bacon at the start of this chapter, give rise to
the two search strategies underlying most parsers: top-down or goal-directed search,
and bottom-up or data-directed search. These constraints are more than just search
strategies. They reflect two important insights in the western philosophical tradition:
the rationalist tradition, which emphasizes the use of prior knowledge, and the em-RATIONALIST

piricist tradition tradition, which emphasizes the data in front of us.EMPIRICIST
TRADITION

13.1.1 Top-Down Parsing

A top-down parser searches for a parse tree by trying to build from the root node STOP-DOWN

down to the leaves. Let’s consider the search space that a top-down parser explores,
assuming for the moment that it builds all possible trees in parallel. The algorithm
starts by assuming the input can be derived by the designated start symbol S. The next
step is to find the tops of all trees which can start with S, by looking for all the grammar
rules with S on the left-hand side. In the grammar in Fig. 13.1, there are three rules that
expand S, so the second ply, or level, of the search space in Fig. 13.3 has three partialPLY

trees.
We next expand the constituents in these three new trees, just as we originally

expanded S. The first tree tells us to expect an NP followed by a VP, the second expects
an Aux followed by an NP and a VP, and the third a VP by itself. To fit the search
space on the page, we have shown in the third ply of Fig. 13.3 only a subset of the trees
that result from the expansion of the left-most leaves of each tree. At each ply of the
search space we use the right-hand sides of the rules to provide new sets of expectations
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S

S S S

NP VP Aux NP VP VP

S S S S S S

NP VP NP VP Aux NP VP Aux NP VP VP VP

Det Nom PropN Det Nom PropN V NP V

Figure 13.3 An expanding top-down search space. Each ply is created by taking each tree from the previous
ply, replacing the leftmost non-terminal with each of its possible expansions, and collecting each of these trees
into a new ply.

for the parser, which are then used to recursively generate the rest of the trees. Trees
are grown downward until they eventually reach the part-of-speech categories at the
bottom of the tree. At this point, trees whose leaves fail to match all the words in the
input can be rejected, leaving behind those trees that represent successful parses. In
Fig. 13.3, only the fifth parse tree in the third ply (the one which has expanded the rule
VP → Verb NP) will eventually match the input sentence Book that flight.

13.1.2 Bottom-Up Parsing

Bottom-up parsing is the earliest known parsing algorithm (it was first suggested byBOTTOM-UP

Yngve (1955)), and is used in the shift-reduce parsers common for computer languages
(Aho and Ullman, 1972). In bottom-up parsing, the parser starts with the words of the
input, and tries to build trees from the words up, again by applying rules from the
grammar one at a time. The parse is successful if the parser succeeds in building a tree
rooted in the start symbol S that covers all of the input. Fig. 13.4 shows the bottom-
up search space, beginning with the sentence Book that flight. The parser begins by
looking up each input word in the lexicon and building three partial trees with the part-
of-speech for each word. But the word book is ambiguous; it can be a noun or a verb.
Thus the parser must consider two possible sets of trees. The first two plies in Fig. 13.4
show this initial bifurcation of the search space.

Each of the trees in the second ply is then expanded. In the parse on the left
(the one in which book is incorrectly considered a noun), the Nominal → Noun rule is
applied to both of the nouns (book and flight). This same rule is also applied to the sole
noun (flight) on the right, producing the trees on the third ply.

In general, the parser extends one ply to the next by looking for places in the
parse-in-progress where the right-hand side of some rule might fit. This contrasts with
the earlier top-down parser, which expanded trees by applying rules when their left-
hand side matched an unexpanded non-terminal.
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Book that flight

Noun Det Noun Verb Det Noun

Book that flight Book that flight

Nominal Nominal Nominal

Noun Det Noun Verb Det Noun

Book that flight Book that flight

NP NP

Nominal Nominal VP Nominal Nominal

Noun Det Noun Verb Det Noun Verb Det Noun

Book that flight Book that flight Book that flight

VP

VP NP NP

Nominal Nominal

Verb Det Noun Verb Det Noun

Book that flight Book that flight

Figure 13.4 An expanding bottom-up search space for the sentence Book that flight. This figure does not show
the final tier of the search with the correct parse tree (see Fig. 13.2). Make sure you understand how that final
parse tree follows from the search space in this figure.

Thus in the fourth ply, in the first and third parse, the sequence Det Nominal is
recognized as the right-hand side of the NP → Det Nominal rule.

In the fifth ply, the interpretation of book as a noun has been pruned from the
search space. This is because this parse cannot be continued: there is no rule in the
grammar with the right-hand side Nominal NP. The final ply of the search space (not
shown in Fig. 13.4) contains the correct parse (see Fig. 13.2).

13.1.3 Comparing Top-Down and Bottom-Up Parsing

Each of these two architectures has its own advantages and disadvantages. The top-
down strategy never wastes time exploring trees that cannot result in an S, since it
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S

NP

Pronoun

I

VP

Verb

shot

NP

Det

an

Nominal

Nominal

Noun

elephant

PP

in my pajamas

S

NP

Pronoun

I

VP

VP

Verb

shot

NP

Det

an

Nominal

Noun

elephant

PP

in my pajamas

Figure 13.5 Two parse trees for an ambiguous sentence. Parse (a) corresponds to the humorous reading in
which the elephant is in the pajamas, parse (b) to the reading in which Captain Spaulding did the shooting in his
pajamas.

begins by generating just those trees. This means it also never explores subtrees that
cannot find a place in some S-rooted tree. In the bottom-up strategy, by contrast, trees
that have no hope of leading to an S, or fitting in with any of their neighbors, are
generated with wild abandon.

The top-down approach has its own inefficiencies. While it does not waste time
with trees that do not lead to an S, it does spend considerable effort on S trees that are
not consistent with the input. Note that the first four of the six trees in the third ply in
Fig. 13.3 all have left branches that cannot match the word book. None of these trees
could possibly be used in parsing this sentence. This weakness in top-down parsers
arises from the fact that they generate trees before ever examining the input. Bottom-
up parsers, on the other hand, never suggest trees that are not at least locally grounded
in the input.

13.2 AMBIGUITY

One morning I shot an elephant in my pajamas. How he got into my paja-
mas I don’t know.

Groucho Marx, Animal Crackers, 1930

Ambiguity is perhaps the most serious problem faced by parsers. Ch. 5 intro-
duced the notions of part-of-speech ambiguity and part-of-speech disambiguation.
In this section we introduce a new kind of ambiguity, which arises in the syntactic
structures used in parsing, called structural ambiguity. Structural ambiguity occurs
when the grammar assigns more than one possible parse to a sentence. Groucho Marx’s
well-known line as Captain Spaulding is ambiguous because the phrase in my pajamas
can be part of the NP headed by elephant or the verb-phrase headed by shot.
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Structural ambiguity, appropriately enough, comes in many forms. Two par-
ticularly common kinds of ambiguity are attachment ambiguity and coordination
ambiguity.

A sentence has an attachment ambiguity if a particular constituent can be at-
tached to the parse tree at more than one place. The Groucho Marx sentence above is
an example of PP-attachment ambiguity. Various kinds of adverbial phrases are also
subject to this kind of ambiguity. For example in the following example the gerundive-
VP flying to Paris can be part of a gerundive sentence whose subject is the Eiffel Tower
or it can be an adjunct modifying the VP headed by saw:

(13.2) We saw the Eiffel Tower flying to Paris.

In coordination ambiguity there are different sets of phrases that can be con-
joined by a conjunction like and. For example, the phrase old men and women can be
bracketed as [old [men and women]], referring to old men and old women, or as [old
men] and [women], in which case it is only the men who are old.

These ambiguities combine in complex ways in real sentences. A program that
summarized the news, for example, would need to be able to parse sentences like the
following from the Brown corpus:

(13.3) President Kennedy today pushed aside other White House business to devote all his
time and attention to working on the Berlin crisis address he will deliver tomorrow
night to the American people over nationwide television and radio.

This sentence has a number of ambiguities, although since they are semantically
unreasonable, it requires a careful reading to see them. The last noun phrase could
be parsed [nationwide [television and radio]] or [[nationwide television] and radio].
The direct object of pushed aside should be other White House business but could also
be the bizarre phrase [other White House business to devote all his time and attention
to working] (i.e., a structure like Kennedy affirmed [his intention to propose a new
budget to address the deficit]). Then the phrase on the Berlin crisis address he will
deliver tomorrow night to the American people could be an adjunct modifying the verb
pushed. The PP over nationwide television and radio could be attached to any of the
higher VPs or NPs (e.g., it could modify people or night).

The fact that there are many unreasonable parses for naturally occurring sen-
tences is an extremely irksome problem that affects all parsers. Ultimately, most nat-
ural language processing systems need to be able to choose the correct parse from the
multitude of possible parses via process known as syntactic disambiguation. Unfortu-SYNTACTIC

DISAMBIGUATION

nately, effective disambiguation algorithms generally require statistical, semantic, and
pragmatic knowledge not readily available during syntactic processing (techniques for
making use of such knowledge will be introduced later, in Ch. 14 and Ch. 18).

Lacking such knowledge we are left with the choice of simply returning all the
possible parse trees for a given input. Unfortunately, generating all the possible parses
from robust, highly ambiguous, wide-coverage grammars such as the Penn Treebank
grammar described in Ch. 12 is problematic. The reason for this lies in the poten-
tially exponential number of parses that are possible for certain inputs. Consider the
following ATIS example:

(13.4) Show me the meal on Flight UA 386 from San Francisco to Denver.
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Figure 13.6 A reasonable parse for Ex. 13.4.

The recursive VP → VP PP and Nominal → Nominal PP rules conspire with the three
prepositional phrases at the end of this sentence to yield a total of 14 parse trees for
this sentence. For example from San Francisco could be part of the VP headed by show
(which would have the bizarre interpretation that the showing was happening from San
Francisco). Church and Patil (1982) showed that the number of parses for sentences
of this type grows exponentially at the same rate as the number of parenthesizations of
arithmetic expressions.

Even if a sentence isn’t ambiguous (i.e. it doesn’t have more than one parse in
the end), it can be inefficient to parse due to local ambiguity. Local ambiguity occursLOCAL AMBIGUITY

when some part of a sentence is ambiguous, that is, has more than one parse, even
if the whole sentence is not ambiguous. For example the sentence Book that flight is
unambiguous, but when the parser sees the first word Book, it cannot know if it is a
verb or a noun until later. Thus it must use consider both possible parses.
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13.3 SEARCH IN THE FACE OF AMBIGUITY

To fully understand the problem that local and global ambiguity poses for syntactic
parsing let’s return to our earlier description of top-down and bottom-up parsing. There
we made the simplifying assumption that we could explore all possible parse trees
in parallel. Thus each ply of the search in Fig. 13.3 and Fig. 13.4 showed parallel
expansions of the parse trees on the previous plies. Although it is certainly possible
to implement this method directly, it typically entails the use of an unrealistic amount
of memory to store the space of trees as they are being constructed. This is especially
true since realistic grammars have much more ambiguity than the miniature grammar
we’ve been using.

A common alternative approach to exploring complex search-spaces is to use an
agenda-based backtracking strategy such as those used to implement the various finite-
state machines in Chs. 2 and 3. A backtracking approach expands the search space
incrementally by systematically exploring one state at a time. The state chosen for
expansion can be based on simple systematic strategies such as depth-first or breadth-
first methods, or on more complex methods that make use of probabilistic and semantic
considerations. When the given strategy arrives at a tree that is inconsistent with the
input, the search continues by returning to an unexplored option already on the agenda.
The net effect of this strategy is a parser that single-mindedly pursues trees until they
either succeed or fail before returning to work on trees generated earlier in the process.

Unfortunately, the pervasive ambiguity in typical grammars leads to intolerable
inefficiencies in any backtracking approach. Backtracking parsers will often build valid
trees for portions of the input, and then discard them during backtracking, only to find
that they have to be rebuilt again. Consider the top-down backtracking process involved
in finding a parse for the NP in (13.5):

(13.5) a flight from Indianapolis to Houston on TWA

The preferred complete parse shown as the bottom tree in Fig. 13.7. While there are
numerous parses of this phrase, we will focus here on the amount of repeated work
expended on the path to retrieving this single preferred parse.

A typical top-down, depth-first, left-to-right backtracking strategy leads to small
parse trees that fail because they do not cover all of the input. These successive failures
trigger backtracking events which lead to parses that incrementally cover more and
more of the input. The sequence of trees attempted on the way to the correct parse by
this top-down approach is shown in Fig. 13.7.

This figure clearly illustrates the kind of silly reduplication of work that arises in
backtracking approaches. Except for its topmost component, every part of the final tree
is derived more than once. The work done on this simple example would, of course,
be magnified by any ambiguity introduced by the verb phrase or sentential level. Note
that although this example is specific to top-down parsing, similar examples of wasted
effort exist for bottom-up parsing as well.
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Figure 13.7 Reduplicated effort caused by backtracking in top-down parsing.

13.4 DYNAMIC PROGRAMMING PARSING METHODS

The previous section presented some of the problems that afflict standard bottom-up or
top-down parsers due to ambiguity. Luckily, there is a single class of algorithms which
can solve these problems. Dynamic programming once again provides a framework
for solving this problem, just as it helped us with the Minimum Edit Distance, Viterbi,
and Forward algorithms. Recall that dynamic programming approaches systematically
fill in tables of solutions to sub-problems. When complete, the tables contain the solu-
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tion to all the sub-problems needed to solve the problem as a whole.
In the case of parsing, such tables are used to store subtrees for each of the

various constituents in the input as they are discovered. The efficiency gain arises from
the fact that these subtrees are discovered once, stored, and then used in all parses
calling for that constituent. This solves the re-parsing problem (subtrees are looked up,
not re-parsed) and partially solves the ambiguity problem (the dynamic programming
table implicitly stores all possible parses by storing all the constituents with links that
enable the parses to be reconstructed). As we mentioned earlier, the three most widely
used methods are the Cocke-Kasami-Younger (CKY) algorithm, the Earley algorithm,
and Chart Parsing.

13.4.1 CKY Parsing

Let’s begin our investigation of CKY algorithm by examining one of its major require-
ments: the grammars used with it must be in Chomsky Normal Form (CNF). Recall
from Ch. 12 that grammars in CNF are restricted to rules of the form A → B C, or
A → w. That is, the right-hand side of each rule must expand to either two non-
terminals or to a single terminal. Recall also that restricting a grammar to CNF does
not lead to any loss in expressiveness since any context-free grammar can be converted
into a corresponding CNF grammar that accepts exactly the same set of strings as the
original grammar. This single restriction gives rise to an extremely simple and elegant
table-based parsing method.

Conversion to CNF

Let’s start with the process of converting a generic CFG into one represented in CNF.
Assuming we’re dealing with an ε-free grammar, there are three situations we need to
address in any generic grammar: rules that mix terminals with non-terminals on the
right-hand side, rules that have a single non-terminal on the right, and rules where the
right-hand side’s length is greater than two.

The remediation for rules that mix terminals and non-terminals is to simply intro-
duce a new dummy non-terminal that covers only the original terminal. For example,
a rule for an infinitive verb phrase such as INF-VP → to VP would be replaced by the
two rules INF-VP → TO VP and TO → to.

Rules with a single non-terminal on the right are called unit productions. UnitUNIT PRODUCTIONS

productions are eliminated by rewriting the right-hand side of the original rules with the
right-hand side of all the non-unit production rules that they ultimately lead to. More
formally, if A

∗⇒ B by a chain of one or more unit productions, and B → γ is a non-unit
production in our grammar, then we add A → γ for each such rule in the grammar,
and discard all the intervening unit productions. As we’ll see with our toy grammar,
this can lead to a substantial flattening of the grammar, and a consequent promotion of
terminals to fairly high levels in the resulting trees.

Rules with right-hand sides longer than 2 are remedied through the introduction
of new non-terminals that spread the longer sequences over several new productions.
Formally, if we have a rule like

A → B C γ
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we replace the leftmost pair of non-terminals with a new non-terminal and introduce a
new production result in the following new rules.

X1 → B C

A → X1 γ

In the case of longer right-hand sides, we simply iterate this process until the offending
rule has length 2. The choice of replacing the leftmost pair of non-terminals is purely
arbitrary; any systematic scheme that results in binary rules would suffice.

In our current grammar, the rule S → Aux NP VP would be replaced by the two
rules S → X1 VP and X1 → Aux NP.

The entire conversion process can be summarized as follows:

1. Copy all conforming rules to the new grammar unchanged,
2. Convert terminals within rules to dummy non-terminals,
3. Convert unit-productions,
4. Binarize all rules and add to new grammar.

Fig. 13.8 shows the results of applying this entire conversion procedure to the L1

grammar introduced earlier on page 2. Note that this figure doesn’t show the original
lexical rules; since these original lexical rules are already in CNF, they all carry over
unchanged to the new grammar. Fig. 13.8 does, however, show the various places
where the process of eliminating unit-productions has, in effect, created new lexical
rules. For example, all the original verbs have been promoted to both VPs and to Ss in
the converted grammar.

CKY Recognition

With our grammar now in CNF, each non-terminal node above the part-of-speech level
in a parse tree will have exactly two daughters. A simple two-dimensional matrix can
be used to encode the structure of an entire tree. More specifically, for a sentence of
length n, we will be working with the upper-triangular portion of an (n+1)× (n+1)
matrix. Each cell [i, j] in this matrix contains a set of non-terminals that represent all
the constituents that span positions i through j of the input. Since our indexing scheme
begins with 0, it’s natural to think of the indexes as pointing at the gaps between the
input words (as in 0 Book 1 that 2 flight 3). It follows then that the cell that represents
the entire input resides in position [0,n] in the matrix.

Since our grammar is in CNF, the non-terminal entries in the table have exactly
two daughters in the parse. Therefore, for each constituent represented by an entry [i, j]
in the table there must be a position in the input, k, where it can be split into two parts
such that i < k < j. Given such a k, the first constituent [i,k] must lie to the left of
entry [i, j] somewhere along row i, and the second entry [k, j] must lie beneath it, along
column j.

To make this more concrete, consider the following example with its completed
parse matrix shown in Fig. 13.9.

(13.6) Book the flight through Houston.

The superdiagonal row in the matrix contains the parts of speech for each input word
in the input. The subsequent diagonals above that superdiagonal contain constituents
that cover all the spans of increasing length in the input.



DRAFT

Section 13.4. Dynamic Programming Parsing Methods 13

S → NP VP S → NP VP
S → Aux NP VP S → X1 VP

X1 → Aux NP
S → VP S → book | include | prefer

S → Verb NP
S → X2 PP
S → Verb PP
S → VP PP

NP → Pronoun NP → I | she | me
NP → Proper-Noun NP → TWA | Houston
NP → Det Nominal NP → Det Nominal
Nominal → Noun Nominal → book | flight | meal | money
Nominal → Nominal Noun Nominal → Nominal Noun
Nominal → Nominal PP Nominal → Nominal PP
VP → Verb VP → book | include | prefer
VP → Verb NP VP → Verb NP
VP → Verb NP PP VP → X2 PP

X2 → Verb NP
VP → Verb PP VP → Verb PP
VP → VP PP VP → VP PP
PP → Preposition NP PP → Preposition NP

Figure 13.8 L1 Grammar and its conversion to CNF. Note that although they aren’t
shown here all the original lexical entries from L1 carry over unchanged as well.

Figure 13.9 Completed parse table for Book the flight through Houston.

Given all this, CKY recognition is simply a matter of filling the parse table in
the right way. To do this, we’ll proceed in a bottom-up fashion so that at the point
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where we are filling any cell [i, j], the cells containing the parts that could contribute
to this entry, (i.e. the cells to the left and the cells below) have already been filled.
There are several ways to do this; as the right side of Fig. 13.9 illustrates, the algorithm
given in Fig. 13.10 fills the upper-triangular matrix a column at a time working from
left to right. Each column is then filled from bottom to top. This scheme guarantees
that at each point in time we have all the information we need (to the left, since all
the columns to the left have already been filled, and below since we’re filling bottom
to top). It also mirrors on-line parsing since filling the columns from left to right
corresponds to processing each word one at a time.

function CKY-PARSE(words, grammar) returns table

for j← from 1 to LENGTH(words) do
table[ j−1, j]←{A | A → words[ j] ∈ grammar }
for i← from j−2 downto 0 do

for k← i+1 to j−1 do
table[i,j]← table[i,j] ∪

{A | A → BC ∈ grammar,
B ∈ table[i,k],
C ∈ table[k, j] }

Figure 13.10 The CKY algorithm

The outermost loop of the algorithm given in Fig. 13.10 iterates over the columns,
the second loop iterates over the rows, from the bottom up. The purpose of the inner-
most loop is to range over all the places where a substring spanning i to j in the input
might be split in two. As k ranges over the places where the string can be split, the
pairs of cells we consider move, in lockstep, to the right along row i and down along
column j. Fig. 13.11 illustrates the general case of filling cell [i, j]. At each such split,
the algorithm considers whether the contents of the two cells can be combined in a way
that is sanctioned by a rule in the grammar. If such a rule exists, the non-terminal on
its left-hand side is entered into the table.

Fig. 13.12 shows how the five cells of column 5 of the table are filled after the
word Houston is read. The arrows point out the two spans that are being used to
add an entry to the table. Note that the action in cell [0,5] indicates the presence of
three alternative parses for this input, one where the PP modifies the flight, one where
it modifies the booking, and one that captures the second argument in the original
VP → Verb NP PP rule, now captured indirectly with the VP → X2 PP rule.

In fact, since our current algorithm manipulates sets of non-terminals as cell
entries, it won’t include multiple copies of the same non-terminal in the table; the
second S and VP discovered while processing [0,5] would have no effect. We’ll revisit
this behavior in the next section.
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Figure 13.11 All the ways to fill the [i,j]th cell in the CKY table.

CKY Parsing

The algorithm given in Fig. 13.10 is a recognizer, not a parser; for it to succeed it
simply has to find an S in cell [0,N]. To turn it into a parser capable of returning all
possible parses for a given input, we’ll make two simple changes to the algorithm: the
first change is to augment the entries in the table so that each non-terminal is paired
with pointers to the table entries from which it was derived (more or less as shown in
Fig. 13.12), the second change is to permit multiple versions of the same non-terminal
to be entered into the table (again as shown in Fig. 13.12.) With these changes, the
completed table contains all the possible parses for a given input. Returning an arbitrary
single parse consists of choosing an S from cell [0,n] and then recursively retrieving its
component constituents from the table.

Of course, returning all the parses for a given input may incur considerable cost.
As we saw earlier, there may be an exponential number of parses associated with a
given input. In such cases, returning all the parses will have an unavoidable exponential
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Figure 13.12 Filling the last column after reading the word Houston.
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cost. Looking forward to Ch. 14, we can also think about retrieving the best parse for
a given input by further augmenting the table to contain the probabilities of each entry.
Retrieving the most probable parse consists of running a suitably modified version of
the Viterbi algorithm from Ch. 5 over the completed parse table.

CKY in Practice

Finally, we should note that while the restriction to CNF does not pose a problem theo-
retically, it does pose some non-trivial problems in practice. Obviously, as things stand
now, our parser isn’t returning trees that are consistent with the grammar given to us by
our friendly syntacticians. In addition to making our grammar developers unhappy, the
conversion to CNF will complicate any syntax-driven approach to semantic analysis.

One approach to getting around these problems is to keep enough information
around to transform our trees back to the original grammar as a post-processing step
of the parse. This is trivial in the case of the transformation used for rules with length
greater than 2. Simply deleting the new dummy non-terminals and promoting their
daughters restores the original tree.

In the case of unit productions, it turns out to be more convenient to alter the
basic CKY algorithm to handle them directly than it is to store the information needed
to recover the correct trees. Exercise 13.3 asks you to make this change. Many of
the probabilistic parsers presented in Ch. 14 use the CKY algorithm altered in just this
manner. Another solution is to adopt a more complex dynamic programming solution
that simply accepts arbitrary CFGs. The next section presents such an approach.

13.4.2 The Earley Algorithm

In contrast to the bottom-up search implemented by the CKY algorithm, the Earley
algorithm (Earley, 1970) uses dynamic programming to implement a top-down search
of the kind discussed earlier in Sec. 13.1.1. The core of the Earley algorithm is a single
left-to-right pass that fills an array we’ll call a chart that has N + 1 entries. For eachCHART

word position in the sentence, the chart contains a list of states representing the partial
parse trees that have been generated so far. As with the CKY algorithm, the indexes
represent the locations between the words in an input (as in 0 Book 1 that 2 flight 3).
By the end of the sentence, the chart compactly encodes all the possible parses of the
input. Each possible subtree is represented only once and can thus be shared by all the
parses that need it.

The individual states contained within each chart entry contain three kinds of
information: a subtree corresponding to a single grammar rule, information about the
progress made in completing this subtree, and the position of the subtree with respect to
the input. We’ll use a • within the right-hand side of a state’s grammar rule to indicate
the progress made in recognizing it. The resulting structure is called a dotted rule. ADOTTED RULE

state’s position with respect to the input will be represented by two numbers indicating
where the state begins and where its dot lies.

Consider the following example states, which would be among those created by
the Earley algorithm in the course of parsing Ex. 13.7:

(13.7) Book that flight.
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S → • VP, [0,0]

NP → Det • Nominal, [1,2]

VP → V NP •, [0,3]

The first state, with its dot to the left of its constituent, represents a top-down prediction
for this particular kind of S. The first 0 indicates that the constituent predicted by this
state should begin at the start of the input; the second 0 reflects the fact that the dot lies
at the beginning as well. The second state, created at a later stage in the processing of
this sentence, indicates that an NP begins at position 1, that a Det has been successfully
parsed and that a Nominal is expected next. The third state, with its dot to the right of
all its two constituents, represents the successful discovery of a tree corresponding to a
VP that spans the entire input.

The fundamental operation of an Earley parser is to march through the N + 1
sets of states in the chart in a left-to-right fashion, processing the states within each set
in order. At each step, one of the three operators described below is applied to each
state depending on its status. In each case, this results in the addition of new states to
the end of either the current, or next, set of states in the chart. The algorithm always
moves forward through the chart making additions as it goes; states are never removed
and the algorithm never backtracks to a previous chart entry once it has moved on. The
presence of a state S → α•, [0,N] in the list of states in the last chart entry indicates a
successful parse. Fig. 13.13 gives the complete algorithm.

The following three sections describe in detail the three operators used to process
states in the chart. Each takes a single state as input and derives new states from it.
These new states are then added to the chart as long as they are not already present.
The PREDICTOR and the COMPLETER add states to the chart entry being processed,
while the SCANNER adds a state to the next chart entry.

Predictor

As might be guessed from its name, the job of PREDICTOR is to create new states
representing top-down expectations generated during the parsing process. PREDICTOR

is applied to any state that has a non-terminal immediately to the right of its dot that is
not a part-of-speech category. This application results in the creation of one new state
for each alternative expansion of that non-terminal provided by the grammar. These
new states are placed into the same chart entry as the generating state. They begin and
end at the point in the input where the generating state ends.

For example, applying PREDICTOR to the state S → • VP, [0,0] results in the
addition of the following five states

VP → • Verb, [0,0]

VP → • Verb NP, [0,0]

VP → • Verb NP PP, [0,0]

VP → • Verb PP, [0,0]

VP → • VP PP, [0,0]

to the first chart entry.
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function EARLEY-PARSE(words, grammar) returns chart

ADDTOCHART((γ → • S, [0,0]), chart[0])
for i← from 0 to LENGTH(words) do
for each state in chart[i] do

if INCOMPLETE?(state) and
NEXT-CAT(state) is not a part of speech then

PREDICTOR(state)
elseif INCOMPLETE?(state) and

NEXT-CAT(state) is a part of speech then
SCANNER(state)

else
COMPLETER(state)

end
end
return(chart)

procedure PREDICTOR((A → α • B β , [i, j]))
for each (B → γ) in GRAMMAR-RULES-FOR(B, grammar) do

ADDTOCHART((B → • γ , [ j, j]), chart[j])
end

procedure SCANNER((A → α • B β , [i, j]))
if B ∈ PARTS-OF-SPEECH(word[j]) then

ADDTOCHART((B → word[ j] •, [ j, j +1]), chart[j+1])

procedure COMPLETER((B → γ •, [ j,k]))
for each (A → α • B β , [i, j]) in chart[j] do

ADDTOCHART((A → α B • β , [i,k]), chart[k])
end

procedure ADDTOCHART(state, chart-entry)
if state is not already in chart-entry then

PUSH-ON-END(state, chart-entry)
end

Figure 13.13 The Earley algorithm

Scanner

When a state has a part-of-speech category to the right of the dot, SCANNER is called to
examine the input and incorporate a state corresponding to the prediction of a word with
a particular part-of-speech into the chart. This is accomplished by creating a new state
from the input state with the dot advanced over the predicted input category. Note that
unlike CKY, Earley uses top-down input to help deal with part-of-speech ambiguities;
only those parts-of-speech of a word that are predicted by some existing state will find
their way into the chart.

Returning to our example, when the state VP → • Verb NP, [0,0] is processed,
SCANNER consults the current word in the input since the category following the dot is
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a part-of-speech. It then notes that book can be a verb, matching the expectation in the
current state. This results in the creation of the new state Verb → book•, [0,1]. This
new state is then added to the chart entry that follows the one currently being processed.
The noun sense of book never enters the chart since it is not predicted by any rule at
this position in the input.

Completer

COMPLETER is applied to a state when its dot has reached the right end of the rule.
The presence of such a state represents the fact that the parser has successfully discov-
ered a particular grammatical category over some span of the input. The purpose of
COMPLETER is to find, and advance, all previously created states that were looking for
this grammatical category at this position in the input. New states are then created by
copying the older state, advancing the dot over the expected category, and installing
the new state in the current chart entry.

In the current example, when the state NP → Det Nominal•, [1,3] is processed,
COMPLETER looks for incomplete states ending at position 1 and expecting an NP. It
finds the states VP → Verb•NP, [0,1] and VP → Verb•NP PP, [0,1]. This results in the
addition of the new complete state VP → Verb NP•, [0,3], and the new incomplete state
VP → Verb NP•PP, [0,3] to the chart.

A Complete Example

Fig. 13.14 shows the sequence of states created during the complete processing of Ex.
13.7; each row indicates the state number for reference, the dotted rule, the start and
end points, and finally the function that added this state to the chart. The algorithm
begins by seeding the chart with a top-down expectation for an S. This is accomplished
by adding a dummy state γ → • S, [0,0] to Chart[0]. When this state is processed, it
is passed to PREDICTOR leading to the creation of the three states representing predic-
tions for each possible type of S, and transitively to states for all of the left-corners of
those trees. When the state VP → • Verb, [0,0] is reached, SCANNER is called and the
first word is read. A state representing the verb sense of Book is added to the entry
for Chart[1]. Note that when the subsequent sentence initial VP states are processed,
SCANNER will be called again. However, new states are not added since they would be
identical to the Verb state already in the chart.

When all the states of Chart[0] have been processed, the algorithm moves on
to Chart[1] where it finds the state representing the verb sense of book. This is a
complete state with its dot to the right of its constituent and is therefore passed to
COMPLETER. COMPLETER then finds the four previously existing VP states expecting
a Verb at this point in the input. These states are copied with their dots advanced and
added to Chart[1]. The completed state corresponding to an intransitive VP then leads
to the creation of an S representing an imperative sentence. Alternatively, the dot in the
transitive verb phrase leads to the creation of the three states predicting different forms
of NPs. The state NP → • Det Nominal, [1,1] causes SCANNER to read the word that
and add a corresponding state to Chart[2].

Moving on to Chart[2], the algorithm finds the state representing the determiner
sense of that. This complete state leads to the advancement of the dot in the NP state
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Chart[0] S0 γ → • S [0,0] Dummy start state
S1 S → • NP VP [0,0] Predictor
S2 S → • Aux NP VP [0,0] Predictor
S3 S → • VP [0,0] Predictor
S4 NP → • Pronoun [0,0] Predictor
S5 NP → • Proper-Noun [0,0] Predictor
S6 NP → • Det Nominal [0,0] Predictor
S7 VP → • Verb [0,0] Predictor
S8 VP → • Verb NP [0,0] Predictor
S9 VP → • Verb NP PP [0,0] Predictor
S10 VP → • Verb PP [0,0] Predictor
S11 VP → • VP PP [0,0] Predictor

Chart[1] S12 Verb → book • [0,1] Scanner
S13 VP → Verb • [0,1] Completer
S14 VP → Verb • NP [0,1] Completer
S15 VP → Verb • NP PP [0,1] Completer
S16 VP → Verb • PP [0,1] Completer
S17 S → VP • [0,1] Completer
S18 VP → VP • PP [0,1] Completer
S19 NP → • Pronoun [1,1] Predictor
S20 NP → • Proper-Noun [1,1] Predictor
S21 NP → • Det Nominal [1,1] Predictor
S22 PP → • Prep NP [1,1] Predictor

Chart[2] S23 Det → that • [1,2] Scanner
S24 NP → Det • Nominal [1,2] Completer
S25 Nominal → • Noun [2,2] Predictor
S26 Nominal → • Nominal Noun [2,2] Predictor
S27 Nominal → • Nominal PP [2,2] Predictor

Chart[3] S28 Noun → flight • [2,3] Scanner
S29 Nominal → Noun • [2,3] Completer
S30 NP → Det Nominal • [1,3] Completer
S31 Nominal → Nominal • Noun [2,3] Completer
S32 Nominal → Nominal • PP [2,3] Completer
S33 VP → Verb NP • [0,3] Completer
S34 VP → Verb NP • PP [0,3] Completer
S35 PP → • Prep NP [3,3] Predictor
S36 S → VP • [0,3] Completer
S37 VP → VP • PP [0,3] Completer

Figure 13.14 Chart entries created during an Earley parse of Book that flight. Each
entry shows the state, its start and end points, and the function that placed it in the chart.

predicted in Chart[1], and also to the predictions for the various kinds of Nominal. The
first of these causes SCANNER to be called for the last time to process the word flight.

Finally moving on to Chart[3], the presence of the state representing flight leads
in quick succession to the completion of an NP, transitive VP, and an S. The presence
of the state S → VP•, [0,3] in the last chart entry signals the discovery of a successful



DRAFT

22 Chapter 13. Parsing with Context-Free Grammars

Chart[1] S12 Verb → book • [0,1] Scanner

Chart[2] S23 Det → that • [1,2] Scanner

Chart[3] S28 Noun → flight • [2,3] Scanner
S29 Nominal → Noun • [2,3] (S28)
S30 NP → Det Nominal • [1,3] (S23, S29)
S33 VP → Verb NP • [0,3] (S12, S30)
S36 S → VP • [0,3] (S33)

Figure 13.15 States that participate in the final parse of Book that flight, including
structural parse information.

parse.
It is useful to contrast this example with the CKY example given earlier. Al-

though Earley managed to avoid adding an entry for the noun sense of book, its overall
behavior is clearly much more promiscuous than CKY. This promiscuity arises from
the purely top-down nature of the predictions that Earley makes. Exercise 13.6 asks
you to improve the algorithm by eliminating some of these unnecessary predictions.

Retrieving Parse Trees from a Chart

As with the CKY algorithm, this version of the Earley algorithm is a recognizer not
a parser. Valid sentences will simply leave the state S → α•, [0,N] in the chart. To
retrieve parses from the chart the representation of each state must be augmented with
an additional field to store information about the completed states that generated its
constituents.

The information needed to fill these fields can be gathered by making a simple
change to the COMPLETER function. Recall that COMPLETER creates new states by
advancing existing incomplete states when the constituent following the dot has been
discovered in the right place. The only change necessary is to have COMPLETER add a
pointer to the older state onto a list of constituent-states for the new state. Retrieving a
parse tree from the chart is then merely a matter of following pointers starting with the
state (or states) representing a complete S in the final chart entry. Fig. 13.15 shows the
chart entries produced by an appropriately updated COMPLETER that participate in the
final parse for this example.

13.4.3 Chart Parsing

In both the CKY and Earley algorithms, the order in which events occur (adding en-
tries to the table, reading words, making predictions, etc.) is statically determined by
the procedures that make up these algorithms. Unfortunately, dynamically determining
the order in which events occur based on the current information is often necessary for
a variety of reasons. Fortunately, an approach advanced by Martin Kay and his col-
leagues (Kaplan, 1973; Kay, 1986) called Chart Parsing facilitates just such dynamicCHART PARSING

determination of the order in which chart entries are processed. This is accomplished
through the introduction of an agenda to the mix. In this scheme, as states (called edges
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in this approach) are created they are added to an agenda that is kept ordered according
to a policy that is specified separately from the main parsing algorithm. This can be
viewed as another instance of state-space search that we’ve seen several times before.
The FSA and FST recognition and parsing algorithms in Chs. 2 and 3 employed agen-
das with simple static policies, while the A∗ decoding algorithm described in Ch. 9 is
driven by an agenda that is ordered probabilistically.

Fig. 13.16 presents a generic version of a parser based on such a scheme. The
main part of the algorithm consists of a single loop that removes a edge from the front
of an agenda, processes it, and then moves on to the next entry in the agenda. When
the agenda is empty, the parser stops and returns the chart. The policy used to order
the elements in the agenda thus determines the order in which further edges are created
and predictions are made.

function CHART-PARSE(words, grammar, agenda-strategy) returns chart

INITIALIZE(chart, agenda, words)
while agenda

current-edge←POP(agenda)
PROCESS-EDGE(current-edge)

return(chart)

procedure PROCESS-EDGE(edge)
ADD-TO-CHART(edge)
if INCOMPLETE?(edge)

FORWARD-FUNDAMENTAL-RULE(edge)
else

BACKWARD-FUNDAMENTAL-RULE(edge)
MAKE-PREDICTIONS(edge)

procedure FORWARD-FUNDAMENTAL((A → α • B β , [i, j]))
for each(B → γ •, [ j,k]) in chart

ADD-TO-AGENDA(A → α B • β , [i,k])

procedure BACKWARD-FUNDAMENTAL((B → γ •, [ j,k]))
for each(A → α • B β , [i, j]) in chart

ADD-TO-AGENDA(A → α B • β , [i,k])

procedure ADD-TO-CHART(edge)
if edge is not already in chart then

Add edge to chart

procedure ADD-TO-AGENDA(edge)
if edge is not already in agenda then

APPLY(agenda-strategy, edge, agenda)

Figure 13.16 A Chart Parsing Algorithm

The key principle in processing edges in this approach is what Kay termed the
fundamental rule of chart parsing. The fundamental rule states that when the chartFUNDAMENTAL RULE

contains two contiguous edges where one of the edges provides the constituent that
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the other one needs, a new edge should be created that spans the original edges and
incorporates the provided material. More formally, the fundamental rule states the
following: if the chart contains two edges A → α • B β , [i, j] and B → γ •, [ j,k] then
we should add the new edge A → α B • β [i,k] to the chart. It should be clear that the
fundamental rule is a generalization of the basic table-filling operations found in both
the CKY and Earley algorithms.

The fundamental rule is triggered in Fig. 13.16 when an edge is removed from the
agenda and passed to the PROCESS-EDGE procedure. Note that the fundamental rule
itself does not specify which of the two edges involved has triggered the processing.
PROCESS-EDGE handles both cases by checking to see whether or not the edge in
question is complete. If it is complete than the algorithm looks earlier in the chart to
see if any existing edge can be advanced; if it is incomplete than it looks later in the
chart to see if it can be advanced by any pre-existing edge later in the chart.

The next piece of the algorithm that needs to be filled in is the method for mak-
ing predictions based on the edge being processed. There are two key components to
making predictions in chart parsing: the events that trigger predictions, and the nature
of a predictions. The nature of these components varies depending on whether we are
pursuing a top-down or bottom-up strategy. As in Earley, top-down predictions are trig-
gered by expectations that arise from incomplete edges that have been entered into the
chart; bottom-up predictions are triggered by the discovery of completed constituents.
Fig. 13.17 illustrates how these two strategies can be integrated into the chart parsing
algorithm.

procedure MAKE-PREDICTIONS(edge)
if Top-Down and INCOMPLETE?(edge)

TD-PREDICT(edge)
elsif Bottom-Up and COMPLETE?(edge)

BU-PREDICT(edge)

procedure TD-PREDICT((A → α • B β , [i, j]))
for each(B → γ) in grammar do

ADD-TO-AGENDA(B → • γ , [ j, j])

procedure BU-PREDICT((B → γ •, [i, j]))
for each(A → B β ) in grammar

ADD-TO-AGENDA(A → B • β , [i, j])

Figure 13.17 A Chart Parsing Algorithm

Obviously we’ve left out many of the bookkeeping details that would have to
be specified to turn this approach into a real parser. Among the details that have to be
worked out are how the INITIALIZE procedure gets things started, how and when words
are read, the organization of the chart, and specifying an agenda strategy. Indeed, in
describing the approach here, Kay (1986) refers to it as an algorithm!schema ratherALGORITHM!SCHEMA

than an algorithm, since it more accurately specifies an entire family of parsers rather
than any particular parser. Exercise 13.7 asks you to explore some of the available
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choices by implementing various chart parsers.

13.5 PARTIAL PARSING

Many language-processing tasks simply do not require complex, complete parse trees
for all inputs. For these tasks, a partial parse, or shallow parse, of input sentencesPARTIAL PARSE

SHALLOW PARSE may be sufficient. For example, information extraction systems generally do not ex-
tract all the possible information from a text; they simply identify and classify the
segments in a text that are likely to contain valuable information. Similarly, informa-
tion retrieval systems may choose to index documents based on a select subset of the
constituents found in a text.

Not surprisingly, there are many different approaches to partial parsing. Some
approaches make use of cascades of FSTs, of the kind discussed in Ch. 3, to to produce
representations that closely approximate the kinds of trees we’ve been assuming in
this chapter and the last. These approaches typically produce flatter trees than the ones
we’ve been discussing. This flatness arises from the fact that such approaches generally
defer decisions that may require semantic or contextual factors, such as prepositional
phrase attachments, coordination ambiguities, and nominal compound analyses. Nev-
ertheless the intent is to produce parse-trees that link all the major constituents in an
input.

An alternative style of partial parsing is known as chunking. Chunking is theCHUNKING

process of identifying and classifying the flat non-overlapping segments of a sen-
tence that constitute the basic non-recursive phrases corresponding to the major parts-
of-speech found in most wide-coverage grammars. This set typically includes noun
phrases, verb phrases, adjective phrases, and prepositional phrases; in other words, the
phrases that correspond to the content-bearing parts-of-speech. Of course, not all ap-
plications require the identification of all of these categories; indeed the most common
chunking task is to simply find all the base noun phrases in a text.

Since chunked texts lack a hierarchical structure, a simple bracketing notation is
sufficient to denote the location and the type of the chunks in a given example. The
following example illustrates a typical bracketed notation.

(13.8) [NP The morning flight] [PP from] [NP Denver] [VP has arrived.]

This bracketing notation makes clear the two fundamental tasks that are involved in
chunking: finding the non-overlapping extents of the chunks, and assigning the correct
label to the discovered chunks.

Note that in this example all the words are contained in some chunk. This will
not be the case in all chunking applications. In many settings, a good number of the
words in any input will fall outside of any chunk. This is, for example, the norm in
systems that are only interested in finding the base-NPs in their inputs, as illustrated by
the following example.

(13.9) [NP The morning flight] from [NP Denver] has arrived.

The details of what constitutes a syntactic base-phrase for any given system
varies according to the syntactic theories underlying the system and whether the phrases
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are being derived from a treebank. Nevertheless, some standard guidelines are followed
in most systems. First and foremost, base phrases of a given type do not recursively
contain any constituents of the same type. Eliminating this kind of recursion leaves us
with the problem of determining the boundaries of the non-recursive phrases. In most
approaches, base-phrases include the headword of the phrase, along with any pre-head
material within the constituent, while crucially excluding any post-head material. Elim-
inating post-head modifiers from the major categories automatically removes the need
to resolve attachment ambiguities. Note that exclusion does lead to certain oddities
such as the fact that PPs and VPs often consist solely of their heads. Thus our earlier
example a flight from Indianapolis to Houston on TWA is reduced to the following:

(13.10) [NP a flight] [PP from] [NP Indianapolis][PP to][NP Houston][PP on][NP TWA].

13.5.1 Finite-State Rule-Based Chunking

Syntactic base-phrases of the kind we’re considering can be characterized by finite-
state automata (or finite-state rules, or regular expressions) of the kind discussed earlier
in Chs. 2 and 3. In finite-state rule-based chunking, a set of rules is hand-crafted to
capture the phrases of interest for any particular application. In most rule-based sys-
tems, chunking proceeds from left-to-right, finding the longest matching chunk from
the beginning of the sentence, it then continues with the first word after the end of the
previously recognized chunk. The process continues until the end of the sentence. This
is a greedy process and is not guaranteed to find the best global analysis for any given
input.

The primary limitation placed on these chunk rules is that they can not contain
any recursion; the right-hand side of the rule can not reference directly, or indirectly, the
category that the rule is designed to capture. In other words, rules of the form NP →
Det Nominal are fine, but rules such as Nominal → Nominal PP are not. Consider the
following example chunk rules adapted from Abney (1996).

NP → (Det) Noun* Noun

NP → Proper-Noun

VP → Verb

VP → Aux Verb

The process of turning these rules into a single finite-state transducer is the same
we introduced in Ch. 3 to capture spelling and phonological rules for English. Finite
state transducers are created corresponding to each rule and are then unioned together
to form a single machine that can then be determinized and minimized.

As we saw in Ch. 3, a major benefit of the finite-state approach is the ability to
use the output of earlier transducers as inputs to subsequent transducers to form cas-
cades. In partial parsing, this technique can be used to more closely approximate
the output of true context-free parsers. In this approach, an initial set of transducers
is used, in the way just described, to find a subset of syntactic base-phrases. These
base-phrases are then passed as input to further transducers that detect larger and larger
constituents such as prepositional phrases, verb phrases, clauses, and sentences. Con-
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FST1

S

NP PP VP

NP IN NP VP

DT  NN  NN IN PRP Aux VB 

The morning flight from Denver has arrived

FST2

FST3

Figure 13.18 Chunk-based partial parsing via a set of finite-set cascades. FST1 trans-
duces from part-of-speech tags to base noun phrases and verb phrases. FST2 finds prepo-
sitional phrases. Finally, FST3 detects sentences.

sider the following rules, again adapted from Abney (1996).

FST2 PP → Preposition NP

FST3 S → PP* NP PP* VP PP*

Combining these two machines with the earlier rule-set results in a three machine cas-
cade. The application of this cascade to Ex. 13.8 is shown in Fig. 13.18.

13.5.2 Machine Learning-Based Approaches to Chunking

As with part-of-speech tagging, an alternative to rule-based processing is to use super-
vised machine learning techniques to train a chunker using annotated data as a training
set. As described earlier in Ch. 6, we can view the task as one of sequential classifica-
tion, where a classifier is trained to label each element of the input in sequence. Any of
the standard approaches to training classifiers apply to this problem. In the work that
pioneered this approach, Ramshaw and Marcus (1995) used the transformation-based
learning method described in Ch. 5.

The critical first step in such an approach is to find a way to view the chunking
process that is amenable to sequential classification. A particularly fruitful approach
is to treat chunking as a tagging task similar to part-of-speech tagging (Ramshaw and
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Marcus, 1995). In this approach, a small tagset simultaneously encodes both the seg-
mentation and the labeling of the chunks in the input. The standard way to do this has
come to be called IOB tagging and is accomplished by introducing tags to representIOB TAGGING

the beginning (B) and internal (I) parts of each chunk, as well as those elements of
the input that are outside (O) any chunk. Under this scheme, the size of the tagset is
(2n + 1) where n is the number of categories to be classified. The following exam-
ple shows the tagging version of the bracketing notation given earlier for Ex. 13.8 on
pg. 25.

(13.11) The
B NP

morning
I NP

flight
I NP

from
B PP

Denver
B NP

has
B VP

arrived
I VP

The same sentence with only the base-NPs tagged illustrates the role of the O tags.

(13.12) The
B NP

morning
I NP

flight
I NP

from
O

Denver
B NP

has
O

arrived.
O

Notice that there is no explicit encoding of the end of a chunk in this scheme; the end
of any chunk is implicit in any transition from an I or B, to a B or O tag. This encoding
reflects the notion that when sequentially labeling words, it is generally quite a bit
easier (at least in English) to detect the beginning of a new chunk than it is to know
when a chunk has ended. Not surprisingly, there are a variety of other tagging schemes
that represent chunks in subtly different ways, including some that explicitly mark the
end of constituents. Tjong Kim Sang and Veenstra (1999) describe three variations on
this basic tagging scheme and investigate their performance on a variety of chunking
tasks.

Given such a tagging scheme, building a chunker consists of training a classi-
fier to label each word of an input sentence with one of the IOB tags from the tagset.
Of course, training requires training data consisting of the phrases of interest delim-
ited and marked with the appropriate category. The direct approach is to annotate
a representative corpus. Unfortunately, annotation efforts can be both expensive and
time-consuming. It turns out that the best place to find such data for chunking, is in
one of the already existing treebanks described earlier in Ch. 12.

Resources such as the Penn Treebank provide a complete syntactic parse for
each sentence in a corpus. Therefore, base syntactic phrases can be extracted from
the constituents provided by the Treebank parses. Finding the kinds of phrases we’re
interested in is relatively straightforward; we simply need to know the appropriate non-
terminal names in the collection. Finding the boundaries of the chunks entails finding
the head, and then including the material to the left of the head, ignoring the text to the
right. This latter process is somewhat error-prone since it relies on the accuracy of the
head-finding rules described earlier in Ch. 12.

Having extracted a training corpus from a treebank, we must now cast the train-
ing data into a form that’s useful for training classifiers. In this case, each input can
be represented as a set of features extracted from a context window that surrounds the
word to be classified. Using a window that extends two words before, and two words
after the word being classified seems to provide reasonable performance. Features ex-
tracted from this window include: the words themselves, their parts-of-speech, as well
as the chunk tags of the preceding inputs in the window.
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B_NP I_NP ?      

The flight from Denver has arrived  

Classifier

DT NN NN IN NNP

Corresponding feature representation

The, DT, B_NP, morning, NN, I_NP, flight, NN, from, IN, Denver, NNP, I_NP

Label

I_NP

morning

Figure 13.19 The sequential classifier-based approach to chunking. The chunker slides a context window over
the sentence classifying words as it proceeds. At this point the classifier is attempting to label flights. Features
derived from the context typically include: the current, previous and following words; the current, previous and
following parts-of-speech; and the previous assignments of chunk-tags.

Fig. 13.19 illustrates this scheme with the example given earlier. During training,
the classifier would be provided with a training vector consisting of the values of 12
features (using Penn Treebank tags) as shown. To be concrete, during training the
classifier is given the 2 words to the right of the decision point along with their part-of-
speech tags and their chunk tags, the word to be tagged along with its part-of-speech,
the two words that follow along with their parts-of speech, and finally the correct chunk
tag, in this case I NP. During classification, the classifier is given the same vector
without the answer and is asked to assign the most appropriate tag from its tagset.

13.5.3 Evaluating Chunking Systems

As with the evaluation of part-of-speech taggers, the evaluation of chunkers proceeds
by comparing the output of a chunker against gold-standard answers provided by hu-
man annotators. However, unlike part-of-speech tagging and speech recognition, word-
by-word accuracy measures are not adequate. Instead, chunkers are evaluated using
measures borrowed from the field of information retrieval. In particular, the notions of
precision, recall and the F measure are employed.

Precision measures the percentage of chunks that were provided by a system
that were correct. Correct here means that both the boundaries of the chunk and the
chunk’s label are correct. Precision is therefore defined as:
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Precision: =
Number of correct chunks given by system
Total number of chunks given by system

Recall measures the percentage of chunks actually present in the input that were
correctly identified by the system. Recall is defined as:

Recall: =
Number of correct chunks given by system
Total number of actual chunks in the text

The F-measure (van Rijsbergen, 1975) provides a way to combine these twoF-MEASURE

measures into a single metric. The F-measure is defined as:

Fβ =
(β 2 +1)PR
β 2P+R

The β parameter is used to differentially weight the importance of recall and precision,
based perhaps on the needs of an application. Values of β > 1 favor recall, while values
of β < 1 favor precision. When β = 1, precision and recall are equally balanced; this
is sometimes called Fβ=1 or just F1:

F1 =
2PR
P+R

(13.13)

The F-measure derives from a weighted harmonic mean of precision and recall.
The harmonic mean of a set of numbers is the reciprocal of the arithmetic mean of the
reciprocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1

1
a2

1
a3

... 1
an

(13.14)

and hence F-measure is

F =
1

1
αP × 1

(1−α)R

or

(

with β 2 =
1−α
α

)

F =
(β 2 +1)PR
β 2P+R

(13.15)

The best current systems achieve an F-measure of around .96 on the task of
base-NP chunking. Learning-based systems designed to find a more complete set of
base-phrases, such as the ones given in Fig. 13.20, achieve F-measures in the .92 to .94
range. The exact choice of learning approach seems to have little impact on these re-
sults; a wide-range of machine learning approaches achieve essentially the same results
(Cardie et al., 2000). FST-based systems of the kind discussed in Sec. 13.5.1 achieved
F-measures ranging from .85 to .92 on this task.

Factors limiting the performance of current systems include the accuracy of the
part-of-speech taggers used to provide features for the system during testing, inconsis-
tencies in the training data introduced by the process of extracting chunks from parse
trees, and difficulty resolving ambiguities involving conjunctions. Consider the follow-
ing examples that involve pre-nominal modifiers and conjunctions.

(13.16) [NP Late arrivals and departures] are commonplace during winter.

(13.17) [NP Late arrivals] and [NP cancellations] are commonplace during winter.

In the first example, late is shared by both arrivals and departures yielding a
single long base-NP. In the second example, late is not shared and modifies arrivals
alone, thus yielding two base-NPs. Distinguishing these two situations, and others
like them, requires access to semantic and context information unavailable to current
chunkers.
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Label Category Proportion (%) Example
NP Noun Phrase 51 The most frequently cancelled flight
VP Verb Phrase 20 may not arrive
PP Prepositional Phrase 20 to Houston
ADVP Adverbial Phrase 4 earlier
SBAR Subordinate Clause 2 that
ADJP Adjective Phrase 2 late

Figure 13.20 Most frequent base-phrases used in the 2000 CONLL shared task. These
chunks correspond to the major categories contained in the Penn Treebank.

13.6 SUMMARY

The two major ideas introduced in this chapter are those of parsing and partial pars-
ing. Here’s a summary of the main points we covered about these ideas:

• Parsing can be viewed as a search problem.

• Two common architectural metaphors for this search are top-down (starting with
the root S and growing trees down to the input words) and bottom-up (starting
with the words and growing trees up toward the root S).

• Ambiguity combined with the repeated parsing of sub-trees pose problems for
simple backtracking algorithms.

• A sentence is structurally ambiguous if the grammar assigns it more than one
possible parse.

• Common kinds of structural ambiguity include PP-attachment, coordination
ambiguity and noun-phrase bracketing ambiguity.

• The dynamic programming parsing algorithms use a table of partial-parses to
efficiently parse ambiguous sentences. The CKY, Earley, and Chart-Parsing
algorithms all use dynamic-programming to solve the repeated parsing of sub-
trees problem.

• The CKY algorithm restricts the form of its grammar to Chomsky-Normal Form;
the Earley and Chart-parsers accept unrestricted context-free grammars.

• Many practical problems including information extraction problems can be
solved without full parsing.

• Partial parsing and chunking are methods for identifying shallow syntactic con-
stituents in a text.

• High accuracy partial parsing can be achieved either through rule-based or ma-
chine learning-based methods.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Writing about the history of compilers, Knuth notes:
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In this field there has been an unusual amount of parallel discovery of the
same technique by people working independently.

Well, perhaps not unusual, if multiple discovery is the norm (see page ??). But there
has certainly been enough parallel publication that this history will err on the side
of succinctness in giving only a characteristic early mention of each algorithm; the
interested reader should see Aho and Ullman (1972).

Bottom-up parsing seems to have been first described by Yngve (1955), who
gave a breadth-first bottom-up parsing algorithm as part of an illustration of a machine
translation procedure. Top-down approaches to parsing and translation were described
(presumably independently) by at least Glennie (1960), Irons (1961), and Kuno and
Oettinger (1963). Dynamic programming parsing, once again, has a history of inde-
pendent discovery. According to Martin Kay (personal communication), a dynamic
programming parser containing the roots of the CKY algorithm was first implemented
by John Cocke in 1960. Later work extended and formalized the algorithm, as well as
proving its time complexity (Kay, 1967; Younger, 1967; Kasami, 1965). The related
well-formed substring table (WFST) seems to have been independently proposed byWFST

Kuno (1965), as a data structure which stores the results of all previous computations
in the course of the parse. Based on a generalization of Cocke’s work, a similar data-
structure had been independently described by Kay (1967) and Kay (1973). The top-
down application of dynamic programming to parsing was described in Earley’s Ph.D.
dissertation (Earley, 1968) and Earley (1970). Sheil (1976) showed the equivalence of
the WFST and the Earley algorithm. Norvig (1991) shows that the efficiency offered
by all of these dynamic programming algorithms can be captured in any language with
a memoization function (such as LISP) simply by wrapping the memoization operation
around a simple top-down parser.

While parsing via cascades of finite-state automata had been common in the
early history of parsing (Harris, 1962), the focus shifted to full CFG parsing quite soon
afterward. Church (1980) argued for a return to finite-state grammars as a processing
model for natural language understanding; other early finite-state parsing models in-
clude Ejerhed (1988). Abney (1991) argued for the important practical role of shallow
parsing. Much recent work on shallow parsing applies machine learning to the task of
learning the patterns; see for example Ramshaw and Marcus (1995), Argamon et al.
(1998), Munoz et al. (1999).

The classic reference for parsing algorithms is Aho and Ullman (1972); although
the focus of that book is on computer languages, most of the algorithms have been
applied to natural language. A good programming languages textbook such as Aho
et al. (1986) is also useful.

EXERCISES

13.1 Implement the algorithm to convert arbitrary context-free grammars to CNF.
Apply your program to the L1 grammar.
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13.2 Implement the CKY algorithm and test it using your converted L1 grammar.

13.3 Rewrite the CKY algorithm given on page 13.10 so that it can accept grammars
that contain unit productions.

13.4 Augment the Earley algorithm of Fig. 13.13 to enable parse trees to be retrieved
from the chart by modifying the pseudocode for the COMPLETER as described on page
22.

13.5 Implement the Earley algorithm as augmented in the previous exercise. Check
it on a test sentence using the L1 grammar.

13.6 Alter the Earley algorithm so that it makes better use of bottom-up information
to reduce the number of useless predictions.

13.7 Attempt to recast the CKY and Earley algorithms in the chart parsing paradigm.

13.8 Discuss the relative advantages and disadvantages of partial parsing versus full
parsing.

13.9 Implement a more extensive finite-state grammar for noun-groups using the ex-
amples given in Sec. 13.5 and test it on some sample noun-phrases. If you have access
to an on-line dictionary with part-of-speech information, start with that; if not, build a
more restricted system by hand.

13.10 Discuss how you would augment a parser to deal with input that may be incor-
rect, such as spelling errors or misrecognitions from a speech recognition system.
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14 STATISTICAL PARSING

Two roads diverged in a wood, and I –
I took the one less traveled by...

Robert Frost,The Road Not Taken

The characters in Damon Runyon’s short stories are willing to bet “on any proposition
whatever”, as Runyon says about Sky Masterson inThe Idyll of Miss Sarah Brown;
from the probability of getting aces back-to-back to the odds against a man being able
to throw a peanut from second base to home plate. There is a moral here for language
processing: with enough knowledge we can figure the probability of just about any-
thing. The last two chapters have introduced sophisticatedmodels of syntactic structure
and its parsing. In this chapter we show that it is possible tobuild probabilistic mod-
els of syntactic knowledge and use some of this probabilistic knowledge in efficient
probabilistic parsers.

One crucial use of probabilistic parsing is to solve the problem ofdisambiguation.
Recall from Ch. 13 that sentences on average tend to be very syntactically ambiguous,
due to problems likecoordination ambiguity andattachment ambiguity. The CKY
and Earley parsing algorithms could represent these ambiguities in an efficient way,
but were not equipped to resolve them. A probabilistic parser offers a solution to the
problem: compute the probability of each interpretation, and choose the most-probable
interpretation. Thus, due to the prevalence of ambiguity, most modern parsers used for
natural language understanding tasks (thematic role labeling, summarization, question-
answering, machine translation) are of necessity probabilistic.

Another important use of probabilistic grammars and parsers is in language mod-
eling for speech recognition. We saw thatN-gram grammars are used in speech rec-
ognizers to predict upcoming words, helping constrain the acoustic model search for
words. Probabilistic versions of more sophisticated grammars can provide additional
predictive power to a speech recognizer. Of course humans have to deal with the same
problems of ambiguity as do speech recognizers, and it is interesting that psycholog-
ical experiments suggest that people use something like these probabilistic grammars
in human language-processing tasks (e.g., human reading orspeech understanding).

The most commonly used probabilistic grammar is theprobabilistic context-free
grammar (PCFG), a probabilistic augmentation of context-free grammars in which
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each rule is associated with a probability. We introduce PCFGs in the next section,
showing how they can be trained on a hand-labeled Treebank grammar, and how they
can be parsed. We present the most basic parsing algorithm for PCFGs, which is the
probabilistic version of theCKY algorithm that we saw in Ch. 13.

We then show a number of ways that we can improve on this basic probability
model (PCFGs trained on Treebank grammars). One method of improving a trained
Treebank grammar is to change the names of the non-terminals. By making the non-
terminals sometimes more specific and sometimes more general, we can come up with
a grammar with a better probability model that leads to improved parsing scores. An-
other augmentation of the PCFG works by adding more sophisticated conditioning
factors, extending PCFGs to handle probabilisticsubcategorizationinformation and
probabilisticlexical dependencies.

Finally, we describe the standard PARSEVAL metrics for evaluating parsers, and
discuss some psychological results on human parsing.

14.1 PROBABILISTIC CONTEXT-FREE GRAMMARS

The simplest augmentation of the context-free grammar is the Probabilistic Context-
Free Grammar (PCFG), also known as theStochastic Context-Free GrammarPCFG

(SCFG), first proposed by Booth (1969). Recall that a context-freegrammarG isSCFG

defined by four parameters (N, Σ, P, S); a probabilistic context-free grammar augments
each rule inP with a conditional probability. A PCFG is thus defined by the following
components:

N a set ofnon-terminal symbols(or variables)

Σ a set ofterminal symbols (disjoint fromN)

R a set ofrules or productions, each of the formA→ β [p], whereA is
a non-terminal,β is a string of symbols from the infinite set of strings
(Σ∪N)∗, andp is a number between 0 and 1 expressingP(β|A)

S a designatedstart symbol

That is, a PCFG differs from a standard CFG by augmenting eachrule in R with a
conditional probability:

A→ β [p](14.1)

Herep expresses the probability that the given non-terminalA will be expanded to
the sequenceβ. That is,p is the conditional probability of a given expansionβ given
the left-hand-side (LHS) non-terminalA. We can represent this probability as

P(A→ β)

or as

P(A→ β|A)



DRAFT
Section 14.1. Probabilistic Context-Free Grammars 3

S→ NP VP [.80] Det → that [.10] | a [.30] | the[.60]
S→ Aux NP VP [.15] Noun→ book[.10] | flight [.30]
S→ VP [.05] | meal[.15] | money[.05]
NP → Pronoun [.35] | flights[.40] | dinner[.10]
NP → Proper-Noun [.30] Verb→ book[.30] | include[.30]
NP → Det Nominal [.20] | prefer; [.40]
NP → Nominal [.15] Pronoun→ I [.40] | she[.05]
Nominal→ Noun [.75] | me[.15] | you[.40]
Nominal→ Nominal Noun [.20] Proper-Noun→ Houston[.60]
Nominal→ Nominal PP [.05] | TWA[.40]
VP → Verb [.35] Aux→ does[.60] | can[40]
VP → Verb NP [.20] Preposition→ from [.30] | to [.30]
VP → Verb NP PP [.10] | on [.20] | near[.15]
VP → Verb PP [.15] | through[.05]
VP → Verb NP NP [.05]
VP → VP PP [.15]
PP → Preposition NP [1.0]

Figure 14.1 A PCFG which is a probabilistic augmentation of theL1 miniature English
CFG grammar and lexicon of Fig.?? in Ch. 13. These probabilities were made up for
pedagogical purposes and are not based on a corpus (since anyreal corpus would have
many more rules, and so the true probabilities of each rule would be much smaller).

or as

P(RHS|LHS)

Thus if we consider all the possible expansions of a non-terminal, the sum of their
probabilities must be 1:

∑
β

P(A→ β) = 1

Fig. 14.1 shows a PCFG: a probabilistic augmentation of theL1 miniature English
CFG grammar and lexicon . Note that the probabilities of all of the expansions of each
non-terminal sum to 1. Also note that these probabilities were made up for pedagogical
purposes. In any real grammar there are a great many more rules for each non-terminal
and hence the probabilities of any particular rule would tend to be much smaller.

A PCFG is said to beconsistentif the sum of the probabilities of all sentences inCONSISTENT

the language equals 1. Certain kinds of recursive rules cause a grammar to be inconsis-
tent by causing infinitely looping derivations for some sentences. For example a rule
S→ S with probability 1 would lead to lost probability mass due toderivations that
never terminate. See Booth and Thompson (1973) for more details on consistent and
inconsistent grammars.

How are PCFGs used? A PCFG can be used to estimate a number of useful prob-
abilities concerning a sentence and its parse tree(s), including the probability of a par-
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ticular parse tree (useful in disambiguation) and the probability of a sentence or a piece
of a sentence (useful in language modeling). Let’s see how this works.

14.1.1 PCFGs for Disambiguation

A PCFG assigns a probability to each parse treeT (i.e., eachderivation) of a sentence
S. This attribute is useful indisambiguation. For example, consider the two parses
of the sentence “Book the dinner flights” shown in Fig. 14.2. The sensible parse on
the left means “Book flights that serve dinner”. The nonsensical parse on the right,
however, would have to mean something like “Book flights on behalf of ‘the dinner’?”,
the way that a structurally similar sentence like “Can you book John flights?” means
something like “Can you book flights on behalf of John?”.

The probability of a particular parseT is defined as the product of the probabilities
of all then rules used to expand each of then non-terminal nodes in the parse treeT,
(where each rulei can be expressed asLHSi →RHSi):

P(T,S) =
n

∏
i=1

P(RHSi|LHSi)(14.2)

The resulting probabilityP(T,S) is both the joint probability of the parse and the
sentence, and also the probability of the parseP(T). How can this be true? First, by
the definition of joint probability:

P(T,S) = P(T)P(S|T)(14.3)

But since a parse tree includes all the words of the sentence,P(S|T) is 1. Thus:

P(T,S) = P(T)P(S|T) = P(T)(14.4)

The probability of each of the trees in Fig. 14.2 can be computed by multiplying
together the probabilities of each of the rules used in the derivation. For example, the
probability of the left tree in Figure 14.2a (call itTle f t) and the right tree (Figure 14.2b
or Tright ) can be computed as follows:

P(Tle f t) = .05∗ .20∗ .20∗ .20∗ .75∗ .30∗ .60∗ .10∗ .40= 2.2×10−6

P(Tright) = .05∗ .10∗ .20∗ .15∗ .75∗ .75∗ .30∗ .60∗ .10∗ .40= 6.1×10−7

We can see that the left (transitive) tree in Fig. 14.2(a) hasa much higher probability
than the ditransitive tree on the right. Thus this parse would correctly be chosen by a
disambiguation algorithm which selects the parse with the highest PCFG probability.

Let’s formalize this intuition that picking the parse with the highest probability is
the correct way to do disambiguation. Consider all the possible parse trees for a given
sentenceS. The string of wordsS is called theyield of any parse tree overS. Thus outYIELD

of all parse trees with a yield ofS, the disambiguation algorithm picks the parse tree
which is most probable givenS:

T̂(S) = argmax
Ts.t.S=yield(T)

P(T|S)(14.5)
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S

VP

Verb

Book

NP

Det

the

Nominal

Nominal

Noun

dinner

Noun

flight

S

VP

Verb

Book

NP

Det

the

Nominal

Noun

dinner

NP

Nominal

Noun

flight

Rules P Rules P
S → VP .05 S → VP .05
VP → Verb NP .20 VP → Verb NP NP .10
NP → Det Nominal .20 NP → Det Nominal .20
Nominal → Nominal Noun .20 NP → Nominal .15
Nominal → Noun .75 Nominal → Noun .75

Nominal → Noun .75
Verb → book .30 Verb → book .30
Det → the .60 Det → the .60
Noun → dinner .10 Noun → dinner .10
Noun → flights .40 Noun → flights .40

Figure 14.2 Two parse trees for an ambiguous sentence, The transitive parse (a) cor-
responds to the sensible meaning “Book flights that serve dinner”, while the ditransitive
parse (b) to the nonsensical meaning “Book flights on behalf of ‘the dinner’”.

By definition, the probabilityP(T|S) can be rewritten asP(T,S)/P(S), thus leading to:

T̂(S) = argmax
Ts.t.S=yield(T)

P(T,S)

P(S)
(14.6)

Since we are maximizing over all parse trees for the same sentence,P(S) will be a
constant for each tree, so we can eliminate it:

T̂(S) = argmax
Ts.t.S=yield(T)

P(T,S)(14.7)

Furthermore, since we showed above thatP(T,S) = P(T), the final equation for
choosing the most likely parse neatly simplifies to choosingthe parse with the highest
probability:

T̂(S) = argmax
Ts.t.S=yield(T)

P(T)(14.8)
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14.1.2 PCFGs for Language Modeling

A second attribute of a PCFG is that it assigns a probability to the string of words con-
stituting a sentence. This is important inlanguage modeling, whether for use in speech
recognition, machine translation, spell-correction, augmentative communication, or
other applications. The probability of an unambiguous sentence isP(T,S) = P(T)
or just the probability of the single parse tree for that sentence. The probability of an
ambiguous sentence is the sum of the probabilities of all theparse trees for the sen-
tence:

P(S) = ∑
Ts.t.S=yield(T)

P(T,S)(14.9)

= ∑
Ts.t.S=yield(T)

P(T)(14.10)

An additional feature of PCFGs that is useful for language modeling is their ability
to assign a probability to substrings of a sentence. For example, suppose we want to
know the probability of the next wordwi in a sentence given all the words we’ve seen
so farw1, ...,wi−1. The general formula for this is:

P(wi |w1,w2, ...,wi−1) =
P(w1,w2, ...,wi−1,wi , ...)

P(w1,w2, ...,wi−1, ...)
(14.11)

We saw in Ch. 4 a simple approximation of this probability using N-grams, con-
ditioning on only the last word or two instead of the entire context; thus thebigram
approximation would give us:

P(wi |w1,w2, ...,wi−1)≈
P(wi−1,wi)

P(wi−1)
(14.12)

But the fact that theN-gram model can only make use of a couple words of context
means it is ignoring potentially useful prediction cues. Consider predicting the word
after in the following sentence from Chelba and Jelinek (2000):

(14.13) the contract ended with a loss of 7 cents after trading as low as 9 cents

A trigram grammar must predictafter from the words7 cents, while it seems clear
that the verbendedand the subjectcontractwould be useful predictors that a PCFG-
based parser could help us make use of. Indeed, it turns out that a PCFGs allow us
to condition on the entire previous contextw1,w2, ...,wi−1 shown in Equation (14.11).
We’ll see the details of ways to use PCFGs and augmentations of PCFGs as language
models in Sec. 14.9.

In summary, this section and the previous one have shown thatPCFGs can be ap-
plied both to disambiguation in syntactic parsing and to word prediction in language
modeling. Both of these applications require that we be ableto compute the probability
of parse treeT for a given sentenceS. The next few sections introduce some algorithms
for computing this probability.
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14.2 PROBABILISTIC CKY PARSING OFPCFGS

The parsing problem for PCFGs is to produce the most-likely parseT̂ for a given
sentenceS, i.e.,

T̂(S) = argmax
Ts.t.S=yield(T)

P(T)(14.14)

The algorithms for computing the most-likely parse are simple extensions of the
standard algorithms for parsing; there are probabilistic versions of both the CKY and
Earley algorithms of Ch. 13. Most modern probabilistic parsers are based on theprob-
abilistic CKY (Cocke-Kasami-Younger) algorithm, first described by Ney (1991).PROBABILISTIC CKY

As with the CKY algorithm, we will assume for the probabilistic CKY algorithm
that the PCFG is in Chomsky normal form. Recall from page?? that grammars in CNF
are restricted to rules of the formA → B C, or A → w. That is, the right-hand side of
each rule must expand to either two non-terminals or to a single terminal.

For the CKY algorithm, we represented each sentence as having indices between
the words. Thus an example sentence like

(14.15) Book the flight through Houston.

would assume the following indices between each word:

(14.16) 0© Book① the② flight ③ through④ Houston⑤

Using these indices, each constituent in the CKY parse tree is encoded in a two-
dimensional matrix. Specifically, for a sentence of lengthnand a grammar that contains
V non-terminals, we use the upper-triangular portion of an(n+1)×(n+1) matrix. For
CKY, each celltable[i, j] contained a list of constituents that could span the sequence
of words fromi to j. For probabilistic CKY, it’s slightly simpler to think of the con-
stituents in each cell as constituting a third dimension of maximum lengthV. This
third dimension corresponds to each nonterminal that can beplaced in this cell, and the
value of the cell is then a probability for that nonterminal/constituent rather than a list
of constituents. In summary, each cell[i, j,A] in this (n+1)× (n+1)×V matrix is the
probability of a constituentA that spans positionsi through j of the input.

Fig. 14.3 gives pseudocode for this probabilistic CKY algorithm, extending the
basic CKY algorithm from Fig.??.

Like the CKY algorithm, the probabilistic CKY algorithm as shown in Fig. 14.3
requires a grammar in Chomsky Normal Form. Converting a probabilistic grammar to
CNF requires that we also modify the probabilities so that the probability of each parse
remains the same under the new CNF grammar. Exercise 14.2 asks you to modify the
algorithm for conversion to CNF in Ch. 13 so that it correctlyhandles rule probabilities.

In practice, we more often use a generalized CKY algorithm which handles unit
productions directly rather than converting them to CNF. Recall that Exercise??asked
you to make this change in CKY; Exercise 14.3 asks you to extend this change to
probabilistic CKY.

Let’s see an example of the probabilistic CKY chart, using the following mini-
grammar which is already in CNF:
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function PROBABILISTIC-CKY(words,grammar) returns most probable parse
and its probability

for j← from 1 to LENGTH(words) do
for all { A | A → words[ j ] ∈ grammar}

table[ j−1, j ,A]←P(A→ words[ j ])
for i← from j−2 downto 0 do

for k← i +1 to j−1 do
for all { A | A → BC ∈ grammar,

and table[i,k,B] > 0 and table[k, j ,C] > 0 }
if (table[i,j,A] < P(A → BC) × table[i,k,B] × table[k,j,C]) then

table[i,j,A]←P(A → BC) × table[i,k,B] × table[k,j,C]
back[i,j,A]←{k,B,C}

return BUILD TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

Figure 14.3 The probabilistic CKY algorithm for finding the maximum probability
parse of a string ofnumwords words given a PCFG grammar withnum rules rules in
Chomsky Normal Form.back is an array of back-pointers used to recover the best parse.
Thebuild tree function is left as an exercise to the reader.

S → NP VP .80 Det → the .50
NP → Det N .30 Det → a .40
VP → V NP .20 N → meal .01

V → includes .05 N → f light .02

Given this grammar, Fig. 14.4 shows the first steps in the probabilistic CKY parse
of this sentence:

(14.17) The flight includes a meal

14.3 LEARNING PCFG RULE PROBABILITIES

Where do PCFG rule probabilities come from? There are two ways to learn probabil-
ities for the rules of a grammar. The simplest way is to use atreebank, a corpus ofTREEBANK

already-parsed sentences. Recall that we introduced in Ch.12 the idea of treebanks and
the commonly-usedPenn Treebank(Marcus et al., 1993), a collection of parse trees in
English, Chinese, and other languages distributed by the Linguistic Data Consortium.
Given a treebank, the probability of each expansion of a non-terminal can be computed
by counting the number of times that expansion occurs and then normalizing.

P(α→ β|α) =
Count(α→ β)

∑γ Count(α→ γ)
=

Count(α→ β)

Count(α)
(14.18)

If we don’t have a treebank, but we do have a (non-probabilistic) parser, we can
generate the counts we need for computing PCFG rule probabilities by first parsing a
corpus of sentences with the parser. If sentences were unambiguous, it would be as
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The flight

[0,1] [0,2] [0,3]

[1,2] [1,3]

[2,3]

Det:   .40

includes a meal

[3,4]

[4,5]

N:   .02

V:   .05

NP: .30 *.40 *.02
= .0024

[0,4]

[1,4]

[2,4]

[3,5]

[3,5]

[1,5]

[0,5]

Figure 14.4 The beginning of the probabilistic CKY matrix. Filling out the rest of the
chart is left as Exercise 14.4 for the reader.

simple as this: parse the corpus, increment a counter for every rule in the parse, and
then normalize to get probabilities.

But wait! Since most sentences are ambiguous, i.e. have multiple parses, we don’t
know which parse to count the rules in. Instead, we need to keep a separate count for
each parse of a sentence and weight each of these partial counts by the probability of
the parse it appears in. But to get these parse probabilitiesto weight the rules we need
to already have a probabilistic parser.

The intuition for solving this chicken-and-egg problem is to incrementally improve
our estimates by beginning with a parser with equal rule probabilities, parsing the sen-
tence, compute a probability for each parse, use these probabilities to weight the counts,
then reestimate the rule probabilities, and so on, until ourprobabilities converge. The
standard algorithm for computing this is called theinside-outsidealgorithm, and wasINSIDEOUTSIDE

proposed by Baker (1979) as a generalization of the forward-backward algorithm of
Ch. 6. Like forward-backward, inside-outside is a special case of the EM (expectation-
maximization) algorithm, and hence has two steps: theexpectationstep, orE-step (ex-EXPECTATION

pectation step) in EM, and themaximization step, orM-step (maximization step)
ESTEP

(EXPECTATION STEP)

IN EM
MAXIMIZATION in EM . See Lari and Young (1990) or Manning and Schütze (1999) fora complete

MSTEP
(MAXIMIZATION

STEP) IN EM
description of the algorithm.

This use of the inside-outside algorithm to estimate the rule probabilities for a
grammar is actually a kind of limited use of inside-outside.The inside-outside al-
gorithm can actually be used not only to set the rule probabilities, but even to induce
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the grammar rules themselves. It turns out, however, that grammar induction is so dif-
ficult that inside-outside by itself is not a very successfulgrammar inducer; see the end
notes for pointers to other grammar induction algorithms.

14.4 PROBLEMS WITH PCFGS

While probabilistic context-free grammars are a natural extension to context-free gram-
mars, they have two main problems as probability estimators:

poor independence assumptions:CFG rules impose an independence assumption
on probabilities, resulting in poor modeling of structuraldependencies across
the parse tree.

lack of lexical conditioning: CFG rules don’t model syntactic facts about specific
words, leading to problems with subcategorization ambiguities, preposition at-
tachment, and coordinate structure ambiguities.

Because of these problems, most current probabilistic parsing models use some
augmented version of PCFGs, or modify the Treebank-based grammar in some way.
In the next few sections after discussing the problems in more detail we will introduce
some of these augmentations.

14.4.1 Independence assumptions miss structural dependencies be-
tween rules

Let’s look at these problems in more detail. Recall that in a CFG the expansion of a
non-terminal is independent of the context, i.e., of the other nearby non-terminals in the
parse tree. Similarly, in a PCFG, the probability of a particular rule likeNP→ Det N
is also independent of the rest of the tree. By definition, theprobability of a group of
independent events is the product of their probabilities. These two facts explain why
in a PCFG we compute the probability of a tree by just multiplying the probabilities of
each non-terminal expansion.

Unfortunately this CFG independence assumption results inpoor probability esti-
mates. This is because in English the choice of how a node expands can after all be
dependent on the location of the node in the parse tree. For example, in English it turns
out that NPs that are syntacticsubjectsare far more likely to be pronouns, while NPs
that are syntacticobjectsare far more likely to be non-pronominal (e.g., a proper noun
or a determiner noun sequence), as shown by these statisticsfor NPs in the Switchboard
corpus (Francis et al., 1999):1

1 Distribution of subjects from 31,021 declarative sentences; distribution of objects from 7,489 sentences.
This tendency is caused by the use of subject position to realize thetopic or old information in a sentence
(Givón, 1990). Pronouns are a way to talk about old information, while non-pronominal (“lexical”) noun-
phrases are often used to introduce new referents. We’ll talk more about new and old information in Ch. 21.
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Pronoun Non-Pronoun
Subject 91% 9%
Object 34% 66%

Unfortunately there is no way to represent this contextual difference in the proba-
bilities in a PCFG. Consider two expansions of the non-terminal NP as a pronoun or
as a determiner+noun. How shall we set the probabilities of these two rules? If we set
their probabilities to their overall probability in the Switchboard corpus, the two rules
have about equal probability.

NP → DT NN .28

NP → PRP .25

Because PCFGs don’t allow a rule probability to be conditioned on surrounding
context, this equal probability is all we get; there is no wayto capture the fact that in
subject position, the probability forNP→ PRPshould go up to .91, while in object
position, the probability forNP→DT NN should go up to .66.

These dependencies could be captured if the probability of expanding an NP as a
pronoun (e.g.,NP→ PRP) versus a lexical NP (e.g.,NP→ DT NN) wereconditioned
on whether the NP was a subject or an object. Sec. 14.5 will introduce the technique of
parent annotation for adding this kind of conditioning.

14.4.2 Lack of sensitivity to lexical dependencies

A second class of problems with PCFGs is their lack of sensitivity to the words in the
parse tree. Words do play a role in PCFGs, since the parse probability includes the
probability of a word given a part-of-speech (i.e., from rules likeV→ sleep, NN→
book, etc).

But it turns out that lexical information is useful in other places in the grammar,
such as in resolvingprepositional phrase attachment(PP) ambiguities. Since prepo-

PREPOSITIONAL
PHRASE

ATTACHMENT

sitional phrases in English can modify a noun phrase or a verbphrase, when a parser
finds a prepositional phrase, it must decide where toattach it into the tree. Consider
the following examples:

(14.19) Workers dumped sacks into a bin.

Fig. 14.5 shows two possible parse trees for this sentence; the one on the left is
the correct parse; Fig. 14.6 shows another perspective on the preposition attachment
problem, demonstrating that resolving the ambiguity in Fig. 14.5 is equivalent to de-
ciding whether to attach the prepositional phrase into the rest of the tree at the NP or
VP nodes; we say that the correct parse requiresVP attachment while the incorrectVP ATTACHMENT

parse impliesNP attachment.NP ATTACHMENT

Why doesn’t a PCFG already deal with PP attachment ambiguities? Note that the
two parse trees in Fig. 14.5 have almost the exact same rules;they differ only in that
the left-hand parse has has this rule:

VP → VBD NP PP
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S

NP

NNS

workers

VP

VBD

dumped

NP

NNS

sacks

PP

P

into

NP

DT

a

NN

bin

S

NP

NNS

workers

VP

VBD

dumped

NP

NP

NNS

sacks

PP

P

into

NP

DT

a

NN

bin

Figure 14.5 Two possible parse trees for aprepositional phrase attachment ambiguity. The left parse is the
sensible one, in which ‘into a bin’ describes the resulting location of the sacks. In the right incorrect parse, the
sacks to be dumped are the ones which are already ‘into a bin’,whatever that could mean.

S

NP VP

NNS VBD NP PP

workers NNS P NP

dumped intoDT NN

sacks a bin

Figure 14.6 Another view of the preposition attachment problem; shouldthe PP on the right attach to the VP
or NP nodes of the partial parse tree on the left?

while the right-hand parse has these:

VP → VBD NP

NP → NP PP

Depending on how these probabilities are set, a PCFG willalways either prefer NP
attachment or VP attachment. As it happens, NP attachment isslightly more common
in English, and so if we trained these rule probabilities on acorpus, we might always
prefer NP attachment, causing us to misparse this sentence.

But suppose we set the probabilities to prefer the VP attachment for this sentence.
Now we would misparse the following sentence which requiresNP attachment:

(14.20) fishermen caught tons of herring
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What is the information in the input sentence which lets us know that (14.20) re-
quires NP attachment while (14.19) requires VP attachment?

It should be clear that these preferences come from the identities of the verbs, nouns
and prepositions. It seems that the affinity between the verbdumpedand the preposition
into is greater than the affinity between the nounsacksand the prepositioninto, thus
leading to VP attachment. On the other hand in (14.20) , the affinity betweentonsand
of is greater than that betweencaughtandof, leading to NP attachment.

Thus in order to get the correct parse for these kinds of examples, we need a model
which somehow augments the PCFG probabilities to deal with theselexical depen-
dencystatistics for different verbs and prepositions.LEXICAL

DEPENDENCY

Coordination ambiguities are another case where lexical dependencies are the key
to choosing the proper parse. Fig. 14.7 shows an example fromCollins (1999), with
two parses for the phrasedogs in houses and cats. Becausedogsis semantically a
better conjunct forcats thanhouses(and because dogs can’t fit inside cats) the parse
[dogs in [NP houses and cats]]is intuitively unnatural and should be dispreferred. The
two parses in Fig. 14.7, however, have exactly the same PCFG rules and thus a PCFG
will assign them the same probability.

(a) NP (b) NP

NP Conj NP NP PP

NP PP and Noun Noun Prep NP

Noun Prep NP cats dogs in NP Conj NP

dogs in Noun Noun and Noun

houses houses cats

Figure 14.7 An instance of coordination ambiguity. Although the left structure is intu-
itively the correct one, a PCFG will assign them identicallyprobabilities since both struc-
ture use the exact same rules. After Collins (1999).

In summary, we have shown in this section and the previous onethat probabilistic
context-free grammars are incapable of modeling importantstructural andlexical de-
pendencies. In the next two sections we sketch current methods for augmenting PCFGs
to deal with both these issues.

14.5 IMPROVING PCFGS BY SPLITTING AND MERGING NONTER-
MINALS

Let’s start with the first of the two problems with PCFGs mentioned above: their in-
ability to model structural dependencies, like the fact that NPs in subject position tend
to be pronouns, where NPs in object position tend to have fulllexical (non-pronominal)
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form. How could we augment a PCFG to correctly model this fact? One idea would
be tosplit the NP non-terminal into two versions: one for subjects, onefor objects.SPLIT

Having two nodes (e.g.,NPsubjectandNPobject) would allow us to correctly model
their different distributional properties, since we wouldhave different probabilities for
the ruleNPsubject→ PRPand the ruleNPobject → PRP.

One way to implement this intuition of splits is to doparent annotation (Johnson,PARENT ANNOTATION

1998), in which we annotate each node with its parent in the parse tree. Thus a node NP
which is the subject of the sentence, and hence has parent S, would be annotated NPˆS,
while a direct object NP, whose parent is VP, would be annotated NPˆVP. Fig. 14.8
shows an example of a tree produced by a grammar that parent annotates the phrasal
non-terminals (like NP and VP).

a) S

NP

PRP

I

VP

VBD

need

NP

DT

a

NN

flight

b) S

NPˆS

PRP

I

VPˆS

VBD

need

NPˆVP

DT

a

NN

flight

Figure 14.8 A standard PCFG parse tree (a) and one which hasparent annotation on
the nodes which aren’t preterminal (b). All the non-terminal nodes (except the preterminal
part-of-speech nodes) in parse (b) have been annotated withthe identity of their parent.

In addition to splitting these phrasal nodes, we can also improve a PCFG by split-
ting the preterminal part-of-speech nodes (Klein and Manning, 2003b). For example,
different kinds of adverbs (RB) tend to occur in different syntactic positions: the most
common adverbs with ADVP parents arealso andnow, with VP parents aren’t and
not, and with NP parentsonly andjust. Thus adding tags like RBˆADVP, RBˆVP, and
RBˆNP can be useful in improving PCFG modeling.

Similarly, the Penn Treebank tag IN is used to mark a wide variety of parts-of-
speech, including subordinating conjunctions (while, as, if), complementizers (that,
for), and prepositions (of, in, from). Some of these differences can be captured by
parent annotation (subordinating conjunctions occur under S, prepositions under PP),
while others require specifically splitting the pre-terminal nodes. Fig. 14.9 shows an
example from Klein and Manning (2003b), where even a parent annotated grammar
incorrectly parsesworksas a noun into see if advertising works. Splitting preterminals
to allow if to prefer a sentential complement results in the correct verbal parse.

In order to deal with cases where parent annotation is insufficient, we can also
hand-write rules that specify a particular node split basedon other features of the tree.
For example to distinguish between complementizer IN and subordinating conjunc-
tion IN, both of which can have the same parent, we could writerules conditioned on
other aspects of the tree such as the lexical identity (the lexemethat is likely to be a
complementizer,asa subordinating conjunction).
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VPˆS

TO

to

VPˆVP

VB

see

PPˆVP

IN

if

NPˆPP

NN

advertising

NNS

works

VPˆS

TOˆVP

to

VPˆVP

VBˆVP

see

SBARˆVP

INˆSBAR

if

SˆSBAR

NPˆS

NNˆNP

advertising

VPˆS

VBZˆVP

works

Figure 14.9 An incorrect parse even with a parent annotated parse (left). The correct parse (right), was pro-
duced by a grammar in which the pre-terminal nodes have been split, allowing the probabilistic grammar to
capture the fact thatif prefers sentential complements; adapted from Klein and Manning (2003b).

Node-splitting is not without problems; it increases the size of the grammar, and
hence reduces the amount of training data available for eachgrammar rule, leading to
overfitting. Thus it is important to split to just the correctlevel of granularity for a
particular training set. While early models involved hand-written rules to try to find an
optimal number of rules (Klein and Manning, 2003b), modern models automatically
search for the optimal splits. Thesplit and mergealgorithm of Petrov et al. (2006),SPLIT AND MERGE

for example starts with a simple X-bar grammar, and then alternately splits the non-
terminals, and merges together non-terminals, finding the set of annotated nodes which
maximizes the likelihood of the training set treebank. As ofthe time of this writing,
the performance of the Petrov et al. (2006) algorithm as the best of any known parsing
algorithm on the Penn Treebank.

14.6 PROBABILISTIC LEXICALIZED CFGS

The previous section showed that a simple probabilistic CKYalgorithm for parsing
raw PCFGs can achieve extremely high parsing accuracy if thegrammar rule symbols
are redesigned via automatic splits and merges.

In this section, we discuss an alternative family of models in which instead of mod-
ifying the grammar rules, we modify the probabilistic modelof the parser to allow for
lexicalizedrules. The resulting family of lexicalized parsers includes the well-known
Collins parser (Collins, 1999) andCharniak parser (Charniak, 1997), both of whichCOLLINS PARSER

CHARNIAK PARSER are publicly available and widely used throughout natural language processing.
We saw in Sec.?? in Ch. 12 that syntactic constituents could be associated with

a lexicalhead, and we defined alexicalized grammar in which each non-terminal inLEXICALIZED
GRAMMAR
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the tree is annotated with its lexical head, where a rule likeVP→VBD NP PPwould
be extended as:

VP(dumped)→ VBD(dumped) NP(sacks) PP(into)(14.21)

In the standard type of lexicalized grammar we actually makea further extension,
which is to associate thehead tag, the part-of-speech tags of the headwords, withHEAD TAG

the nonterminal symbols as well. Each rule is thus lexicalized by both the headword
and the head tag of each constituent resulting in a format forlexicalized rules like:

VP(dumped,VBD)→ VBD(dumped,VBD) NP(sacks,NNS) PP(into,IN)(14.22)

We show a lexicalized parse tree with head tags in Fig. 14.10,extended from Fig.??.

TOP

S(dumped,VBD)

NP(workers,NNS)

NNS(workers,NNS)

workers

VP(dumped,VBD)

VBD(dumped,VBD)

dumped

NP(sacks,NNS)

NNS(sacks,NNS)

sacks

PP(into,P)

P(into,P)

into

NP(bin,NN)

DT(a,DT)

a

NN(bin,NN)

bin

Internal Rules Lexical Rules
TOP → S(dumped,VBD) NNS(workers,NNS) → workers
S(dumped,VBD) → NP(workers,NNS) VP(dumped,VBD) VBD(dumped,VBD) → dumped
NP(workers,NNS)→ NNS(workers,NNS) NNS(sacks,NNS) → sacks
VP(dumped,VBD)→ VBD(dumped, VBD) NP(sacks,NNS) PP(into,P)P(into,P) → into
PP(into,P) → P(into,P) NP(bin,NN) DT(a,DT) → a
NP(bin,NN) → DT(a,DT) NN(bin,NN) NN(bin,NN) → bin

Figure 14.10 A lexicalized tree, including head tags, for a WSJ sentence,adapted from Collins (1999). Below
we show the PCFG rules that would be needed for this parse tree, internal rules on the left, and lexical rules on
the right.

In order to generate such a lexicalized tree, each PCFG rule must be augmented to
identify one right-hand side constituent to be the head daughter. The headword for a
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node is then set to the headword of its head daughter, and the head tag to the part-of-
speech tag of the headword. Recall that we gave in Fig.?? a set of hand-written rules
for identifying the heads of particular constituents.

A natural way to think of a lexicalized grammar is like parentannotation, i.e. as a
simple context-free grammar with many copies of each rule, one copy for each possible
headword/head tag for each constituent. Thinking of a probabilistic lexicalized CFG in
this way would lead to the set of simple PCFG rules shown belowthe tree in Fig. 14.10.

Note that Fig. 14.10 shows two kinds of rules:lexical rules, which express theLEXICAL RULES

expansion of a preterminal to a word, andinternal rules, which express the otherINTERNAL RULES

rule expansions. We need to distinguish these kinds of rulesin a lexicalized gram-
mar because they are associated with very different kinds ofprobabilities. The lexical
rules are deterministic, i.e., have probability 1.0, sincea lexicalized preterminal like
NN(bin,NN) can only expand to the wordbin. But for the internal rules we will need
to estimate probabilities.

Suppose we were to treat a probabilistic lexicalized CFG like a really big CFG that
just happened to have lots of very complex non-terminals andestimate the probabilities
for each rule from maximum likelihood estimates. Thus, using Eq. 14.18, the MLE
estimate for the probability for the ruleP(VP(dumped,VBD)→ VBD(dumped, VBD)
NP(sacks,NNS) PP(into,P))would be:

P(VP(dumped,VBD)→VBD(dumped,VBD)NP(sacks,NNS)PP(into,P))

=
Count(VP(dumped,VBD)→VBD(dumped,VBD)NP(sacks,NNS)PP(into,P))

Count(VP(dumped,VBD))
(14.23)

But there’s no way we can get good estimates of counts like those in (14.23), be-
cause they are so specific: we’re very unlikely to see many (oreven any) instances of
a sentence with a verb phrase headed bydumpedthat has one NP argument headed by
sacksand a PP argument headed byinto. In other words, counts of fully lexicalized
PCFG rules like this will be far too sparse and most rule probabilities will come out
zero.

The idea of lexicalized parsing is to make some further independence assumptions
to break down each rule, so that we would estimate the probability

P( VP(dumped,VBD)→VBD(dumped,VBD) NP(sacks,NNS) PP(into,P) )(14.24)

as the product of smaller independent probability estimates for which we could acquire
reasonable counts. The next section summarizes one such method, the Collins parsing
method.

14.6.1 The Collins Parser

Modern statistical parsers differ in exactly which independence assumptions they make.
In this section we describe a simplified version of Collins’s(1999) Model 1, but there
are a number of other parsers that are worth knowing about; see the summary at the
end of the chapter.
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The first intuition of the Collins parser is to think of the right-hand side of every (in-
ternal) CFG rule as consisting of a head non-terminal, together with the non-terminals
to the left of the head, and the non-terminals to the right of the head. In the abstract,
we think about these rules as follows:

LHS→ LnLn−1 ...L1 H R1 ...Rn−1Rn(14.25)

Since this is a lexicalized grammar, each of the symbols likeL1 or R3 or H or LHS
is actually a complex symbol representing the category and its head and head tag, like
VP(dumped,VP)or NP(sacks,NNS).

Now instead of computing a single MLE probability for this rule, we are going to
break down this rule via a neat generative story, a slight simplification of what is called
Collins Model 1. This new generative story is that given the left-hand side, we first
generate the head of the rule, and then generate the dependents of the head, one by one,
from the inside out. Each of these generation steps will haveits own probability.

We are also going to add a specialSTOP non-terminal at the left and right edges
of the rule; this non-terminal will allow the model to know when to stop generating
dependents on a given side. We’ll generate dependents on theleft side of the head until
we’ve generatedSTOPon the left side of the head, at which point we move to the right
side of the head and start generating dependents there untilwe generateSTOP. So it’s
as if we are generating a rule augmented as follows:

P( VP(dumped,VBD)→ STOPVBD(dumped,VBD) NP(sacks,NNS) PP(into,P) STOP(14.26)

Let’s see the generative story for this augmented rule. We’re going to make use of
three kinds of probabilities:PH for generating heads,PL for generating dependents on
the left, andPR for generating dependents on the right.

1) First generate the head VBD(dumped,VBD) with probability
P(H|LHS) = P(VBD(dumped,VBD)| VP(dumped,VBD))

VP(dumped,VBD)

VBD(dumped,VBD)

2) Then generate the left dependent (which is STOP, since there
isn’t one) with probability
P(STOP| VP(dumped,VBD) VBD(dumped,VBD)

VP(dumped,VBD)

STOP VBD(dumped,VBD)

3) Then generate right dependent NP(sacks,NNS) with probability
Pr (NP(sacks,NNS| VP(dumped,VBD), VBD(dumped,VBD))

VP(dumped,VBD)

STOP VBD(dumped,VBD) NP(sacks,NNS)

4) Then generate the right dependent PP(into,P) with probability
Pr (PP(into,P)| VP(dumped,VBD), VBD(dumped,VBD))

VP(dumped,VBD)

STOP VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

5) Finally generate the right dependent STOP with probability
Pr (STOP| VP(dumped,VBD), VBD(dumped,VBD))

VP(dumped,VBD)

STOP VBD(dumped,VBD) NP(sacks,NNS) PP(into,P) STOP
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In summary, the probability of this rule:

P( VP(dumped,VBD)→VBD(dumped,VBD) NP(sacks,NNS)PP(into,P) )(14.27)

is estimated as:

PH(VBD|VP,dumped) × PL(STOP|VP,VBD,dumped)(14.28)

× PR(NP(sacks,NNS)|VP,VBD,dumped)

× PR(PP(into,P)|VP,VBD,dumped)

× PR(STOP|VP,VBD,dumped)

Each of these probabilities can be estimated from much smaller amounts of data
than the full probability in (14.27). For example, the maximum likelihood estimate for
the component probabilityPR(NP(sacks,NNS)|V P,VBD,dumped) is:

PR(NP(sacks,NNS)|VP,VBD,dumped) =

Count( VP(dumped,VBD) with NNS(sacks)as a daughter somewhere on the right)

Count( VP(dumped,VBD) )
(14.29)

These counts are much less subject to sparsity problems thancomplex counts like those
in (14.27).

More generally, if we useh to mean a headword together with its tag,l to mean a
word+tag on the left andr to mean mean a word+tag on the right, the probability of an
entire rule can be expressed as:

1. Generate the head of the phraseH(hw,ht) with probabilityPH(H(hw,ht)|P,hw,ht)

2. Generate modifiers to the left of the head with total probability:

n+1

∏
i=1

PL(Li(lwi , lt i)|P,H,hw,ht)

such thatLn+1(lwn+1, ltn+1) =STOP, and we stop generating once we’ve gen-
erated aSTOPtoken.

3. Generate modifiers to the right of the head with total probability:

n+1

∏
i=1

PP(Ri(rwi , rt i)|P,H,hw,ht)

such thatRn+1(rwn+1, rtn+1) = STOP, and we stop generating once we’ve
generated aSTOPtoken.

14.6.2 Advanced: Further Details of the Collins Parser

The actual Collins parser models are more complex (in a couple of ways) than the
simple model presented in the previous section. Collins Model 1 includes adistanceDISTANCE
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feature. Thus instead of computingPL andPR as follows:

PL(Li(lwi , lt i)|P,H,hw,ht)(14.30)

PR(Ri(rwi , rt i)|P,H,hw,ht)(14.31)

Collins Model 1 conditions also on a distance feature:

PL(Li(lwi , lt i)|P,H,hw,ht,distanceL(i−1))(14.32)

PR(Ri(rwi , rt i)|P,H,hw,ht,distanceR(i−1))(14.33)

The distance measure is a function of the sequence of wordsbelowthe previous modi-
fiers (i.e. the words which are the yield of each modifier non-terminal we have already
generated on the left). Fig. 14.11, adapted from Collins (2003) shows the computation
of the probabilityP(R2(rh2, rt2)|P,H,hw,ht,distanceR(1)):

P(hw,ht)

H(hw,ht)

...h...

R1(rw1,rt1)

| ← distance→ |

R2(rw2,rt2)

Figure 14.11 The next child R2 is generated with probability
P(R2(rh2, rt2)|P,H,hw,ht,distanceR(1)). The distance is the yield of the previous
dependent nonterminalR1. Had there been another intervening dependent, its yield would
have been included as well. Adapted from Collins (2003).

The simplest version of this distance measure is just a tupleof two binary features
based on the surface string below these previous dependencies: (1) is the string of
length zero? (i.e. were were no previous words generated?) (2) does the string contain
a verb?

Collins Model 2 adds more sophisticated features, conditioning on subcategoriza-
tion frames for each verb, and distinguishing arguments from adjuncts.

Finally, smoothing is as important for statistical parsersas it was forN-gram mod-
els. This is particularly true for lexicalized parsers, since (even using the Collins or
other methods of independence assumptions) the lexicalized rules will otherwise con-
dition on many lexical items that may never occur in training.

Consider the probabilityPR(Ri(rwi , rt i)|P,hw,ht). What do we do if a particular
right-hand side constituent never occurs with this head? The Collins model addresses
this problem by interpolating three backed-off models: fully lexicalized (conditioning
on the headword), backing off to just the head tag, and altogether unlexicalized:

Backoff Level PR(Ri(rwi , rt i |...) Example
1 PR(Ri(rwi , rt i)|P,hw,ht) PR(NP(sacks,NNS)|VP, VBD, dumped)
2 PR(Ri(rwi , rt i)|P,ht) PR(NP(sacks,NNS)|V P,VBD)
3 PR(Ri(rwi , rt i)|P) PR(NP(sacks,NNS)|V P)
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Similar backoff models are built also forPL and PH . Although we’ve used the
word ‘backoff’, in fact these are not backoff models but interpolated models. The
three models above are linearly interpolated, wheree1, e2, ande3 are the maximum
likelihood estimates of the three backoff models above:

PR(...) = λ1e1 +(1−λ1)(λ2e2 +(1−λ2)e3)

The values ofλ1andλ2 are set to implement Witten-Bell discounting (Witten and
Bell, 1991) following Bikel et al. (1997).

Unknown words are dealt with in the Collins model by replacing any unknown
word in the test set, and any word occurring less than 6 times in the training set, with a
specialUNKNOWN word token. Unknown words in the test set are assigned a part-of-
speech tag in a preprocessing step by the Ratnaparkhi (1996)tagger; all other words
are tagged as part of the parsing process.

The parsing algorithm for the Collins model is an extension of probabilistic CKY;
see Collins (2003). Extending the CKY algorithm to handle basic lexicalized probabil-
ities is left as an exercise for the reader.

14.7 EVALUATING PARSERS

The standard techniques for evaluating parsers and grammars are called the PARSE-
VAL measures, and were proposed by Black et al. (1991) based on the same ideas from
signal-detection theory that we saw in earlier chapters. The intuition of the PARSE-
VAL metric is to measure how much theconstituentsin the hypothesis parse tree look
like the constituents in a hand-labeled gold reference parse. PARSEVAL thus assumes
we have a human-labeled “gold standard” parse tree for each sentence in the test set;
we generally draw these gold standard parses from a treebanklike the Penn Treebank.

Given these gold standard reference parses for a test set, a given constituent in a
hypothesis parseCh of a sentences is labeled “correct” if there is a constituent in the
reference parseCr with the same starting point, ending point, and non-terminal symbol.

We can then measure the precision and recall just as we did forchunking in the
previous chapter.

labeled recall:= # of correct constituents in hypothesis parse ofs
# of correct constituents in reference parse ofs

labeled precision:= # of correct constituents in hypothesis parse ofs
# of total constituents in hypothesis parse ofs

As with other uses of precision and recall, instead of reporting them separately, we
often report a single number, theF-measure(van Rijsbergen, 1975): The F-measure isFMEASURE

defined as:

Fβ =
(β2 +1)PR

β2P+R

Theβ parameter is used to differentially weight the importance of recall and precision,
based perhaps on the needs of an application. Values ofβ > 1 favor recall, while values
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of β < 1 favor precision. Whenβ = 1, precision and recall are equally balanced; this is
sometimes calledFβ=1 or justF1:

F1 =
2PR
P+R

(14.34)

The F-measure derives from a weighted harmonic mean of precision and recall.
Recall that the harmonic mean of a set of numbers is the reciprocal of the arithmetic
mean of the reciprocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1

1
a2

1
a3

...
1
an

(14.35)

and hence F-measure is

F =
1

1
αP×

1
(1−α)R

or

(

with β2 =
1−α

α

)

F =
(β2 +1)PR

β2P+R
(14.36)

We additionally use a new metric, crossing brackets, for each sentences:

cross-brackets:the number of constituents for which the reference parse hasa brack-
eting such as ((A B) C) but the hypothesis parse has a bracketing such as (A (B
C)).

As of the time of this writing, the performance of modern parsers that are trained
and tested on the Wall Street Journal treebank is somewhat higher than 90% recall,
90% precision, and about 1% cross-bracketed constituents per sentence.

For comparing parsers which use different grammars, the PARSEVAL metric in-
cludes a canonicalization algorithm for removing information likely to be grammar-
specific (auxiliaries, pre-infinitival “to”, etc.) and for computing a simplified score. The
interested reader should see Black et al. (1991). The canonical publicly-available im-
plementation of the PARSEVAL metrics is calledevalb (Sekine and Collins, 1997).EVALB

You might wonder why we don’t evaluate parsers by measuring how manysen-
tencesare parsed correctly, instead of measuringconstituentaccuracy. The reason we
use constituents is that measuring constituents gives us a more fine-grained metric.
This is especially true for long sentences, where most parsers don’t get a perfect parse.
If we just measured sentence accuracy, we wouldn’t be able todistinguish between a
parse that got most of the constituents wrong, and one that just got one constituent
wrong.

Nonetheless, constituents are not always an optimal domainfor parser evaluation.
For example, using the PARSEVAL metrics requires that our parser produce trees in
the exact same format as the gold standard. That means that ifwe want to evaluate a
parser which produces different styles of parses (dependency parses, or LFG feature-
structures, etc.) against say the Penn Treebank (or againstanother parser which pro-
duces Treebank format), we need to map the output parses intoTreebank format. A
related problem is that constituency may not be the level we care the most about. We
might be more interested in how well the parser does at recovering grammatical depen-
dencies (subject, object, etc), which could give us a bettermetric for how useful the
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parses would be to semantic understanding. For these purposes we can use alternative
evaluation metrics based on measuring the precision and recall of labeled dependen-
cies, where the labels indicate the grammatical relations (Lin, 1995; Carroll et al.,
1998; Collins et al., 1999). Kaplan et al. (2004), for example, compared the Collins
(1999) parser with the Xerox XLE parser (Riezler et al., 2002), which produces much
richer semantic representations, by converting both parsetrees to a dependency repre-
sentation.

14.8 ADVANCED: DISCRIMINATIVE RERANKING

The models we have seen of parsing so far, the PCFG parser and the Collins lexical-
ized parser, are generative parsers. By this we mean that theprobabilistic model im-
plemented in these parsers gives us the probability of generating a particular sentence
by assigning a probability to each choice the parser could make in this generation pro-
cedure.

Generative models have some significant advantages; they are easy to train using
maximum likelihood and they give us an explicit model of how different sources of
evidence are combined. But generative parsing models also make it hard to incorporate
arbitrary kinds of information into the probability model.This is because the probabil-
ity is based on the generative derivation of a sentence; it isdifficult to add features that
are not local to a particular PCFG rule.

Consider for example how to represent global facts about tree structure. Parse
trees in English tend to be right-branching; we’d thereforelike our model to assign
a higher probability to a tree which is more right-branching, all else being equal. It
is also the case that heavy constituents (those with a large number of words) tend to
appear later in the sentence. Or we might want to condition our parse probabilities on
global facts like the identity of the speaker (perhaps some speakers are more likely to
use complex relative clauses, or use the passive). Or we might want to condition on
complex discourse factors across sentences. None of these kinds of global factors is
trivial to incorporate into the generative models we have been considering. A simplistic
model that for example makes each non-terminal dependent onhow right-branching the
tree is in the parse so far, or makes each NP non-terminal sensitive to the number of
relative clauses the speaker or writer used in previous sentences, would result in counts
that are far too sparse.

We discussed this problem in Ch. 6, where the need for these kinds of global
features motivated the use of log-linear (MEMM) models for POS tagging instead
of HMMs. For parsing, there are two broad classes of discriminative models: dy-
namic programming approaches and two-stage models of parsing that usediscrimina-
tive reranking . We’ll discuss discriminative reranking in the rest of thissection; seeDISCRIMINATIVE

RERANKING

the end of the chapter for pointers to discriminative dynamic programming approaches.
In the first stage of a discriminative reranking system, we can run a normal statis-

tical parser of the type we’ve described so far. But instead of just producing the single
best parse, we modify the parser to produce a ranked list of parses together with their
probabilities. We call this ranked list ofN parses theN-best list (theN-best list wasNBEST LIST
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first introduced in Ch. 9 when discussing multiple-pass decoding models for speech
recognition). There are various ways to modify statisticalparsers to produce anN-best
list of parses; see the end of the chapter for pointers to the literature. For each sentence
in the training set and the test set, we run thisN-best parser and produce a set ofN
parse/probability pairs.

The second stage of a discriminative reranking model is a classifier which takes
each of these sentences with theirN parse/probability pairs as input, extracts some
large set of features and chooses the single best parse from theN-best list. We can use
any type of classifier for the reranking, such as the log-linear classifiers introduced in
Ch. 6.

A wide variety of features can be used for reranking. One important feature to
include is the parse probability assigned by the first-stagestatistical parser. Other fea-
tures might include each of the CFG rules in the tree, the number of parallel conjuncts,
how heavy each constituent is, measures of how right-branching the parse tree is, how
many times various tree fragments occur, bigrams of adjacent non-terminals in the tree,
and so on.

The two-stage architecture has a weakness: the accuracy rate of the complete ar-
chitecture can never be better than the accuracy rate of the best parse in the first-stage
N-best list. This is because the reranking approach is merelychoosing one of theN-
best parses; even if we picked the very best parse in the list,we can’t get 100% accuracy
if the correct parse isn’t in the list! Therefore it is important to consider the ceilingor-
acle accuracy(often measured in F-measure) of theN-best list. The oracle accuracyORACLE ACCURACY

(F-measure) of a particularN-best list is the accuracy (F-measure) we get if we chose
the parse that had the highest accuracy. We call this anoracleaccuracy because it relies
on perfect knowledge (as if from an oracle) of which parse to pick.2 Of course it only
makes sense to implement discriminative reranking if theN-best F-measure is higher
than the 1-best F-measure. Luckily this is often the case; for example the Charniak
(2000) parser has an F-measure of 0.897 on section 23 of the Penn Treebank, but the
Charniak and Johnson (2005) algorithm for producing the 50-best parses has a much
higher oracle F-measure of 0.968.

14.9 ADVANCED: PARSER-BASED LANGUAGE MODELING

We said earlier that statistical parsers can take advantageof longer-distance informa-
tion thanN-grams, which suggests that they might do a better job at language model-
ing/word prediction. It turns out that if we have a very largeamount of training data, a
4-gram or 5-gram grammar is nonetheless still the best way todo language modeling.
But in situations where there is not enough data for such hugemodels, parser-based
language models are beginning to be developed which have higher accuracyN-gram
models.

Two common applications for language modeling are speech recognition and ma-
chine translation. The simplest way to use a statistical parser for language modeling
for either of these applications is via a two-stage algorithm of the type discussed in the

2 We introduced this same oracle idea in Ch. 9 when we talked about thelattice error rate .
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previous section and in Sec.??. In the first stage, we run a normal speech recognition
decoder, or machine translation decoder, using a normalN-gram grammar. But instead
of just producing the single best transcription or translation sentence, we modify the
decoder to produce a rankedN-best list of transcriptions/translations sentences, each
one together with its probability (or, alternatively, a lattice).

Then in the second stage, we run our statistical parser and assign a parse probability
to each sentence in theN-best list or lattice. We then rerank the sentences based on
this parse probability and choose the single best sentence.This algorithm can work
better than using a simple trigram grammar. For example, on the task of recognizing
spoken sentences from the Wall Street Journal using this two-stage architecture, the
probabilities assigned by the Charniak (2001) parser improved the word error rate by
about 2 percent absolute, over a simple trigram grammar computed on 40 million words
(Hall and Johnson, 2003). We can either use the parse probabilities assigned by the
parser as-is, or we can linearly combine it with the originalN-gram probability.

An alternative to the two-pass architecture, at least for speech recognition, is to
modify the parser to run strictly left-to-right, so that it can incrementally give the proba-
bility of the next word in the sentence. This would allow the parser to be fit directly into
the first-pass decoding pass and obviate the second-pass altogether. While a number
of such left-to-right parser-based language modeling algorithms exist (Stolcke, 1995;
Jurafsky et al., 1995; Roark, 2001; Xu et al., 2002), it is fair to say that it is still early
days for the field of parser-based statistical language models.

14.10 HUMAN PARSING

Are the kinds of probabilistic parsing models we have been discussing also used by
humans when they are parsing? This question lies in a field called human sentence
processing? Recent studies suggest that there are at least two ways in which humansSENTENCE

PROCESSING

apply probabilistic parsing algorithms, although there isstill disagreement on the de-
tails.

One family of studies has shown that when humans read, the predictability of a
word seems to influence thereading time; more predictable words are read moreREADING TIME

quickly. One way of defining predictability is from simple bigram measures. For
example, Scott and Shillcock (2003) had participants read sentences while monitoring
their gaze with aneye-tracker. They constructed the sentences so that some would
have a verb-noun pair with a high bigram probability (such as(14.37a)) and others a
verb-noun pair with a low bigram probability (such as (14.37b)).

(14.37) a) HIGH PROB: One way toavoid confusionis to make the changes during
vacation;

b) LOW PROB: One way toavoid discoveryis to make the changes during
vacation

They found that the higher the bigram predictability of a word, the shorter the time
that participants looked at the word (theinitial-fixation duration ).

While this result only provides evidence forN-gram probabilities, more recent ex-
periments have suggested that the probability of an upcoming word given the syntactic
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parse of the preceding sentence prefix also predicts word reading time Hale (2006),
Levy (2007).

Interestingly, this effect of probability on reading time has also been shown for
morphological structure; the time to recognize a word is influenced by entropy of the
word and the entropy of the word’s morphological paradigm Moscoso del Prado Martı́n
et al. (2004).

The second family of studies has examined how humans disambiguate sentences
which have multiple possible parses, suggesting that humans prefer whichever parse
is more probable. These studies often rely on a specific classof temporarily ambigu-
ous sentences calledgarden-pathsentences. These sentences, first described by BeverGARDENPATH

(1970), are sentences which are cleverly constructed to have three properties that com-
bine to make them very difficult for people to parse:

1. They aretemporarily ambiguous: The sentence is unambiguous, but its initial
portion is ambiguous.

2. One of the two or more parses in the initial portion is somehow preferable to the
human parsing mechanism.

3. But the dispreferred parse is the correct one for the sentence.

The result of these three properties is that people are “led down the garden path”
toward the incorrect parse, and then are confused when they realize it’s the wrong one.
Sometimes this confusion is quite conscious, as in Bever’s example (14.38); in fact this
sentence is so hard to parse that readers often need to be shown the correct structure. In
the correct structureracedis part of a reduced relative clause modifyingThe horse, and
means “The horse [which was raced past the barn] fell”; this structure is also present in
the sentence “Students taught by the Berlitz method do worsewhen they get to France”.

(14.38) The horse raced past the barn fell.

(a) S (b) S

NP VP NP VP

NP VP

PP PP

NP ? NP

Det N V P Det N V Det N V P Det N V

The horse raced past the barn fell The horse raced past the barn fell

In Marti Hearst’s example (14.39), subjects often misparsethe verbhousesas a
noun (analyzingthe complex housesas a noun phrase, rather than a noun phrase and
a verb). Other times the confusion caused by a garden-path sentence is so subtle that
it can only be measured by a slight increase in reading time. Thus in example (14.40)
readers often mis-parsethe solutionas the direct object offorgot rather than as the
subject of an embedded sentence. This mis-parse is subtle, and is only noticeable
because experimental participants take longer to read the word was than in control
sentences. This “mini-garden-path” effect at the wordwassuggests that subjects had
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chosen the direct object parse and had to re-analyze or rearrange their parse now that
they realize they are in a sentential complement.

(14.39) The complex houses married and single students and their families.
(a) S (b) S

NP NP VP

Det Adj N Det N V

The complex houses The complex houses

(14.40) The student forgot the solution was in the back of the book.

(a) S (b) S

NP VP NP VP

S

NP ? NP VP

Det N V Det N V Det N V Det N V

The students forgot the solution was The students forgot thesolution was

While many factors seem to play a role in these preferences for a particular (incor-
rect) parse, at least one factor seems to be syntactic probabilities, especially lexicalized
(subcategorization) probabilities. For example, the probability of the verbforgot tak-
ing a direct object (VP→ V NP) is higher than the probability of it taking a sentential
complement (VP→ V S); this difference causes readers to expect a direct object after
forgetand be surprised (longer reading times) when they encountera sentential com-
plement. By contrast, a verb which prefers a sentential complement (likehope) didn’t
cause extra reading time atwas.

Similarly, the garden path in (14.39) may be caused by the fact thatP(houses|Noun)>

P(houses|Verb) andP(complex|Ad jective) > P(complex|Noun), and the garden path
in (14.38) at least partially by the low probability of the reduced relative clause con-
struction.

Besides grammatical knowledge, human parsing is affected by many other factors
which we will describe later, including resource constraints (such as memory limita-
tions, to be discussed in Ch. 15), thematic structure (such as whether a verb expects se-
manticagentsor patients, to be discussed in Ch. 19) and discourse constraints (Ch. 21).

14.11 SUMMARY

This chapter has sketched the basics ofprobabilistic parsing, concentrating onprob-
abilistic context-free grammars and probabilistic lexicalized context-free gram-
mars.
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• Probabilistic grammars assign a probability to a sentence or string of words,
while attempting to capture more sophisticated syntactic information than the
N-gram grammars of Ch. 4.

• A probabilistic context-free grammar (PCFG) is a context-free
grammar in which every rule is annotated with the probability of choosing that
rule. Each PCFG rule is treated as if it wereconditionally independent; thus the
probability of a sentence is computed bymultiplying the probabilities of each
rule in the parse of the sentence.

• The probabilistic CKY (Cocke-Kasami-Younger) algorithm is a probabilistic
version of the CKY parsing algorithm. There are also probabilistic versions of
other parsers like the Earley algorithm.

• PCFG probabilities can be learning by counting in aparsed corpus, or by pars-
ing a corpus. TheInside-Outsidealgorithm is a way of dealing with the fact that
the sentences being parsed are ambiguous.

• Raw PCFGs suffer from poor independence assumptions between rules and lack
of sensitivity to lexical dependencies.

• One way to deal with this problem is to split and merge non-terminals (automat-
ically or by hand).

• Probabilistic lexicalized CFGs are another solution to this problem in which
the basic PCFG model is augmented with alexical head for each rule. The
probability of a rule can then be conditioned on the lexical head or nearby heads.

• Parsers for lexicalized PCFGs (like the Charniak and Collins parsers) are based
on extensions to probabilistic CKY parsing.

• Parsers are evaluated using three metrics:labeled recall, labeled precision, and
cross-brackets.

• There is evidence based ongarden-path sentencesand other on-line sentence-
processing experiments that the human parser uses some kinds of probabilistic
information about grammar.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Many of the formal properties of probabilistic context-free grammars were first worked
out by Booth (1969) and Salomaa (1969). Baker (1979) proposed the Inside-Outside
algorithm for unsupervised training of PCFG probabilities, and used a CKY-style pars-
ing algorithm to compute inside probabilities. Jelinek andLafferty (1991) extended the
CKY algorithm to compute probabilities for prefixes. Stolcke (1995) drew on both of
these algorithms in adapting the Earley algorithm to use with PCFGs.

A number of researchers starting in the early 1990s worked onadding lexical de-
pendencies to PCFGs, and on making PCFG rule probabilities more sensitive to sur-
rounding syntactic structure. For example Schabes et al. (1988) and Schabes (1990)
presented early work on the use of heads. Many papers on the use of lexical depen-
dencies were first presented at the DARPA Speech and Natural Language Workshop in
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June, 1990. A paper by Hindle and Rooth (1990) applied lexical dependencies to the
problem of attaching prepositional phrases; in the question session to a later paper Ken
Church suggested applying this method to full parsing (Marcus, 1990). Early work on
such probabilistic CFG parsing augmented with probabilistic dependency information
includes Magerman and Marcus (1991), Black et al. (1992), Bod (1993), and Jelinek
et al. (1994), in addition to Collins (1996), Charniak (1997), and Collins (1999) dis-
cussed above. Other recent PCFG parsing models include Klein and Manning (2003a)
and Petrov et al. (2006). .

This early lexical probabilistic work led initially to workfocused on solving spe-
cific parsing problems like preposition-phrase attachment, using methods including
Transformation Based Learning (TBL) (Brill and Resnik, 1994), Maximum Entropy
(Ratnaparkhi et al., 1994), Memory-Based Learning (Zavreland Daelemans, 1997),
log-linear models (Franz, 1997), decision trees using semantic distance between heads
(computed from WordNet) (Stetina and Nagao, 1997), and Boosting (Abney et al.,
1999).

Another direction extended the lexical probabilistic parsing work to build proba-
bilistic formulations of grammar other than PCFGs, such as probabilistic TAG gram-
mar (Resnik, 1992; Schabes, 1992), based on the TAG grammarsdiscussed in Ch. 12,
probabilistic LR parsing (Briscoe and Carroll, 1993), and probabilistic link grammar
(Lafferty et al., 1992). An approach to probabilistic parsing calledsupertaggingex-SUPERTAGGING

tends the part-of-speech tagging metaphor to parsing by using very complex tags that
are in fact fragments of lexicalized parse trees (Bangaloreand Joshi, 1999; Joshi and
Srinivas, 1994), based on the lexicalized TAG grammars of Schabes et al. (1988). For
example the nounpurchasewould have a different tag as the first noun in a noun com-
pound (where it might be on the left of a small tree dominated by Nominal) than as
the second noun (where it might be on the right). Supertagging has also been applied
to CCG parsing and HPSG parsing (Clark and Curran, 2004a; Matsuzaki et al., 2007;
Blunsom and Baldwin, 2006). Non-supertagging statisticalparsers for CCG include
Hockenmaier and Steedman (2002).

Goodman (1997), Abney (1997), and Johnson et al. (1999) gaveearly discussions
of probabilistic treatments of feature-based grammars. Other recent work on building
statistical models of feature-based grammar formalisms like HPSG and LFG includes
Riezler et al. (2002), Kaplan et al. (2004), and Toutanova etal. (2005).

We mentioned earlier that discriminative approaches to parsing fall into the two
broad categories of dynamic programming methods and discriminative reranking meth-
ods. Recall that discriminative reranking approaches require N-best parses. Parsers
based on A* search can easily be modified to generateN-best lists just by continuing
the search past the first-best parse (Roark, 2001). Dynamic programming algorithms
like the ones described in this chapter can be modified by eliminating the dynamic
programming and using heavy pruning (Collins, 2000; Collins and Koo, 2005; Bikel,
2004), or via new algorithms (Jiménez and Marzal, 2000; Gildea and Jurafsky, 2002;
Charniak and Johnson, 2005; Huang and Chiang, 2005), some adapted from speech
recognition algorithms such as Schwartz and Chow (1990) (see Sec.??).

By contrast, in dynamic programming methods, instead of outputting and then
reranking anN-best list, the parses are represented compactly in a chart,and log-linear
and other methods are applied for decoding directly from thechart. Such modern
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methods include Johnson (2001), Clark and Curran (2004b), and Taskar et al. (2004).
Other reranking developments include changing the optimization criterion (Titov and
Henderson, 2006).

Another important recent area of research is dependency parsing; algorithms in-
clude Eisner’s bilexical algorithm (Eisner, 1996b, 1996a,2000), maximum spanning
tree approaches (using on-line learning) (McDonald et al.,2005b, 2005a), and ap-
proaches based on building classifiers for parser actions (Kudo and Matsumoto, 2002;
Yamada and Matsumoto, 2003; Nivre et al., 2006; Titov and Henderson, 2007). A dis-
tinction is usually made between projective andnon-projective dependencies. Non-NONPROJECTIVE

DEPENDENCIES

projective dependencies are those in which the dependency lines cross; this is not very
common in English, but is very common in many languages with more free word or-
der. Non-projective dependency algorithms include McDonald et al. (2005a) and Nivre
(2007). The Klein-Manning parser combines dependency and constituency information
(Klein and Manning, 2003c).

Manning and Schütze (1999) has an extensive coverage of probabilistic parsing.
Collins’ (1999) dissertation includes a very readable survey of the field and introduc-
tion to his parser.

The field of grammar induction is closely related to statistical parsing, and a parser
is often used as part of a grammar induction algorithm. One ofthe earliest statistical
works in grammar induction was Horning (1969), who showed that PCFGs could be
induced without negative evidence. Early modern probabilistic grammar work showed
that simply using EM was insufficient (Lari and Young, 1990; Carroll and Charniak,
1992). Recent probabilistic work such as Yuret (1998), Clark (2001), Klein and Man-
ning (2002), and Klein and Manning (2004), are summarized inKlein (2005) and Adri-
aans and van Zaanen (2004). Work since that summary includesSmith and Eisner
(2005), Haghighi and Klein (2006), and Smith and Eisner (2007).

EXERCISES

14.1 Implement the CKY algorithm.

14.2 Modify the algorithm for conversion to CNF from Ch. 13 to correctly handle
rule probabilities. Make sure that the resulting CNF assigns the same total probability
to each parse tree.

14.3 Recall that Exercise?? asked you to update the CKY algorithm to handles unit
productions directly rather than converting them to CNF. Extend this change to proba-
bilistic CKY.

14.4 Fill out the rest of the probabilistic CKY chart in Fig. 14.4.

14.5 Sketch out how the CKY algorithm would have to be augmented tohandle lexi-
calized probabilities.
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14.6 Implement your lexicalized extension of the CKY algorithm.

14.7 Implement the PARSEVAL metrics described in Sec. 14.7. Nexteither use a
treebank or create your own hand-checked parsed testset. Now use your CFG (or other)
parser and grammar and parse the testset and compute labeledrecall, labeled precision,
and cross-brackets.
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15
LANGUAGE AND
COMPLEXITY

This is the dog, that worried the cat, that killed the rat, that ate the
malt, that lay in the house that Jack built.

Mother Goose,The House that Jack Built

This is the malt that the rat that the cat that the dog worried killed
ate.

Victor H. Yngve (1960)

Much of the humor in musical comedy and comic operetta comes from entwining
the main characters in fabulously complicated plot twists.Casilda, the daughter of
the Duke of Plaza-Toro in Gilbert and Sullivan’sThe Gondoliers, is in love with her
father’s attendant Luiz. Unfortunately, Casilda discovers she has already been married
(by proxy) as a babe of six months to “the infant son and heir ofHis Majesty the
immeasurably wealthy King of Barataria”. It is revealed that this infant son was spirited
away by the Grand Inquisitor and raised by a “highly respectable gondolier” in Venice
as a gondolier. The gondolier had a baby of the same age and could never remember
which child was which, and so Casilda was in the unenviable position, as she puts it,
of “being married to one of two gondoliers, but it is impossible to say which”. By way
of consolation, the Grand Inquisitor informs her that “suchcomplications frequently
occur”.

Luckily, such complications don’t frequently occur in natural language. Or do they?
In fact there are sentences that are so complex that they are hard to understand, such as
Yngve’s sentence above, or the sentence:

“The Republicans who the senator who she voted for chastised were trying
to cut all benefits for veterans”.

Studying such sentences, and more generally understandingwhat level of complexity
tends to occur in natural language, is an important area of language processing. Com-
plexity plays an important role, for example, in deciding when we need to use a par-
ticular formal mechanism. Formal mechanisms like finite automata, Markov models,
transducers, phonological rewrite rules, and context-free grammars, can be described
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in terms of theirpower, or equivalently in terms of thecomplexity of the phenomenaPOWER

COMPLEXITY that they can describe. This chapter introduces the Chomskyhierarchy, a theoretical
tool that allows us to compare the expressive power or complexity of these different
formal mechanisms. With this tool in hand, we summarize arguments about the correct
formal power of the syntax of natural languages, in particular English but also includ-
ing a famous Swiss dialect of German that has the interestingsyntactic property called
cross-serial dependencies. This property has been used to argue that context-free
grammars are insufficiently powerful to model the morphology and syntax of natural
language.

In addition to using complexity as a metric for understanding the relation between
natural language and formal models, the field of complexity is also concerned with
what makes individual constructions or sentences hard to understand. For example we
saw above that certainnested or center-embedded sentences are difficult for people
to process. Understanding what makes some sentences difficult for people to process
is an important part of understanding human parsing.

15.1 THE CHOMSKY HIERARCHY

How are automata, context-free grammars, and phonologicalrewrite rules related?
What they have in common is that each describes aformal language, which we have
seen is a set of strings over a finite alphabet. But the kind of grammars we can write
with each of these formalism are of differentgenerative power. One grammar is ofGENERATIVE POWER

greater generative power orcomplexity than another if it can define a language that the
other cannot define. We will show, for example, that a context-free grammar can be
used to describe formal languages that cannot be described with a finite-state automa-
ton.

It is possible to construct a hierarchy of grammars, where the set of languages de-
scribable by grammars of greater power subsumes the set of languages describable by
grammars of lesser power. There are many possible such hierarchies; the one that is
most commonly used in computational linguistics is theChomsky hierarchy (Chom-CHOMSKY

HIERARCHY

sky, 1959), which includes four kinds of grammars: Fig. 15.1shows the four grammars
in the Chomsky hierarchy as well as a useful fifth type, themildly context-sensitivelan-
guages.

This decrease in the generative power of languages from the most powerful to the
weakest can in general be accomplished by placing constraints on the way the grammar
rules are allowed to be written. Fig. 15.2 shows the five typesof grammars in the
extended Chomsky hierarchy, defined by the constraints on the form that rules must
take. In these examples,A is a single non-terminal, andα, β , andγ are arbitrary strings
of terminal and non-terminal symbols. They may be empty unless this is specifically
disallowed below.x is an arbitrary string of terminal symbols.

Turing-equivalent, Type 0 or unrestricted grammars have no restrictions on the
form of their rules, except that the left-hand side cannot bethe empty stringǫ. Any
(non-null) string can be written as any other string (or asǫ). Type 0 grammars charac-
terize therecursively enumerable languages, that is, those whose strings can be listedRECURSIVELY

ENUMERABLE
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Regular (or Right Linear) Languages

Context-Free Languages (with no epsilon productions)

Mildly Context-Sensitive Languages

Context-Sensitive Languages

Recursively Enumerable Languages

Figure 15.1 A Venn diagram of the four languages on the Chomsky Hierarchy, aug-
mented with a fifth class, the mildly context-sensitive languages.

Type Common Name Rule Skeleton Linguistic Example
0 Turing Equivalent α → β , s.t.α 6= ǫ HPSG, LFG, Minimalism

1 Context Sensitive αAβ → αγβ , s.t.γ 6= ǫ

- Mildly Context Sensitive TAG, CCG

2 Context Free A→ γ Phrase Structure Grammars

3 Regular A→ xBor A→ x Finite State Automata

Figure 15.2 The Chomsky Hierarchy, augumented by the mildly context-sensitive
grammars.

(enumerated) by a Turing Machine.
Context-sensitive grammars have rules that rewrite a non-terminal symbol A inCONTEXTSENSITIVE

the contextαAβ as any non-empty string of symbols. They can be either written in the
form αAβ → αγ β or in the formA→ γ /α β . We have seen this latter version in
the Chomsky-Halle representation of phonological rules (Chomsky and Halle, 1968)
like this flapping rule:

/t/ → [dx] / V́ V

While the form of these rules seems context-sensitive, Ch. 7showed that phono-
logical rule systems that do not have recursion are actuallyequivalent in power to the
regular grammars.

Another way of conceptualizing a rule in a context-sensitive grammar is as rewrit-
ing a string of symbolsδ as another string of symbolsφ in a “non-decreasing” way;
such thatφ has at least as many symbols asδ .

We studiedcontext-free grammars in Ch. 12. Context-free rules allow any singleCONTEXTFREE

non-terminal to be rewritten as any string of terminals and non-terminals. A non-
terminal may also be rewritten asǫ, although we didn’t make use of this option in
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Ch. 12.
Regular grammars are equivalent to regular expressions. That is, a given regular

language can be characterized either by a regular expression of the type we discussed
in Chapter 2, or by a regular grammar. Regular grammars can either beright-linearRIGHTLINEAR

or left-linear. A rule in a right-linear grammar has a single non-terminal on the left,LEFTLINEAR

and at most one non-terminal on the right-hand side. If thereis a non-terminal on
the right-hand side, it must be the last symbol in the string.The right-hand-side of
left-linear grammars is reversed (the right-hand-side must start with (at most) a single
non-terminal). All regular languages have both a left-linear and a right-linear grammar.
For the rest of our discussion, we will consider only the right-linear grammars.

For example, consider the following regular (right-linear) grammar:

S → aA

S → bB

A → aS

B → bbS

S → ǫ

It is regular, since the left-hand-side of each rule is a single non-terminal and each
right-hand side has at most one (rightmost) non-terminal. Here is a sample derivation
in the language:

S⇒ aA⇒ aaS⇒ aabB⇒ aabbbS⇒ aabbbaA

⇒ aabbbaaS⇒ aabbbaa

We can see that each time S expands, it produces eitheraaSor bbbS; thus the reader
should convince themself that this language corresponds tothe regular expression(aa∪
bbb)∗.

We will not present the proof that a language is regular if andonly if it is generated
by a regular grammar; it was first proved by Chomsky and Miller(1958) and can be
found in textbooks like Hopcroft and Ullman (1979) and Lewisand Papadimitriou
(1988). The intuition is that since the non-terminals are always at the right or left edge
of a rule, they can be processed iteratively rather than recursively.

The fifth class of languages and grammars that is useful to consider is themildly
context-sensitive grammars and themildly context-sensitive languages. MildlyMILDLY

CONTEXTSENSITIVE

context-sensitive languages are a proper subset of the context-sensitive languages, and
a proper superset of the context-free languages. The rules for mildly context-sensitive
languages can be described in a number of ways; indeed it turns out that various gram-
mar formalisms, including Tree-Adjoining Grammars (Joshi, 1985), Head Grammars
Pollard (1984), Combinatory Categorial Grammars (CCG), (Steedman, 1996, 2000)
and also a specific version of Minimalist Grammars (Stabler,1997), are all weakly
equivalent (Joshi et al., 1991).
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15.2 HOW TO TELL IF A LANGUAGE ISN’ T REGULAR

How do we know which type of rules to use for a given problem? Could we use
regular expressions to write a grammar for English? Or do we need to use context-free
rules or even context-sensitive rules? It turns out that forformal languages there are
methods for deciding this. That is, we can say for a given formal language whether it
is representable by a regular expression, or whether it instead requires a context-free
grammar, and so on.

So if we want to know if some part of natural language (the phonology of English,
let’s say, or perhaps the morphology of Turkish) is representable by a certain class of
grammars, we need to find a formal language that models the relevant phenomena and
figure out which class of grammars is appropriate for this formal language.

Why should we care whether (say) the syntax of English is representable by a
regular language? One main reason is that we’d like to know which type of rule to
use in writing computational grammars for English. If English is regular, we would
write regular expressions, and use efficient automata to process the rules. If English
is context-free, we would write context-free rules and use the CKY algorithm to parse
sentences, and so on.

Another reason to care is that it tells us something about theformal properties
of different aspects of natural language; it would be nice toknow where a language
“keeps” its complexity; whether the phonological system ofa language is simpler than
the syntactic system, or whether a certain kind of morphological system is inherently
simpler than another kind. It would be a strong and exciting claim, for example, if
we could show that the phonology of English was capturable bya finite-state machine
rather than the context-sensitive rules that are traditionally used; it would mean that
English phonology has quite simple formal properties. Indeed, this fact was shown by
Johnson (1972), and helped lead to the modern work in finite-state methods shown in
Chapters 3 and 4.

15.2.1 The Pumping Lemma

The most common way to prove that a language is regular is to actually build a regular
expression for the language. In doing this we can rely on the fact that the regular
languages are closed under union, concatenation, Kleene star, complementation, and
intersection. We saw examples of union, concatenation, andKleene star in Ch. 2. So
if we can independently build a regular expression for two distinct parts of a language,
we can use the union operator to build a regular expression for the whole language,
proving that the language is regular.

Sometimes we want to prove that a given language isnot regular. An extremely
useful tool for doing this is thePumping Lemma. There are two intuitions behind thisPUMPING LEMMA

lemma. (Our description of the pumping lemma draws from Lewis and Papadimitriou
(1988) and Hopcroft and Ullman (1979).) First, if a languagecan be modeled by a finite
automaton with a finite number of states, we must be able to decide with a bounded
amount of memory whether any string was in the language or not. This amount of
memory can be different for different automata, but for a given automaton it can’t
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grow larger for different strings (since a given automaton has a fixed number of states).
Thus the memory needs must not be proportional to the length of the input. This means
for example that languages likeanbn are not likely to be regular, since we would need
some way to remember whatn was in order to make sure that there were an equal
number ofa’s andb’s. The second intuition relies on the fact that if a regular language
has any long strings (longer than the number of states in the automaton), there must be
some sort of loop in the automaton for the language. We can usethis fact by showing
that if a languagedoesn’thave such a loop, then it can’t be regular.

Let’s consider a languageL and the corresponding deterministic FSAM, which has
N states. Consider an input string also of lengthN. The machine starts out in stateq0;
after seeing 1 symbol it will be in stateq1; afterN symbols it will be in stateqn. In
other words, a string of lengthN will go throughN+1 states (fromq0 to qN). But there
are onlyN states in the machine. This means that at least two of the states along the
accepting path (call themqi andq j ) must be the same. In other words, somewhere on
an accepting path from the initial to final state, there must be a loop. Fig. 15.3 shows
an illustration of this point. Letx be the string of symbols that the machine reads on
going from the initial stateq0 to the beginning of the loopqi . y is the string of symbols
that the machine reads in going through the loop.z is the string of symbols from the
end of the loop (q j ) to the final accepting state (qN).

qi=j

y

q0
qN

x z

Figure 15.3 A machine withN states accepting a stringxyzof N symbols

The machine accepts the concatenation of these three strings of symbols, that is,
xyz. But if the machine acceptsxyz it must acceptxz! This is because the machine
could just skip the loop in processingxz. Furthermore, the machine could also go
around the loop any number of times; thus it must also acceptxyyz, xyyyz, xyyyyz, and
so on. In fact, it must accept any string of the formxynz for n≥ 0.

The version of the pumping lemma we give is a simplified one forinfinite regular
languages; stronger versions can be stated that also apply to finite languages, but this
one gives the flavor of this class of lemmas:

Pumping Lemma. Let L be an infinite regular language. Then there are
stringsx, y, andz, such thaty 6= ǫ andxynz∈ L for n≥ 0.

The pumping lemma states that if a language is regular, then there is some stringy
that can be “pumped” appropriately. But this doesn’t mean that if we can pump some
string y, the language must be regular. Non-regular languages may also have strings
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that can be pumped. Thus the lemma is not used for showing thata languageis regular.
Rather it is used for showing that a languageisn’t regular, by showing that in some
language there is no possible string that can be pumped in theappropriate way.

Let’s use the pumping lemma to show that the languageanbn (i.e., the language
consisting of strings ofas followed by an equal number ofbs) is not regular. We must
show that any possible strings that we pick cannot be divided up into three partsx, y,
andzsuch thaty can be pumped. Given a random strings fromanbn, we can distinguish
three ways of breakings up, and show that no matter which way we pick, we cannot
find somey that can be pumped:

1. y is composed only ofas. (This implies thatx is all as too, andzcontains all the
bs, perhaps preceded by someas.) But if y is all as, that meansxynzhas moreas
thanxyz. But this means it has moreas thanbs, and so cannot be a member of
the languageanbn!

2. y is composed only ofbs. The problem here is similar to case 1; Ify is all bs,
that meansxynzhas morebs thanxyz, and hence has morebs thanas.

3. y is composed of bothas andbs (this implies thatx is only as, whilez is only
bs). This means thatxynz must have somebs beforeas, and again cannot be a
member of the languageanbn!

Thus there is no string inanbn that can be divided intox, y, z in such a way thaty
can be pumped, and henceanbn is not a regular language.

But while anbn is not a regular language, it is a context-free language. In fact, the
context-free grammar that modelsanbn only takes two rules! Here they are:

S → a S b

S → ǫ

Here’s a sample parse tree using this grammar to derive the sentenceaabb:

S

S

S

a a ǫ b b

Figure 15.4 Context-free parse tree foraabb.

There is also a pumping lemma for context-free languages, that can be used whether
or not a language is context-free; complete discussions canbe found in Hopcroft and
Ullman (1979) and Partee et al. (1990).
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15.2.2 Are English and Other Natural Languages Regular Lan-
guages?

“How’s business?” I asked.
“Lousy and terrible.” Fritz grinned richly. “Or I pull off a new deal in
the next month or I go as a gigolo,”
“ Either. . . or . . . ,” I corrected, from force of professional habit.
“I’m speaking a lousy English just now,” drawled Fritz, withgreat self-
satisfaction. “Sally says maybe she’ll give me a few lessons.”

Christopher Isherwood, “Sally Bowles”, from
Goodbye to Berlin. 1935

Consider a formal version of the English language modeled asa set of strings of
words. Is this language a regular language? It is generally agreed that natural languages
like English, viewed in this way, are not regular, although most attempted proofs of this
are well-known to be incorrect.

One kind of argument that is often made informally is that English number agree-
ment cannot be captured by a regular grammar, because of the potentially unbounded
distance between the subject and the verb in sentences like these:

(15.1) Whichproblemdid your professor say she thoughtwasunsolvable?
(15.2) Whichproblemsdid your professor say she thoughtwereunsolvable?

In fact, a simple regular grammarcan model number agreement, as Pullum and
Gazdar (1982) show. Here’s their regular (right-linear) grammar that models these
sentences:

S → Which problem did your professor say T

S → Which problems did your professor say U

T → she thought T| you thought T| was unsolvable

U → she thought U| you thought U| were unsolvable

So a regular grammar could model English agreement. This grammar isn’t elegant,
and would have a huge explosion in the number of grammar rules, but that’s not relevant
to the question of the regularity or non-regularity of English.

Another common flaw with previously attempted proofs, pointed out by Mohri and
Sproat (1998), is that the fact that a languageL contains a subsetL′ at positionP′ in
the Chomsky hierarchy does not imply that the languageL is also at positionP′. For
example, a regular language can contain as a proper subset a context-free language.
Thus the following two languages are context-free

L1 = {anbn : n∈ N}(15.3)

L2 = {wwR : w∈ Σ∗}(15.4)

and yet bothL1 andL2 are contained in the regular languageL:

L = {apbq : p,q∈ N}(15.5)
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Thus, the fact that a languageL contains a sublanguage that is very complex says
nothing about the overall complexity of languageL.

There are correct proofs that English (or rather “the set of strings of English words
considered as a formal language”) is not a regular language,based on the pumping
lemma. A proof by Partee et al. (1990), for example, is based on a famous class of
sentences withcenter-embedded structures (Yngve, 1960); here is a variant of theseCENTEREMBEDDED

sentences:

The cat likes tuna fish.
The cat the dog chased likes tuna fish.
The cat the dog the rat bit chased likes tuna fish.
The cat the dog the rat the elephant admired bit chased likes tuna fish.

These sentences get harder to understand as they get more complex. For now,
let’s assume that the grammar of English allows an indefinitenumber of embeddings.
Then in order to show that English is not regular, we need to show that languages with
sentences like these are isomorphic to some non-regular language. Since every fronted
NP must have its associated verb, these sentences are of the form:

(the + noun)n (transitive verb)n−1 likes tuna fish.

The idea of the proof will be to show that sentences of these structures can be pro-
duced by intersecting English with a regular expression. Wewill then use the pumping
lemma to prove that the resulting language isn’t regular.

In order to build a simple regular expression that we can intersect with English to
produce these sentences, we define regular expressions for the noun groups (A) and the
verbs (B):

A = { the cat, the dog, the rat, the elephant, the kangaroo,. . .}
B = { chased, bit, admired, ate, befriended, . . .}

Now if we take the regular expression/A* B* likes tuna fish/ and inter-
sect it with English (considered as a set of strings), the resulting language is:

L = xnyn−1 likes tuna fish, x∈ A,y∈ B

This language L can be shown to be non-regular via the pumpinglemma (see Ex-
ercise 15.2). Since the intersection of English with a regular language is not a regular
language, English cannot be a regular language either (since the regular languages are
closed under intersection).

There is a well-known flaw, or at least an overly strong assumption with this proof,
which is the assumption that these structures can be nested indefinitely. Sentences of
English are clearly bounded by some finite length; perhaps wecan safely say that all
sentences of English are less than a billion words long. If the set of sentences is finite,
then all natural languages are clearly finite-state. This isa flaw with all such proofs
about the formal complexity of natural language. We will ignore this objection for
now, since conveniently imagining that English has an infinite number of sentences
can prove enlightening in understanding the properties of finite English.

A more worrisome potential flaw with this proof is that it depends on the assump-
tion that these double relativizations of objects are strictly grammatical (even if hard to
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process). The research of Karlsson (2007) suggests that, while some kinds of center-
embeddings are grammatical, these double relativizationsof objects are in fact un-
grammatical. In any case, sentences like this get hard much faster than a billion words,
and are difficult to understand after a couple nestings. We will return to this issue in
Sec. 15.4.

15.3 IS NATURAL LANGUAGE CONTEXT-FREE?

The previous section argued that English (considered as a set of strings) doesn’t seem
like a regular language. The natural next question to ask is whether English is a context-
free language. This question was first asked by Chomsky (1956), and has an interesting
history; a number of well-known attempts to prove English and other languages non-
context-free have been published, and all except two have been disproved after publi-
cation. One of these two correct (or at least not-yet disproved) arguments derives from
the syntax of a dialect of Swiss German; the other from the morphology of Bambara, a
Northwestern Mande language spoken in Mali and neighboringcountries (Culy, 1985).
The interested reader should see Pullum (1991, pp. 131–146)for an extremely witty
history of both the incorrect and correct proofs; this section will merely summarize one
of the correct proofs, the one based on Swiss German.

Both of the correct arguments, and most of the incorrect ones, make use of the fact
that the following languages, and ones that have similar properties, are not context-free:

{xx | x∈ {a,b}∗}(15.6)

This language consists of sentences containing two identical strings concatenated. The
following related language is also not context-free:

anbmcndm(15.7)

The non-context-free nature of such languages can be shown using the pumping lemma
for context-free languages.

The attempts to prove that the natural languages are not a subset of the context-
free languages do this by showing that natural languages have a property of thesexx
languages calledcross-serial dependencies. In a cross-serial dependency, words orCROSSSERIAL

DEPENDENCIES

larger structures are related in left-to-right order as shown in Fig. 15.5. A language that
has arbitrarily long cross-serial dependencies can be mapped to thexx languages.

x
1

...x
2

x
n
... ...

1
y

2
y

n
y

Figure 15.5 A schematic of a cross-serial dependency.
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The successful proof, independently proposed by Huybregts(1984) and Shieber
(1985) (as we might expect from the prevalence of multiple discovery in science; see
page??) shows that a dialect of Swiss German spoken in Zürich has cross-serial con-
straints which make certain parts of that language equivalent to the non-context-free
languageanbmcndm. The intuition is that Swiss German allows a sentence to havea
string of dative nouns followed by a string of accusative nouns, followed by a string of
dative-taking verbs, followed by a string of accusative-taking verbs.

We will follow the version of the proof presented in Shieber (1985). First, he
notes that Swiss German allows verbs and their arguments to be ordered cross-serially.
Assume that all the example clauses we present below are preceded by the string“Jan
säit das” (“Jan says that”):

(15.8) . . . mer
. . . we

em Hans
Hans/DAT

es
the

huus
house/ACC

hälfed
helped

aastriiche.
paint.

“. . . we helped Hans paint the house.”

Notice the cross-serial nature of the semantic dependency:both nouns precede
both verbs, andem Hans(Hans) is the argument ofhälfed(helped) whilees huus(the
house) is the argument ofaastriiche(paint). Furthermore, there is a cross-serial case
dependency between the nouns and verbs;hälfed (helped) requires the dative, andem
Hansis dative, whileaastriiche(paint) takes the accusative, andes huus(the house) is
accusative.

Shieber points out that this case marking can occur even across triply embedded
cross-serial clauses like the following:

(15.9) . . . mer
. . . we

d’chind
the children/ACC

em Hans
Hans/DAT

es
the

huus
house/ACC

haend
have

wele
wanted to

laa
let

hälfe
help

aastriiche.
paint.

“. . . we have wanted to let the children help Hans paint the house.”

Shieber notes that among such sentences, those with all dative NPs preceding all ac-
cusative NPs, and all dative-subcategorizingV’s preceding all accusative-subcategorizing
V’s are acceptable.

(15.10) Jan säit das mer (d’chind)∗ (em Hans)∗ es huus haend wele laa∗ hälfe∗ aastriche.

Let’s call the regular expression above R. Since it’s a regular expression (you see
it only has concatenation and Kleene stars) it must define a regular language, and so
we can intersect R with Swiss German, and if the result is context free, so is Swiss
German.

But it turns out that Swiss German requires that the number ofverbs requiring
dative objects (hälfe) must equal the number of dative NPs (em Hans) and similarly
for accusatives. Furthermore, an arbitrary number of verbscan occur in a subordinate
clause of this type (subject to performance constraints). This means that the result of
intersecting this regular language with Swiss German is thefollowing language:

(15.11) L = Jan säit das mer (d’chind)n(em Hans)m es huus haend wele (laa)n (hälfe)m

aastriiche.

But this language is of the formwanbmxcndmy, which is not context-free!
So we can conclude that Swiss German is not context free.
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15.4 COMPLEXITY AND HUMAN PROCESSING

We noted in passing earlier that many of the sentences that were used to argue for
the non-finite state nature of English (like the “center-embedded” sentences) are quite
difficult to understand. If you are a speaker of Swiss German (or if you have a friend
who is), you will notice that the long cross-serial sentences in Swiss German are also
rather difficult to follow. Indeed, as Pullum and Gazdar (1982) point out,

precisely those construction-types that figure in the various proofs that
English is not context-free appear to cause massive difficulty in the human
processing system. . .

This brings us to a second use of the termcomplexity. In the previous section we
talked about the complexity of a language. Here we turn to a question that is as much
psychological as computational: the complexity of an individual sentence. Why are
certain sentences hard to comprehend? Can this tell us anything about computational
processes?

Many things can make a sentence hard to understand. For example we saw in
Ch. 14 that a word is read more slowly if it is unpredictable; i.e., has a lowN-gram
probability or a low parse probability. We also saw in Ch. 14garden-path sentences
where ambiguity can cause difficulty; if there are multiple possible parses, a human
reader (or listener) sometimes chooses the incorrect parse, leading to a double-take
when switching back to the other parse. Other factors that affect sentence difficulty
include implausible meanings and bad handwriting.

Another kind of difficulty seems to be related to human memorylimitations, and it
is this particular kind of complexity (often called “linguistic complexity” or “syntactic
complexity”) that bears an interesting relation to the formal-language complexity from
the previous section.

Consider these sentences from Gibson (1998) that cause difficulties when people
try to read them (we will use the # to mean that a sentence causes extreme processing
difficulty). In each case the (ii) example is significantly more complex than the (i)
example:

(15.12) (i) The cat likes tuna fish.
(ii) #The cat the dog the rat the goat licked bit chased likes tuna fish.

(15.13) (i) The child damaged the pictures which were taken by the photographer who the
professor met at the party.

(ii) #The pictures which the photographer who the professormet at the party took
were damaged by the child.

(15.14) (i) The fact that the employee who the manager hired stole office supplies worried
the executive.

(ii) #The executive who the fact that the employee stole office supplies worried
hired the manager.

The earliest work on sentences of this type noticed that theyall exhibit nestingor
center-embedding(Chomsky, 1957; Yngve, 1960; Chomsky and Miller, 1963; Miller
and Chomsky, 1963). That is, they all contain examples wherea syntactic category A
is nested within another category B, and surrounded by otherwords (X and Y):
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[B X [A] Y]

In each of the examples above, part (i) has zero or one embedding, while part (ii)
has two or more embeddings. For example in (15.12ii) above, there are three reduced
relative clauses embedded inside each other:

(15.15) # [S The cat [S′ the dog [S′ the rat [S′ the elephant admired] bit] chased] likes tuna fish].

In (15.13ii), the relative clausewho the professor met at the partyis nested in be-
tweenthe photographerandtook. The relative clausewhich the photographer . . . took
is then nested betweenThe picturesandwere damaged by the child.

(15.16) #The pictures [ which the photographer [ who the professor met at the party ] took ]
were damaged by the child.

The difficulty with these nested structures is not caused by ungrammaticality, since
the structures that are used in the complex sentences in (15.12ii)–(15.14ii) are the same
ones used in the easier sentences (15.12i)–(15.14i). The difference between the easy
and complex sentences seems to relate to the number of embeddings. But there is no
natural way to write a grammar that allowsN embeddings but notN +1 embeddings.
Rather, the complexity of these sentences seems to be a processing phenomenon; some
fact about the human parsing mechanism is unable to deal withthese kinds of multiple
nestings, in English and in other languages (Cowper, 1976; Babyonyshev and Gibson,
1999).

The difficulty of these sentences seems to have something to do with memory limi-
tations. Early formal grammarians suggested that this might have something to do with
how the parser processed embeddings. For example Yngve (1960) suggested that the
human parser is based on a limited-size stack, and that the more incomplete phrase-
structure rules the parser needs to store on the stack, the more complex the sentence.
Miller and Chomsky (1963) hypothesized thatself-embedded structures are particu-SELFEMBEDDED

larly difficult. A self-embedded structure contains a syntactic categoryA nested within
another example ofA, and surrounded by other words (x andy below); such structures
might be difficult because a stack-based parser might confuse two copies of the rule on
the stack.

A

x A y
The intuitions of these early models are important, although we no longer believe

that the complexity problems have to do with an actual stack.For example, we now
know that there are complexity differences between sentences that have the same num-
ber of embeddings, such as the well-known difference between subject-extracted rela-
tive clauses (15.17ii) and object-extracted relative clauses (15.17i):

(15.17) (i) [S The reporter [S′ who [S the senator attacked ]] admitted the error ].
(ii) [ S The reporter [S′ who [S attacked the senator ]] admitted the error ].

The object-extracted relative clauses are more difficult toprocess, as measured for
example by the amount of time it takes to read them, and other factors (MacWhinney,
1977, 1982; MacWhinney and Csaba Pléh, 1988; Ford, 1983; Wanner and Maratsos,
1978; King and Just, 1991; Gibson, 1998). Indeed, Karlsson (2007) has shown in a
study of seven languages that the grammaticality of center embeddings depends a lot
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on the particular syntactic structure (e.g., relative clauses versus double relativization of
objects) being embedded. Another problem for the old-fashioned stack-based models
is the fact that discourse factors can make some doubly nested relative clauses easier to
process, such as the following double nested example:

(15.18) The pictures [ that the photographer [ who I met at the party ] took ] turned out very
well.

What seems to make this structure less complex is that one of the embedded NPs is
the wordI; pronouns likeI andyouseem to be easier to process, perhaps because they
do not introduce a new entity to the discourse.

One human parsing model that accounts for all of this data is the Dependency
Locality Theory (Gibson, 1998, 2003). The intuition of the DLT is that object relatives
are difficult because they have two nouns that appear before any verb. The reader must
hold on to these two nouns without knowing how they will fit into the sentences.

More specifically, the DLT proposes that the processing costof integrating a new
word w is proportional to the distance betweenw and the syntactic item with which
w is being integrated. Distance is measured not just in words,but in how many new
phrases or discourse referents have to be held in memory at the same time. Thus the
memory load for a word is higher if there have been many interveningnew discourse
referentssince the word has been predicted. Thus the DLT predicts thata sequence of
NPs can be made easier to process if one of them is a pronoun that is already active in
the discourse, explaining (15.18).

In summary, the complexity of these ‘center-embedded’ and other examples does
seem to be related to memory, although not in as direct a link to parsing stack size as
was first thought 40 years ago. Understanding the relationship between these memory
factors and the statistical parsing factors mentioned in Ch. 14 is an exciting research
area that is just beginning to be investigated.

15.5 SUMMARY

This chapter introduced two different ideas ofcomplexity: the complexity of a formal
language, and the complexity of a human sentence.

• Grammars can be characterized by theirgenerative power. One grammar is of
greater generative power orcomplexity than another if it can define a language
that the other cannot define. TheChomsky hierarchy is a hierarchy of gram-
mars based on their generative power. It includesTuring equivalent, context-
sensitive, context-free, andregular grammars.

• Thepumping lemma can be used to prove that a given language isnot regular.
English is not a regular language, although the kinds of sentences that make
English non-regular are exactly those that are hard for people to parse. Despite
many decades of attempts to prove the contrary, English does, however, seem to
be a context-free language. The syntax of Swiss-German and the morphology of
Bambara, by contrast, are not context-free and seem to require mildly context-
sensitive grammars.
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• Certaincenter-embedded sentences are hard for people to parse. Many theo-
ries agree that this difficulty is somehow caused bymemory limitations of the
human parser.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Chomsky (1956) first asked whether finite-state automata or context-free grammars
were sufficient to capture the syntax of English. His suggestion in that paper that
English syntax contained “examples that are not easily explained in terms of phrase
structure” was a motivation for his development of syntactic transformations.

Choksky’s proof was based on the language{xxR : x ∈ {a,b}∗}. xR means “the
reverse ofx”, so each sentence of this language consists of a string ofas andbs followed
by the reverse or “mirror image” of the string. This languageis not regular; Partee et al.
(1990) shows this by intersecting it with the regular languageaa∗bbaa∗. The resulting
language isanb2an; it is left as an exercise for the reader (Exercise 15.3) to show that
this is not regular by the pumping lemma.

Chomsky proof shows that English had mirror-like properties, relying on multi-
ple embeddings of the following English syntactic structures, whereS1,S2, . . . ,Sn are
declarative sentences in English,

• If S1, thenS2

• EitherS3, or S4

• The man who saidS5 is arriving today

See Chomsky (1956) for details.
Pullum (1991, pp. 131–146) is the definitive historical study of research on the non-

context-free-ness of natural language. The early history of attempts to prove natural
languages non-context-free is summarized in Pullum and Gazdar (1982). The pumping
lemma was originally presented by Bar-Hillel et al. (1961),who also offer a number
of important proofs about the closure and decidability properties of finite-state and
context-free languages. Further details, including the pumping lemma for context-free
languages (also due to Bar-Hillel et al. (1961)) can be foundin a textbook in automata
theory such as Hopcroft and Ullman (1979).

Yngve’s idea that the difficulty of center-embedded sentences could be explained
if the human parser was finite-state was taken up by Church (1980) in his master’s
thesis. He showed that a finite-state parser that implementsthis idea could also explain
a number of other grammatical and psycholinguistic phenomena. While the cognitive
modeling field has turned toward more sophisticated models of complexity, Church’s
work can be seen as the beginning of the return to finite-statemodels in speech and
language processing that characterized the 1980s and 1990s.

There are a number of other ways of looking at complexity thatwe didn’t have
space to go into here. One is whether language processing is NP-complete. NP-
complete is the name of a class of problems which are suspected to be particularlyNPCOMPLETE

difficult to process. Barton et al. (1987) prove a number of complexity results about
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the NP-completeness of natural language recognition and parsing. Among other things,
they showed that

1. Maintaining lexical and agreement feature ambiguities over a potentially infinite-
length sentence causes the problem of recognizing sentences in some unification-
based formalisms like Lexical-Functional Grammar to be NP-complete.

2. Two-level morphological parsing (or even just mapping between lexical and sur-
face form) is also NP-complete.

Recent work has also begun to link processing complexity with information-theoretic
measures like Kolmogorov complexity (Juola, 1999).

Finally, recent work has looked at the expressive power of different kinds of proba-
bilistic grammars, showing for example that weighted context-free grammars (in which
each rule has a weight) and probabilistic context-free grammars (in which the weights
of the rules for a non-terminal must sum to 1) are equally expressive (Smith and John-
son, 2007; Abney et al., 1999; Chi, 1999).

EXERCISES

15.1 Is the languageanb2an context-free?

15.2 Use the pumping lemma to show this language is not regular:

L = xnyn−1likes tuna fish,x∈ A,y∈ B

15.3 Partee et al. (1990) showed that the languagexxR,x ∈ a,b∗ is not regular, by
intersecting it with the regular languageaa∗bbaa∗. The resulting language isanb2an.
Use the pumping lemma to show that this language is not regular, completing the proof
thatxxR,x∈ a,b∗ is not regular.

15.4 Build a context-free grammar for the language

L = {xxR|x∈ a,b∗}



DRAFT

Section 15.5. Summary 17

Abney, S. P., McAllester, D. A., and Pereira, F. C. N. (1999).
Relating probabilistic grammars and automata. InACL-99.

Babyonyshev, M. and Gibson, E. (1999). The complexity of
nested structures in Japanese.Language, 75(3), 423–450.

Bar-Hillel, Y., Perles, M., and Shamir, E. (1961). On
formal properties of simple phrase structure grammars.
Zeitschrift für Phonetik, Sprachwissenschaft und Kommunika-
tionsforschung, 14, 143–172. Reprinted in Y. Bar-Hillel.
(1964).Language and Information: Selected Essays on their
Theory and Application, Addison-Wesley 1964, 116–150.

Barton, Jr., G. E., Berwick, R. C., and Ristad, E. S. (1987).
Computational Complexity and Natural Language. MIT
Press.

Chi, Z. (1999). Statistical Properties of Probabilistic Context-
Free Grammars.Computational Linguistics, 25(1), 131–160.

Chomsky, N. (1956). Three models for the description of lan-
guage. IRE Transactions on Information Theory, 2(3), 113–
124.

Chomsky, N. (1957).Syntactic Structures. Mouton, The Hague.

Chomsky, N. (1959). On certain formal properties of grammars.
Information and Control, 2, 137–167.

Chomsky, N. and Halle, M. (1968).The Sound Pattern of En-
glish. Harper and Row.

Chomsky, N. and Miller, G. A. (1958). Finite-state languages.
Information and Control, 1, 91–112.

Chomsky, N. and Miller, G. A. (1963). Introduction to the for-
mal analysis of natural languages. In Luce, R. D., Bush, R.,
and Galanter, E. (Eds.),Handbook of Mathematical Psychol-
ogy, Vol. 2, pp. 269–322. Wiley.

Church, K. W. (1980). On memory limitations in natural lan-
guage processing. Master’s thesis, MIT. Distributed by the
Indiana University Linguistics Club.

Cowper, E. A. (1976).Constraints on Sentence Complexity: A
Model for Syntactic Processing. Ph.D. thesis, Brown Univer-
sity, Providence, RI†.

Culy, C. (1985). The complexity of the vocabulary of Bambara.
Linguistics and Philosophy, 8, 345–351.

Ford, M. (1983). A method for obtaining measures of lo-
cal parsing complexity through sentences.Journal of Verbal
Learning and Verbal Behavior, 22, 203–218.

Gibson, E. (1998). Linguistic complexity: Locality of syntactic
dependencies.Cognition, 68, 1–76.

Gibson, E. (2003). Sentence comprehension, linguistic com-
plexity in. In Nadel, L. (Ed.),Encyclopedia of Cognitive Sci-
ence, pp. 1137–1141. Nature Publishing Group, New York,
NY.

Hopcroft, J. E. and Ullman, J. D. (1979).Introduction to
Automata Theory, Languages, and Computation. Addison-
Wesley, Reading, MA.

Huybregts, R. (1984). The weak inadequacy of context-free
phrase structure grammars. In de Haan, G., Trommele, M.,
and Zonneveld, W. (Eds.),Van Periferie naar Kern. Foris,
Dordrecht†. Cited in Pullum (1991).

Johnson, C. D. (1972).Formal Aspects of Phonological De-
scription. Mouton, The Hague. Monographs on Linguistic
Analysis No. 3.

Joshi, A. K., Vijay-Shanker, K., and Weir, D. J. (1991).
The convergence of mildly context-sensitive grammatical for-
malisms. In Sells, P., Shieber, S., and Wasow, T. (Eds.),Foun-
dational issues in natural language processing, pp. 31–81.
MIT Press.

Joshi, A. K. (1985). Tree adjoining grammars: how much
context-sensitivity is required to provide reasonable structural
descriptions?. In Dowty, D. R., Karttunen, L., and Zwicky, A.
(Eds.),Natural Language Parsing, pp. 206–250. Cambridge
University Press.

Juola, P. (1999). Measuring linguistic complexity. Presented at
the 4th Conference on Conceptual Structure, Discourse, and
Language (CSDL-4), Georgia.

Karlsson, F. (2007). Constraints on multiple center-embedding
of clauses.Journal of Linguistics, 43, 365–392.

King, J. and Just, M. A. (1991). Individual differences in syn-
tactic processing: The role of working memory.Journal of
Memory and Language, 30, 580–602.

Lewis, H. and Papadimitriou, C. (1988).Elements of the Theory
of Computation. Prentice-Hall. Second edition.

MacWhinney, B. (1977). Starting points.Language, 53, 152–
168.

MacWhinney, B. (1982). Basic syntactic processes. In Kuczaj,
S. (Ed.),Language Acquisition: Volume 1, Syntax and Seman-
tics, pp. 73–136. Lawrence Erlbaum.
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16
FEATURES AND
UNIFICATION

FRIAR FRANCIS: If either of you know any inward impedi-
ment why you should not be conjoined, charge you, on your
souls, to utter it.

William Shakespeare, Much Ado About Nothing

From a reductionist perspective, the history of the natural sciences over the last few
hundred years can be seen as an attempt to explain the behavior of larger structures
by the combined action of smaller primitives. In biology, the properties of inher-
itance have been explained by the action of genes, and then again the properties
of genes have been explained by the action of DNA. In physics, matter was re-
duced to atoms and then again to subatomic particles. The appeal of reductionism
has not escaped computational linguistics. In this chapter we introduce the idea
that grammatical categories like VPto, Sthat, Non3sgAux, or 3sgNP, as well as the
grammatical rules like S → NP VP that make use of them, should be thought of
as objects that can have complex sets of properties associated with them. The in-
formation in these properties is represented by constraints, and so these kinds of
models are often called constraint-based formalisms.CONSTRAINT-BASED

FORMALISMS

Why do we need a more fine-grained way of representing and placing con-
straints on grammatical categories? One problem arose in Ch. 12, where we saw
that naive models of grammatical phenomena such as agreement and subcatego-
rization can lead to overgeneration problems. For example, in order to avoid un-
grammatical noun phrases such as this flights and verb phrases like disappeared
a flight, we were forced to create a huge proliferation of primitive grammatical
categories such as Non3sgVPto, NPmass, 3sgNP and Non3sgAux. These new cat-
egories led, in turn, to an explosion in the number of grammar rules and a cor-
responding loss of generality in the grammar. A constraint-based representation
scheme will allow us to represent fine-grained information about number and per-
son, agreement, subcategorization, as well as semantic categories like mass/count.
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Constraint-based formalisms have other advantages that we will not cover in
this chapter, such as the ability to model more complex phenomena than context-
free grammars, and the ability to efficiently and conveniently compute semantics
for syntactic representations.

Consider briefly how this approach might work in the case of grammatical
number. As we saw in Ch. 12, noun phrases like this flight and those flights can be
distinguished based on whether they are singular or plural. This distinction can be
captured if we associate a property called NUMBER that can have the value singular
or plural, with appropriate members of the NP category. Given this ability, we can
say that this flight is a member of the NP category and, in addition, has the value
singular for its NUMBER property. This same property can be used in the same way
to distinguish singular and plural members of the VP category such as serves lunch
and serve lunch.

Of course, simply associating these properties with various words and phrases
does not solve any of our overgeneration problems. To make these properties use-
ful, we need the ability to perform simple operations, such as equality tests, on
them. By pairing such tests with our core grammar rules, we can add various con-
straints to help ensure that only grammatical strings are generated by the grammar.
For example, we might want to ask whether or not a given noun phrase and verb
phrase have the same values for their respective number properties. Such a test is
illustrated by the following kind of rule.

S → NP VP

Only if the number of the NP is equal to the number of the VP.

The remainder of this chapter provides the details of one computational im-
plementation of a constraint-based formalism, based on feature structures and uni-
fication. The next section describes feature structures, the representation used to
capture the kind of grammatical properties we have in mind. Section 16.2 then
introduces the unification operator that is used to implement basic operations over
feature structures. Section 16.3 then covers the integration of these structures into
a grammatical formalism. Section 16.4 then introduces the unification algorithm
and its required data structures. Next, Section 16.5 describes how feature structures
and the unification operator can be integrated into a parser. Finally, Section 16.6
discusses the most significant extension to this constraint-based formalism, the use
of types and inheritance, as well as other extensions.



DRAFT

Section 16.1. Feature Structures 3

16.1 FEATURE STRUCTURES

One of the simplest ways to encode the kind of properties that we have in mind
is through the use of feature structures. These are simply sets of feature-valueFEATURE

STRUCTURES

pairs, where features are unanalyzable atomic symbols drawn from some finite
set, and values are either atomic symbols or feature structures themselves. Such
feature structures are traditionally illustrated with the following kind of matrix-like
diagram, called an attribute-value matrix or AVM:ATTRIBUTE-VALUE

MATRIX

AVM 











FEATURE1 value1

FEATURE2 value2

...

FEATUREn valuen













To make this concrete, consider the number property discussed above. To
capture this property, we will use the symbol NUMBER to designate this gram-
matical attribute, and the symbols sg and pl (introduced in Ch. 3) to designate the
possible values it can take on in English. A simple feature structure consisting of
this single feature would then be illustrated as follows:

[

NUMBER sg
]

Adding an additional feature-value pair to capture the grammatical notion of person
leads to the following feature structure:

[

NUMBER sg

PERSON 3rd

]

Next we can encode the grammatical category of the constituent that this structure
corresponds to through the use of the CAT feature. For example, we can indicate
that these features are associated with a noun phrase by using the following struc-
ture:







CAT NP

NUMBER sg

PERSON 3rd







This structure can be used to represent the 3sgNP category introduced in Ch. 12 to
capture a restricted subcategory of noun phrases. The corresponding plural version
of this structure would be captured as follows:







CAT NP

NUMBER pl

PERSON 3rd
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Note that the values of the CAT and PERSON features remain the same for these
last two structures. This illustrates how the use of feature structures allows us to
both preserve the core set of grammatical categories and draw distinctions among
members of a single category.

As mentioned earlier, features are not limited to atomic symbols as their val-
ues; they can also have other feature structures as their values. This is particularly
useful when we wish to bundle a set of feature-value pairs together for similar treat-
ment. As an example of this, consider that the NUMBER and PERSON features are
often lumped together since grammatical subjects must agree with their predicates
in both their number and person properties. This lumping together can be captured
by introducing an AGREEMENT feature that takes a feature structure consisting of
the NUMBER and PERSON feature-value pairs as its value. Introducing this feature
into our third person singular noun phrase yields the following kind of structure.









CAT NP

AGREEMENT

[

NUMBER sg

PERSON 3rd

]









Given this kind of arrangement, we can test for the equality of the values for both
the NUMBER and PERSON features of two constituents by testing for the equality
of their AGREEMENT features.

This ability to use feature structures as values leads fairly directly to the no-
tion of a feature path. A feature path is nothing more than a sequence of featuresFEATURE PATH

through a feature structure leading to a particular value. For example, in the last
feature structure, we can say that the 〈AGREEMENT NUMBER〉 path leads to the
value sg, while the 〈AGREEMENT PERSON〉 path leads to the value 3rd. This no-
tion of a path leads naturally to an alternative graphical way of illustrating feature
structures, shown in Figure 16.1, which as we will see in Section 16.4 is suggestive
of how they will be implemented. In these diagrams, feature structures are depicted
as directed graphs where features appear as labeled edges and values as nodes.

Although this notion of paths will prove useful in a number of settings, we
introduce it here to help explain an additional important kind of feature structure:
those that contain features that actually share some feature structure as a value.
Such feature structures will be referred to as reentrant structures. What we haveREENTRANT

in mind here is not the simple idea that two features might have equal values, but
rather that they share precisely the same feature structure (or node in the graph).
These two cases can be distinguished clearly if we think in terms of paths through
a graph. In the case of simple equality, two paths lead to distinct nodes in the graph
that anchor identical, but distinct structures. In the case of a reentrant structure,
two feature paths actually lead to the same node in the structure.
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CAT

AGREEMENT

NP

sg

3rdPERSON

NUMBER

Figure 16.1 A feature structure with shared values. The location (value) found by
following the 〈HEAD SUBJECT AGREEMENT〉 path is the same as that found via the
〈HEAD AGREEMENT〉 path.

Figure 16.2 illustrates a simple example of reentrancy. In this structure, the
〈HEAD SUBJECT AGREEMENT〉 path and the 〈HEAD AGREEMENT〉 path lead to the
same location. Shared structures like this will be denoted in our AVM diagrams
by adding numerical indexes that signal the values to be shared. The AVM version
of the feature structure from Figure 16.2 would be denoted as follows, using the
notation of the PATR-II system (Shieber, 1986), based on Kay (1979):

















CAT S

HEAD











AGREEMENT 1

[

NUMBER sg

PERSON 3rd

]

SUBJECT
[

AGREEMENT 1

]



























As we will see, these simple structures give us the ability to express linguistic
generalizations in surprisingly compact and elegant ways.

16.2 UNIFICATION OF FEATURE STRUCTURES

As noted earlier, feature structures would be of little use without our being able to
perform reasonably efficient and powerful operations on them. As we will show,
the two principal operations we need to perform are merging the information con-
tent of two structures and rejecting the merger of structures that are incompati-
ble. Fortunately, a single computational technique, called unification, suffices forUNIFICATION

both of these purposes. The bulk of this section will illustrate through a series of
examples how unification instantiates these notions of merger and compatibility.
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S

sg

3rdPERSON

NUMBER
AGREEMENT

SUBJECT

AGREEMENT

CAT

Figure 16.2 A feature structure with shared values. The location (value) found by
following the 〈HEAD SUBJECT AGREEMENT〉 path is the same as that found via the
〈HEAD AGREEMENT〉 path.

Discussion of the unification algorithm and its implementation will be deferred to
Section 16.4.

We begin with the following simple application of the unification operator.
[

NUMBER sg
]

�
[

NUMBER sg
]

=
[

NUMBER sg
]

As this equation illustrates, unification is a binary operation (represented here as
�) that accepts two feature structures as arguments and returns a feature structure
when it succeeds. In this example, unification is being used to perform a sim-
ple equality check. The unification succeeds because the corresponding NUMBER

features in each structure agree as to their values. In this case, since the original
structures are identical, the output is the same as the input. The following similar
kind of check fails since the NUMBER features in the two structures have incom-
patible values.

[

NUMBER sg
]

�
[

NUMBER pl
]

Fails!

This next unification illustrates an important aspect of the notion of compat-
ibility in unification.

[

NUMBER sg
]

�
[

NUMBER []
]

=
[

NUMBER sg
]

In this situation, these features structures are taken to be compatible, and are hence
capable of being merged, despite the fact that the given values for the respective
NUMBER features are different. The [] value in the second structure indicates that
the value has been left unspecified. A feature with such a [] value can be suc-
cessfully matched to any value in a corresponding feature in another structure.
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Therefore, in this case, the value sg from the first structure can match the [] value
from the second, and as is indicated by the output shown, the result of this type
of unification is a structure with the value provided by the more specific, non-null,
value.

The next example illustrates another of the merger aspects of unification.
[

NUMBER sg
]

�
[

PERSON 3rd
]

=
[

NUMBER sg

PERSON 3rd

]

Here the result of the unification is a merger of the original two structures into
one larger structure. This larger structure contains the union of all the information
stored in each of the original structures. Although this is a simple example, it is
important to understand why these structures are judged to be compatible: they
are compatible because they contain no features that are explicitly incompatible.
The fact that they each contain a feature-value pair that the other does not is not a
reason for the unification to fail.

We will now consider a series of cases involving the unification of somewhat
more complex reentrant structures. The following example illustrates an equality
check complicated by the presence of a reentrant structure in the first argument.











AGREEMENT 1

[

NUMBER sg

PERSON 3rd

]

SUBJECT
[

AGREEMENT 1

]











� 
SUBJECT



AGREEMENT

[

PERSON 3rd

NUMBER sg

]









=










AGREEMENT 1

[

NUMBER sg

PERSON 3rd

]

SUBJECT
[

AGREEMENT 1

]











The important elements in this example are the SUBJECT features in the two
input structures. The unification of these features succeeds because the values
found in the first argument by following the 1 numerical index, match those that
are directly present in the second argument. Note that, by itself, the value of the
AGREEMENT feature in the first argument would have no bearing on the success
of unification since the second argument lacks an AGREEMENT feature at the top
level. It only becomes relevant because the value of the AGREEMENT feature is
shared with the SUBJECT feature.

The following example illustrates the copying capabilities of unification.
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(16.1)




AGREEMENT 1

SUBJECT
[

AGREEMENT 1

]





� 
SUBJECT



AGREEMENT

[

PERSON 3rd

NUMBER sg

]









=










AGREEMENT 1

SUBJECT



AGREEMENT 1

[

PERSON 3rd

NUMBER sg

]















Here the value found via the second argument’s 〈SUBJECT AGREEMENT〉 path
is copied over to the corresponding place in the first argument. In addition, the
AGREEMENT feature of the first argument receives a value as a side-effect of the
index linking it to the value at the end of the 〈SUBJECT AGREEMENT〉 path.

The next example demonstrates the important difference between features
that actually share values versus those that merely have identical looking values.

(16.2)








AGREEMENT
[

NUMBER sg
]

SUBJECT

[

AGREEMENT
[

NUMBER sg
]

]









� 
SUBJECT



AGREEMENT

[

PERSON 3

NUMBER sg

]









=












AGREEMENT
[

NUMBER sg
]

SUBJECT



AGREEMENT

[

NUMBER sg

PERSON 3

]

















The values at the end of the 〈SUBJECT AGREEMENT〉 path and the 〈AGREEMENT〉
path are the same, but not shared, in the first argument. The unification of the SUB-
JECT features of the two arguments adds the PERSON information from the second
argument to the result. However, since there is no index linking the AGREEMENT

feature to the 〈SUBJECT AGREEMENT〉 path, this information is not added to the
value of the AGREEMENT feature.

Finally, consider the following example of a failure to unify.
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AGREEMENT 1

[

NUMBER sg

PERSON 3

]

SUBJECT
[

AGREEMENT 1

]











�
















AGREEMENT

[

NUMBER sg

PERSON 3

]

SUBJECT



AGREEMENT

[

NUMBER PL

PERSON 3

]





















Fails!

Proceeding through the features in order, we first find that the AGREEMENT fea-
tures in these examples successfully match. However, when we move on to the
SUBJECT features, we find that the values found at the respective 〈 SUBJECT AGREE-
MENT NUMBER 〉 paths differ, causing a unification failure.

Feature structures are a way of representing partial information about some
linguistic object or placing informational constraints on what the object can be.
Unification can be seen as a way of merging the information in each feature struc-
ture, or describing objects which satisfy both sets of constraints. Intuitively, unify-
ing two feature structures produces a new feature structure which is more specific
(has more information) than, or is identical to, either of the input feature structures.
We say that a less specific (more abstract) feature structure subsumes an equallySUBSUMES

or more specific one. Subsumption is represented by the operator �. A feature
structure F subsumes a feature structure G (F � G) if and only if:

1. For every feature x in F , F(x) � G(x) (where F(x) means “the value of the
feature x of feature structure F”).

2. For all paths p and q in F such that F(p) = F(q), it is also the case that
G(p) = G(q).

For example, consider these feature structures:

(16.3)
[

NUMBER sg
]

(16.4)
[

PERSON 3
]

(16.5)
[

NUMBER sg

PERSON 3

]

(16.6)








CAT VP

AGREEMENT 1

SUBJECT
[

AGREEMENT 1

]
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(16.7)














CAT VP

AGREEMENT 1

SUBJECT



AGREEMENT 1

[

PERSON 3

NUMBER sg

]



















The following subsumption relations hold among them:

16.3 � 16.5

16.4 � 16.5

16.6 � 16.7

Subsumption is a partial ordering; there are pairs of feature structures that
neither subsume nor are subsumed by each other:

16.3 �� 16.4

16.4 �� 16.3

Since every feature structure is subsumed by the empty structure [], the rela-
tion among feature structures can be defined as a semilattice. Unification can beSEMILATTICE

defined in terms of the subsumption semilattice. Given two feature structures F
and G, F �G is defined as the most general feature structure H such that F � H
and G � H. Since the information ordering defined by subsumption is a semilat-
tice, the unification operation is monotonic (Pereira and Shieber, 1984; RoundsMONOTONIC

and Kasper, 1986; Moshier, 1988). This means that if some description is true of
a feature structure, unifying it with another feature structure results in a feature
structure that still satisfies the original description. The unification operation is
therefore associative; given a finite set of feature structures to unify, we can check
them in any order and get the same result.

To summarize, unification is a way of implementing the integration of knowl-
edge from different constraints. Given two compatible feature structures as input,
it produces the most general feature structure which nonetheless contains all the
information in the inputs. Given two incompatible feature structures, it fails.

16.3 FEATURE STRUCTURES IN THE GRAMMAR

Our primary purpose in introducing feature structures and unification has been to
provide a way to elegantly express syntactic constraints that would be difficult
to express using the mechanisms of context-free grammars alone. Our next step,
therefore, is to specify a way to integrate feature structures and unification opera-
tions into the specification of a grammar. This can be accomplished by augmenting
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the rules of ordinary context-free grammars with attachments that specify feature
structures for the constituents of the rules, along with appropriate unification oper-
ations that express constraints on those constituents. From a grammatical point of
view, these attachments will be used to accomplish the following goals:

• to associate complex feature structures with both lexical items and instances
of grammatical categories

• to guide the composition of feature structures for larger grammatical con-
stituents based on the feature structures of their component parts

• to enforce compatibility constraints between specified parts of grammatical
constructions

We will use the following notation to denote the grammar augmentations
that will allow us to accomplish all of these goals, based on the PATR-II system
described in Shieber (1986):

β0 → β1 · · ·βn

{set o f constraints}
The specified constraints have one of the following forms.

〈βi f eature path〉 = Atomic value

〈βi f eature path〉 = 〈β j f eature path〉
The notation 〈βi feature path〉 denotes a feature path through the feature structure
associated with the βi component of the context-free part of the rule. The first style
of constraint specifies that the value found at the end of the given path must unify
with the specified atomic value. The second form specifies that the values found at
the end of the two given paths must be unifiable.

To illustrate the use of these constraints, let us return to the informal solution
to the number agreement problem proposed at the beginning of this chapter.

S → NP VP

Only if the number of the NP is equal to the number of the VP.

Using the new notation, this rule can now be expressed as follows.

S → NP VP

〈NP NUMBER〉 = 〈VP NUMBER〉
Note that in cases where there are two or more constituents of the same syntactic
category in a rule, we will subscript the constituents to keep them straight, as in
VP → V NP1 NP2.

Taking a step back from the notation, it is important to note that in this ap-
proach the simple generative nature of context-free rules has been fundamentally
changed by this augmentation. Ordinary context-free rules are based on the simple
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notion of concatenation; an NP followed by a VP is an S, or generatively, to pro-
duce an S all we need to do is concatenate an NP to a VP. In the new scheme, this
concatenation must be accompanied by a successful unification operation. This
leads naturally to questions about the computational complexity of the unification
operation and its effect on the generative power of this new grammar. These issues
will be discussed in Ch. 15.

To review, there are two fundamental components to this approach.

• The elements of context-free grammar rules will have feature-based con-
straints associated with them. This reflects a shift from atomic grammatical
categories to more complex categories with properties.

• The constraints associated with individual rules can make reference to the
feature structures associated with the parts of the rule to which they are at-
tached.

The following sections present applications of unification constraints to four
interesting linguistic phenomena: agreement, grammatical heads, subcategoriza-
tion, and long-distance dependencies.

16.3.1 Agreement

As discussed in Ch. 12, agreement phenomena show up in a number of different
places in English. This section illustrates how unification can be used to capture
the two main types of English agreement phenomena: subject-verb agreement and
determiner-nominal agreement. We will use the following ATIS sentences as ex-
amples throughout this discussion to illustrate these phenomena.

(16.8) This flight serves breakfast.
(16.9) Does this flight serve breakfast?

(16.10) Do these flights serve breakfast?

Notice that the constraint used to enforce SUBJECT-VERB agreement given
above is deficient in that it ignores the PERSON feature. The following constraint
which makes use of the AGREEMENT feature takes care of this problem.

S → NP VP

〈NP AGREEMENT〉 = 〈VP AGREEMENT〉
Examples 16.9 and 16.10 illustrate a minor variation on SUBJECT-VERB agree-

ment. In these yes-no-questions, the subject NP must agree with the auxiliary verb,
rather than the main verb of the sentence, which appears in a non-finite form. This
agreement constraint can be handled by the following rule.

S → Aux NP VP

〈Aux AGREEMENT〉 = 〈NP AGREEMENT〉
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Agreement between determiners and nominals in noun phrases is handled in
a similar fashion. The basic task is to permit the expressions given above, but block
the unwanted *this flights and *those flight expressions where the determiners and
nominals clash in their NUMBER feature. Again, the logical place to enforce this
constraint is in the grammar rule that brings the parts together.

NP → Det Nominal

〈Det AGREEMENT〉 = 〈Nominal AGREEMENT〉
〈NP AGREEMENT〉 = 〈Nominal AGREEMENT〉

This rule states that the AGREEMENT feature of the Det must unify with the
AGREEMENT feature of the Nominal, and moreover, that the AGREEMENT feature
of the NP must also unify with the Nominal.

Having expressed the constraints needed to enforce subject-verb and determiner-
nominal agreement, we must now fill in the rest of the machinery needed to make
these constraints work. Specifically, we must consider how the various constituents
that take part in these constraints (the Aux, VP, NP, Det, and Nominal) acquire val-
ues for their various agreement features.

We can begin by noting that our constraints involve both lexical and non-
lexical constituents. The simpler lexical constituents, Aux and Det, receive values
for their respective agreement features directly from the lexicon as in the following
rules.

Aux → do

〈Aux AGREEMENT NUMBER〉 = pl

〈Aux AGREEMENT PERSON〉 = 3rd

Aux → does

〈Aux AGREEMENT NUMBER〉 = sg

〈Aux AGREEMENT PERSON〉 = 3rd

Det → this

〈Det AGREEMENT NUMBER〉 = sg

Det → these

〈Det AGREEMENT NUMBER〉 = pl

Returning to our first S rule, let us first consider the AGREEMENT feature
for the VP constituent. The constituent structure for this VP is specified by the
following rule.

VP → Verb NP
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It seems clear that the agreement constraint for this constituent must be based
on its constituent verb. This verb, as with the previous lexical entries, can acquire
its agreement feature values directly from lexicon as in the following rules.

Verb → serve

〈Verb AGREEMENT NUMBER〉 = pl

Verb → serves

〈Verb AGREEMENT NUMBER〉 = sg

〈Verb AGREEMENT PERSON〉 = 3rd

All that remains is to stipulate that the agreement feature of the parent VP is con-
strained to be the same as its verb constituent.

VP → Verb NP

〈VP AGREEMENT〉 = 〈Verb AGREEMENT〉
In other words, non-lexical grammatical constituents can acquire values for at least
some of their features from their component constituents.

The same technique works for the remaining NP and Nominal categories.
The values for the agreement features for these categories are derived from the
nouns flight and flights.

Noun → flight

〈Noun AGREEMENT NUMBER〉 = sg

Noun → flights

〈Noun AGREEMENT NUMBER〉 = pl

Nominal features can be constrained to have the same values as their constituent
nouns.

Nominal → Noun

〈Nominal AGREEMENT〉 = 〈Noun AGREEMENT〉
Note that this section has only scratched the surface of the English agreement

system, and that the agreement system of other languages can be considerably more
complex than English.

16.3.2 Head Features

To account for the way that compositional grammatical constituents such as noun
phrases, nominals, and verb phrases come to have agreement features, the preced-
ing section introduced the notion of copying feature structures from phrase struc-
ture children to their parents. This turns out to be a specific instance of a much more
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general phenomenon in constraint-based grammars. Specifically, the features for
most grammatical categories are copied from one of the children to the parent. The
child that provides the features is called the head of the phrase, and the featuresHEAD OF THE PHRASE

copied are referred to as head features.HEAD FEATURES

This idea of heads, first introduced in Sec. ??, plays an important role in
constraint-based grammars. Consider the following three rules from the last sec-
tion.

VP → Verb NP

〈VP AGREEMENT〉 = 〈Verb AGREEMENT〉

NP → Det Nominal

〈Det AGREEMENT〉 = 〈Nominal AGREEMENT〉
〈NP AGREEMENT〉 = 〈Nominal AGREEMENT〉

Nominal → Noun

〈Nominal AGREEMENT〉 = 〈Noun AGREEMENT〉
In each of these rules, the constituent providing the agreement feature struc-

ture to its parent is the head of the phrase. More specifically, the verb is the head
of the verb phrase, the nominal is the head of the noun phrase, and the noun is the
head of the nominal. As a result, we can say that the agreement feature structure is
a head feature. We can rewrite our rules to reflect these generalizations by placing
the agreement feature structure under a HEAD feature and then copying that feature
upward as in the following constraints.

VP → Verb NP(16.11)

〈VP HEAD〉 = 〈Verb HEAD〉

NP → Det Nominal(16.12)

〈NP HEAD〉 = 〈Nominal HEAD〉
〈Det HEAD AGREEMENT〉 = 〈Nominal HEAD AGREEMENT〉

Nominal → Noun(16.13)

〈Nominal HEAD〉 = 〈Noun HEAD〉
Similarly, the lexical entries that introduce these features must now reflect

this HEAD notion, as in the following.

Noun → flights

〈Noun HEAD AGREEMENT NUMBER〉 = pl
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Verb → serves

〈Verb HEAD AGREEMENT NUMBER〉 = sg

〈Verb HEAD AGREEMENT PERSON〉 = 3rd

16.3.3 Subcategorization

Recall that subcategorization is the notion that verbs can be picky about the patterns
of arguments they will allow themselves to appear with. In Ch. 12, to prevent the
generation of ungrammatical sentences with verbs and verb phrases that do not
match, we were forced to split the category of verb into multiple sub-categories.
These more specific verb categories were then used in the definition of the specific
verb phrases that they were allowed to occur with, as in the following.

Verb-with-S-comp → think

VP → Verb-with-S-comp S

Clearly, this approach introduces exactly the same undesirable proliferation
of categories that we saw with the similar approach to solving the number prob-
lem. The proper way to avoid this proliferation is to introduce feature structures
to distinguish among the various members of the verb category. This goal can be
accomplished by associating an atomic feature called SUBCAT, with an appropriate
value, with each of the verbs in the lexicon. For example, the transitive version of
serves could be assigned the following feature structure in the lexicon.

Verb → serves

〈Verb HEAD AGREEMENT NUMBER〉 = sg

〈Verb HEAD SUBCAT〉 = trans

The SUBCAT feature is a signal to the rest of the grammar that this verb should
only appear in verb phrases with a single noun phrase argument. This constraint
is enforced by adding corresponding constraints to all the verb phrase rules in the
grammar, as in the following.

VP → Verb

〈VP HEAD〉 = 〈Verb HEAD〉
〈VP HEAD SUBCAT〉 = intrans

VP → Verb NP

〈VP HEAD〉 = 〈Verb HEAD〉
〈VP HEAD SUBCAT〉 = trans

VP → Verb NP NP
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〈VP HEAD〉 = 〈Verb HEAD〉
〈VP HEAD SUBCAT〉 = ditrans

The first unification constraint in these rules states that the verb phrase re-
ceives its HEAD features from its verb constituent, while the second constraint
specifies what the value of that SUBCAT feature must be. Any attempt to use a verb
with an inappropriate verb phrase will fail since the value of the SUBCAT feature
of the VP will fail to unify with the atomic symbol given in the second constraint.
Note that this approach requires unique symbols for each of the 50–100 verb phrase
frames in English.

This is a somewhat clumsy approach since these unanalyzable SUBCAT sym-
bols do not directly encode either the number or type of the arguments that the verb
expects to take. To see this, note that one can not simply examine a verb’s entry
in the lexicon and know what its subcategorization frame is. Rather, you must use
the value of the SUBCAT feature indirectly as a pointer to those verb phrase rules
in the grammar that can accept the verb in question.

A more elegant solution, which makes better use of the expressive power of
feature structures, allows the verb entries to directly specify the order and category
type of the arguments they require. The following entry for serves is an example
of one such approach, in which the verb’s subcategory feature expresses a list of
its objects and complements.

Verb → serves

〈Verb HEAD AGREEMENT NUMBER〉 = sg

〈Verb HEAD SUBCAT FIRST CAT〉 = NP

〈Verb HEAD SUBCAT SECOND〉 = end

This entry uses the FIRST feature to state that the first post-verbal argument
must be an NP; the value of the SECOND feature indicates that this verb expects
only one argument. A verb like leave Boston in the morning, with two arguments,
would have the following kind of entry.

Verb → leaves

〈Verb HEAD AGREEMENT NUMBER〉 = sg

〈Verb HEAD SUBCAT FIRST CAT〉 = NP

〈Verb HEAD SUBCAT SECOND CAT〉 = PP

〈Verb HEAD SUBCAT THIRD〉 = end

This scheme is, of course, a rather baroque way of encoding a list; it is also
possible to use the idea of types defined in Sec. 16.6 to define a list type more
cleanly.
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The individual verb phrase rules must now check for the presence of exactly
the elements specified by their verb, as in the following transitive rule.

VP → Verb NP(16.14)

〈VP HEAD〉 = 〈Verb HEAD〉
〈VP HEAD SUBCAT FIRST CAT 〉 = 〈NP CAT 〉
〈VP HEAD SUBCAT SECOND〉 = end

The second constraint in this rule’s constraints states that the category of the
first element of the verb’s SUBCAT list must match the category of the constituent
immediately following the verb. The third constraint goes on to state that this verb
phrase rule expects only a single argument.

Our previous examples have shown rather simple subcategorization struc-
tures for verbs. In fact, verbs can subcategorize for quite complex subcategoriza-
tion frames, (e.g., NP PP, NP NP, or NP S) and these frames can be composed ofSUBCATEGORIZATION

FRAME

many different phrasal types. In order to come up with a list of possible subcate-
gorization frames for English verbs, we first need to have a list of possible phrase
types that can make up these frames. Fig. 16.3 shows one short list of possible
phrase types for making up subcategorization frames for verbs; this list is modi-
fied from one used to create verb subcategorization frames in the FrameNet project
(Johnson, 1999; Baker et al., 1998), and includes phrase types for special subjects
of verbs like there and it, as well as for objects and complements.

To use the phrase types in Fig. 16.3 in a unification grammar, each phrase
type could be described using features. For example the form VPto, which is
subcategorized for by want might be expressed as:

Verb → want

〈Verb HEAD SUBCAT FIRST CAT〉 = VP

〈Verb HEAD SUBCAT FIRST FORM〉 = infinitive

Each of the 50 to 100 possible verb subcategorization frames in English
would be described as a list drawn from these phrase types. For example, here
is an example of the two-complement want. We can use this example to demon-
strate two different notational possibilities. First, lists can be represented via an
angle brackets notation 〈 and 〉. Second, instead of using a rewrite-rule annotated
with path equations, we can represent the lexical entry as a single feature structure:
















ORTH want

CAT Verb

HEAD







SUBCAT 〈
[

CAT NP
]

,





CAT VP

HEAD
[

VFORM infinitival
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Noun Phrase Types
There nonreferential there There is still much to learn
It nonreferential it It was evident that my ideas
NP noun phrase As he was relating his story

Preposition Phrase Types
PP preposition phrase couch their message in terms
PPing gerundive PP censured him for not having intervened
PPpart particle turn it off

Verb Phrase Types
VPbrst bare stem VP she could discuss it
VPto to-marked infin. VP Why do you want to know?
VPwh wh-VP it is worth considering how to write
VPing gerundive VP I would consider using it

Complement Clause types
Finite Clause

Sfin finite clause maintain that the situation was unsatisfactory
Swh wh-clause it tells us where we are
Sif whether/if clause ask whether Aristophanes is depicting a

Nonfinite Clause
Sing gerundive clause see some attention being given
Sto to-marked clause know themselves to be relatively unhealthy
Sforto for-to clause She was waiting for him to make some reply
Sbrst bare stem clause commanded that his sermons be published

Other Types
AjP adjective phrase thought it possible
Quo quotes asked “What was it like?”

Figure 16.3 A small set of potential phrase types which can be combined to create
a set of potential subcategorization frames for verbs. Modified from the FrameNet
tagset (Johnson, 1999; Baker et al., 1998). The sample sentence fragments are from
the British National Corpus.

Combining even a limited set of phrase types results in a very large set of
possible subcategorization frames. Furthermore, each verb allows many different
subcategorization frames. For example, here are just some of the subcategorization
patterns for the verb ask, with examples from the BNC:
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Subcat Example
Quo asked [Quo “What was it like?”]
NP asking [NP a question]
Swh asked [Swh what trades you’re interested in]
Sto ask [Sto him to tell you]
PP that means asking [PP at home]
Vto asked [Vto to see a girl called Evelyn]
NP Sif asked [NP him] [Sif whether he could make]
NP NP asked [NP myself] [NP a question]
NP Swh asked [NP him] [Swh why he took time off]

A number of comprehensive subcategorization-frame tagsets exist, such as
the COMLEX set (Macleod et al., 1998), which includes subcategorization frames
for verbs, adjectives, and nouns, and the ACQUILEX tagset of verb subcategoriza-
tion frames (Sanfilippo, 1993). Many subcategorization-frame tagsets add other
information about the complements, such as specifying the identity of the implicit
subject in a lower verb phrase that has no overt subject; this is called control in-CONTROL

formation. For example Temmy promised Ruth to go (at least in some dialects)
implies that Temmy will do the going, while Temmy persuaded Ruth to go implies
that Ruth will do the going. Some of the multiple possible subcategorization frames
for a verb can be partially predicted by the semantics of the verb; for example many
verbs of transfer (like give, send, carry) predictably take the two subcategorization
frames NP NP and NP PP:

NP NP sent FAA Administrator James Busey a letter
NP PP sent a letter to the chairman of the Armed Services Committee

These relationships between subcategorization frames across classes of verbs
are called argument-structure alternations, and will be discussed in Ch. 19 whenALTERNATIONS

we discuss the semantics of verbal argument structure. Ch. 14 will introduce prob-
abilities for modeling the fact that verbs generally have preferences even among
the different subcategorization frames they allow.

Subcategorization in Other Parts of Speech

Although the notion of subcategorization, or valence as it is often called, was orig-VALENCE

inally designed for verbs, more recent work has focused on the fact that many other
kinds of words exhibit forms of valence-like behavior. Consider the following con-
trasting uses of the prepositions while and during.

(16.15) Keep your seatbelt fastened while we are taking off.

(16.16) *Keep your seatbelt fastened while takeoff.

(16.17) Keep your seatbelt fastened during takeoff.
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(16.18) *Keep your seatbelt fastened during we are taking off.

Despite the apparent similarities between these words, they make quite different
demands on their arguments. Representing these differences is left as Exercise 16.5
for the reader.

Many adjectives and nouns also have subcategorization frames. Here are
some examples using the adjectives apparent, aware, and unimportant and the
nouns assumption and question:

It was apparent [Sfin that the kitchen was the only room. . . ]
It was apparent [PP from the way she rested her hand over his]
aware [Sfin he may have caused offense]
it is unimportant [Swheth whether only a little bit is accepted]
the assumption [Sfin that wasteful methods have been employed]
the question [Swheth whether the authorities might have decided]

See Macleod et al. (1998) and Johnson (1999) for descriptions of subcatego-
rization frames for nouns and adjectives.

Verbs express subcategorization constraints on their subjects as well as their
complements. For example, we need to represent the lexical fact that the verb seem
can take an Sfin as its subject (That she was affected seems obvious), while the
verb paint cannot. The SUBJECT feature can be used to express these constraints.

16.3.4 Long-Distance Dependencies

The model of subcategorization we have developed so far has two components.
Each head word has a SUBCAT feature which contains a list of the complements
it expects. Then phrasal rules like the VP rule in (16.15) match up each expected
complement in the SUBCAT list with an actual constituent. This mechanism works
fine when the complements of a verb are in fact to be found in the verb phrase.

Sometimes, however, a constituent subcategorized for by the verb is not lo-
cally instantiated, but stands in a long-distance relationship with its predicate.
Here are some examples of such long-distance dependencies:LONG-DISTANCE

DEPENDENCIES

What cities does Continental service?
What flights do you have from Boston to Baltimore?
What time does that flight leave Atlanta?

In the first example, the constituent what cities is subcategorized for by
the verb service, but because the sentence is an example of a wh-non-subject-
question, the object is located at the front of the sentence. Recall from Ch. 12 that
a (simple) phrase-structure rule for a wh-non-subject-question is something like
the following:

S → Wh-NP Aux NP VP
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Now that we have features, we can augment this phrase-structure rule to re-
quire the Aux and the NP to agree (since the NP is the subject). But we also need
some way to augment the rule to tell it that the Wh-NP should fill some subcate-
gorization slot in the VP. The representation of such long-distance dependencies is
a quite difficult problem, because the verb whose subcategorization requirement
is being filled can be quite distant from the filler. In the following (made-up)
sentence, for example, the wh-phrase which flight must fill the subcategorization
requirements of the verb book, despite the fact that there are two other verbs (want
and have) in between:

Which flight do you want me to have the travel agent book?

Many solutions to representing long-distance dependencies in unification gram-
mars involve keeping a list, often called a gap list, implemented as a feature GAP,GAP LIST

which is passed up from phrase to phrase in the parse tree. The filler (for exampleFILLER

which flight above) is put on the gap list, and must eventually be unified with the
subcategorization frame of some verb. See Sag and Wasow (1999) for an explana-
tion of such a strategy, together with a discussion of the many other complications
that must be modeled in long-distance dependencies.

16.4 IMPLEMENTING UNIFICATION

As discussed, the unification operator takes two feature structures as input and re-
turns a single merged feature structure if successful, or a failure signal if the two
inputs are not compatible. The input feature structures are represented as directed
acyclic graphs (DAGs), where features are depicted as labels on directed edges,
and feature values are either atomic symbols or DAGs. As we will see, the imple-
mentation of the operator is a relatively straightforward recursive graph matching
algorithm, suitably tailored to accommodate the various requirements of unifica-
tion. Roughly speaking, the algorithm loops through the features in one input and
attempts to find a corresponding feature in the other. If all of the respective feature
values match, then the unification is successful. If there is a mismatch then the uni-
fication fails. Not surprisingly, the recursion is motivated by the need to correctly
match those features that have feature structures as their values.

A notable aspect of this algorithm is that rather than constructing a new fea-
ture structure with the unified information from the two arguments, it destructively
alters the arguments so that in the end they point to exactly the same information.
Thus, the result of a successful call to the unification operator consists of suitably
altered versions of the arguments. As is discussed in the next section, the destruc-
tive nature of this algorithm necessitates certain minor extensions to the simple
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graph version of feature structures as DAGs we have been assuming.

16.4.1 Unification Data Structures

To facilitate the destructive merger aspect of the algorithm, we add a small compli-
cation to the DAGs used to represent the input feature structures; feature structures
are represented using DAGs with additional edges, or fields. Specifically, each fea-
ture structure consists of two fields: a content field and a pointer field. The content
field may be null or contain an ordinary feature structure. Similarly, the pointer
field may be null or contain a pointer to another feature structure. If the pointer
field of the DAG is null, then the content field of the DAG contains the actual fea-
ture structure to be processed. If, on the other hand, the pointer field is non-null,
then the destination of the pointer represents the actual feature structure to be pro-
cessed. The merger aspects of unification will be achieved by altering the pointer
field of DAGs during processing.

To see how this works, let’s consider the extended DAG representation for
the following familiar feature structure.

(16.19)
[

NUMBER sg

PERSON 3rd

]

CONTENT

CONTENT

CONTENTPOINTER

POINTER

POINTER

NUMBER

PERSON

sg

NULL

NULL

NULL

3rd

Figure 16.4 An extended DAG notation for Example 16.19.
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Figure 16.4 shows this extended representation in its graphical form. Note
that the extended representation contains content and pointer links both for the
top-level layer of features, as well as for each of the embedded feature structures
all the way down to the atomic values.

Before presenting the details of the unification algorithm, let’s illustrate the
use of this extended DAG representation with the following simple example. The
original extended representation of the arguments to this unification are shown in
Figure 16.5.

(16.20)
[

NUMBER sg
]

�
[

PERSON 3rd
]

=
[

NUMBER sg

PERSON 3rd

]

CONTENT

POINTER

POINTER

PERSON

3rd

NULL

NULL

CONTENT

CONTENT

POINTER

POINTER

NUMBER

sg

NULL

NULL

CONTENT

Figure 16.5 The original arguments to Example 16.20.

At a basic level, this unification results in the creation of a new structure
containing the union of the information from the two original arguments. With
the extended notation, we can see how the unification is accomplished by making
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some additions to the original arguments and changing some of the pointers from
one structure to the other so that in the end they contain the same content. In
this example, this is accomplished by first adding a PERSON feature to the first
argument, and assigning it a value by filling its POINTER field with a pointer to the
appropriate location in the second argument, as shown in Figure 16.6.

CONTENT

POINTER

POINTER

PERSON

3rd

NULL

NULL

CONTENT

CONTENT

POINTER

POINTER

NUMBER

sg

NULL

NULL

CONTENT

PERSON
NULL

CONTENT

POINTER

Figure 16.6 The arguments after assigning the first argument’s new PERSON fea-
ture to the appropriate value in the second argument.

The process is, however, not yet complete. While it is clear from Figure 16.6
that the first argument now contains all the correct information, the second one does
not; it lacks a NUMBER feature. We could, of course, add a NUMBER feature to this
argument with a pointer to the appropriate place in the first one. This change would
result in the two arguments having all the correct information from this unification.
Unfortunately, this solution is inadequate since it does not meet our requirement
that the two arguments be truly unified. Since the two arguments are not completely
unified at the top level, future unifications involving one of the arguments would
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not show up in the other. The solution to this problem is to simply set the POINTER

field of the second argument to point at the first one. When this is done any future
change to either argument will be immediately reflected in both. The result of this
final change is shown in Figure 16.7.

CONTENT

POINTER

POINTER

PERSON

3rd

NULL

NULL

CONTENT

CONTENT

POINTER

POINTER

NUMBER

sg

NULL

NULL

CONTENT

PERSON
NULL

CONTENT

POINTER

POINTER

Figure 16.7 The final result of unifying F1 and F2.

16.4.2 The Unification Algorithm

The unification algorithm that we have been leading up to is shown in Figure 16.8.
This algorithm accepts two feature structures represented using the extended DAG
representation and returns as its value a modified version of one of the arguments,
or a failure signal in the event that the feature structures are incompatible.

The first step in this algorithm is to acquire the true contents of both of the
arguments. Recall that if the pointer field of an extended feature structure is non-
null, then the real content of that structure is found by following the pointer found
in pointer field. The variables f1 and f2 are the result of this pointer following
process, often referred to as dereferencing.DEREFERENCING

As with all recursive algorithms, the next step is to test for the various base
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function UNIFY(f1-orig, f2-orig) returns f-structure or failure

f1←Dereferenced contents of f1-orig
f2←Dereferenced contents of f2-orig

if f1 and f2 are identical then
f1.pointer← f2
return f2

else if f1 is null then
f1.pointer← f2
return f2

else if f2 is null then
f2.pointer← f1
return f1

else if both f1 and f2 are complex feature structures then
f2.pointer← f1
for each f2-feature in f2 do

f1-feature←Find or create a corresponding feature in f1
if UNIFY(f1-feature.value, f2-feature.value) returns failure then

return failure
return f1

else return failure

Figure 16.8 The unification algorithm.

cases of the recursion before proceeding on to a recursive call involving some part
of the original arguments. In this case, there are three possible base cases:

• The arguments are identical

• One or both of the arguments has a null value

• The arguments are non-null and non-identical

If the structures are identical, then the pointer of the first is set to the second
and the second is returned. It is important to understand why this pointer change
is done in this case. After all, since the arguments are identical, returning either
one would appear to suffice. This might be true for a single unification but recall
that we want the two arguments to the unification operator to be truly unified. The
pointer change is necessary since we want the arguments to be truly identical, so
that any subsequent unification that adds information to one will add it to both.

In the case where either of the arguments is null, the pointer field for the null
argument is changed to point to the other argument, which is then returned. The
result is that both structures now point at the same value.

If neither of the preceding tests is true then there are two possibilities: they
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are non-identical atomic values, or they are non-identical complex structures. The
former case signals an incompatibility in the arguments that leads the algorithm to
return a failure signal. In the latter case, a recursive call is needed to ensure that the
component parts of these complex structures are compatible. In this implementa-
tion, the key to the recursion is a loop over all the features of the second argument,
f2. This loop attempts to unify the value of each feature in f2 with the correspond-
ing feature in f1. In this loop, if a feature is encountered in f2 that is missing from
f1, a feature is added to f1 and given the value NULL. Processing then continues
as if the feature had been there to begin with. If every one of these unifications
succeeds, then the pointer field of f2 is set to f1 completing the unification of the
structures and f1 is returned as the value of the unification.

An Example

To illustrate this algorithm, let’s walk through the following example.

(16.21)






AGREEMENT 1

[

NUMBER sg
]

SUBJECT
[

AGREEMENT 1

]







�
[

SUBJECT

[

AGREEMENT
[

PERSON 3rd
]

]

]

Figure 16.9 shows the extended representations for the arguments to this uni-
fication. These original arguments are neither identical, nor null, nor atomic, so
the main loop is entered. Looping over the features of f2, the algorithm is led to a
recursive attempt to unify the values of the corresponding SUBJECT features of f1
and f2.

[

AGREEMENT 1

]

�
[

AGREEMENT
[

PERSON 3rd
]

]

These arguments are also non-identical, non-null, and non-atomic so the loop
is entered again leading to a recursive check of the values of the AGREEMENT

features.
[

NUMBER sg
]

�
[

PERSON 3rd
]

In looping over the features of the second argument, the fact that the first
argument lacks a PERSON feature is discovered. A PERSON feature initialized with
a NULL value is, therefore, added to the first argument. This, in effect, changes the
previous unification to the following.

[

NUMBER sg

PERSON null

]

�
[

PERSON 3rd
]
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POINTER

POINTER

POINTER

POINTER

POINTER

POINTER

POINTER

CONTENT

CONTENT

CONTENT

CONTENT

CONTENT

CONTENT

CONTENT

SUBJ

SUBJ

AGR

AGR

AGR

PERSON
CONTENT

3rd

sg
NUMBER

NULL

NULL

NULLPOINTER

NULL

NULL

NULL

NULL

NULL

Figure 16.9 The initial arguments f1 and f2 to Example 16.21.

After creating this new PERSON feature, the next recursive call leads to the
unification of the NULL value of the new feature in the first argument with the 3rd
value of the second argument. Since there are no further features to check in the
f2 argument at any level of recursion, each of the recursive calls to UNIFY returns.
The result is shown in Figure 16.10.

16.5 PARSING WITH UNIFICATION CONSTRAINTS

We now have all the pieces necessary to integrate feature structures and unification
into a parser. Fortunately, the order-independent nature of unification allows us to
largely ignore the actual search strategy used in the parser. Once we have associ-
ated unification constraints with the context-free rules of the grammar, and feature
structures with the states of the search, any of the standard search algorithms de-
scribed in Ch. 13 can be used.

Of course, this leaves a fairly large range of possible implementation strate-
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POINTER
POINTER

POINTER

POINTER

POINTER

POINTER

POINTER

POINTER

CONTENT

CONTENT

CONTENT

CONTENT

CONTENT

CONTENT

CONTENT

CONTENT

SUBJ

SUBJ

AGR

AGR

AGR

PERSON

PERSON
CONTENT

3rd

sg
NUMBER

NULL

NULL

NULL

NULLPOINTER

NULL

NULL

Figure 16.10 The final structures of f1 and f2 at the end.

gies. We could, for example, simply parse as we did before using the context-free
components of the rules, and then build the feature structures for the resulting trees
after the fact, filtering out those parses that contain unification failures. Although
such an approach would result in only well-formed structures in the end, it fails to
use the power of unification to reduce the size of the parser’s search space during
parsing.

The next section describes an approach that makes better use of the power
of unification by integrating unification constraints directly into the Earley parsing
process, allowing ill-formed structures to be eliminated as soon as they are pro-
posed. As we will see, this approach requires only minimal changes to the basic
Earley algorithm. We then move on to briefly consider an approach to unification-
based parsing that moves even further away from standard context-free methods.
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16.5.1 Integrating Unification into an Earley Parser

We have two goals in integrating feature structures and unification into the Earley
algorithm: to use feature structures to provide a richer representation for the con-
stituents of the parse, and to block entry into the chart of ill-formed constituents
that violate unification constraints. As we will see, these goals can be accomplished
by fairly minimal changes to the original Earley scheme given on page ??.

The first change involves the various representations used in the original
code. Recall that the Earley algorithm operates by using a set of unadorned context-
free grammar rules to fill in a data-structure called a chart with a set of states. At
the end of the parse, the states that make up this chart represent all possible parses
of the input. Therefore, we begin our changes by altering the representations of
both the context-free grammar rules, and the states in the chart.

The rules are altered so that in addition to their current components, they
also include a feature structure derived from their unification constraints. More
specifically, we will use the constraints listed with a rule to build a feature structure,
represented as a DAG, for use with that rule during parsing.

Consider the following context-free rule with unification constraints.

S → NP VP

〈NP HEAD AGREEMENT〉 = 〈VP HEAD AGREEMENT〉
〈S HEAD〉 = 〈VP HEAD〉

Converting these constraints into a feature structure results in the following struc-
ture:

















S
[

HEAD 1

]

NP

[

HEAD
[

AGREEMENT 2

]

]

VP

[

HEAD 1

[

AGREEMENT 2

]

]

















In this derivation, we combined the various constraints into a single structure by
first creating top-level features for each of the parts of the context-free rule, S,
NP, and VP in this case. We then add further components to this structure by
following the path equations in the constraints. Note that this is a purely notational
conversion; the DAGs and the constraint equations contain the same information.
However, tying the constraints together in a single feature structure puts it in a form
that can be passed directly to our unification algorithm.

The second change involves the states used to represent partial parses in the
Earley chart. The original states contain fields for the context-free rule being used,
the position of the dot representing how much of the rule has been completed, the
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positions of the beginning and end of the state, and a list of other states that rep-
resent the completed sub-parts of the state. To this set of fields, we simply add an
additional field to contain the DAG representing the feature structure correspond-
ing to the state. Note that when a rule is first used by PREDICTOR to create a state,
the DAG associated with the state will simply consist of the DAG retrieved from
the rule. For example, when PREDICTOR uses the above S rule to enter a state into
the chart, the DAG given above will be its initial DAG. We’ll denote states like this
as follows, where Dag denotes the feature structure given above.

S → • NP VP, [0,0], [],Dag

Given these representational additions, we can move on to altering the algo-
rithm itself. The most important change concerns the actions that take place when
a new state is created by the extension of an existing state, which takes place in
the COMPLETER routine. Recall that COMPLETER is called when a completed
constituent has been added to the chart. Its task is to attempt to find, and extend,
existing states in the chart that are looking for constituents that are compatible with
the newly completed constituent. COMPLETER is, therefore, a function that cre-
ates new states by combining the information from two other states, and as such is
a likely place to apply the unification operation.

To be more specific, COMPLETER adds a new state into the chart by finding
an existing state whose • can be advanced by the newly completed state. A •
can be advanced when the category of the constituent immediately following it
matches the category of the newly completed constituent. To accommodate the
use of feature structures, we can alter this scheme by unifying the feature structure
associated with the newly completed state with the appropriate part of the feature
structure being advanced. If this unification succeeds, then the DAG of the new
state receives the unified structure and is entered into the chart. If it fails, then no
new state is entered into the chart. The appropriate alterations to COMPLETER are
shown in Figure 16.11.

Consider this process in the context of parsing the phrase That flight, where
the That has already been seen, as is captured by the following state.

NP → Det•Nominal[0,1], [SDet ],Dag1

Dag1


















NP
[

HEAD 1

]

DET

[

HEAD

[

AGREEMENT 2

[

NUMBER SG
]

]

]

NOMINAL

[

HEAD 1

[

AGREEMENT 2

]

]



















Now consider the later situation where the parser has processed flight and has sub-
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sequently produced the following state.

Nominal → Noun•, [1,2], [SNoun],Dag2

Dag2











NOMINAL
[

HEAD 1

]

NOUN

[

HEAD 1

[

AGREEMENT
[

NUMBER SG
]

]

]











To advance the NP rule, the parser unifies the feature structure found under the
NOMINAL feature of Dag2, with the feature structure found under the NOMINAL

feature of the NP’s Dag1. As in the original algorithm, a new state is created to
represent the fact that an existing state has been advanced. This new state’s DAG
is given the DAG that resulted from this unification.

The final change to the original algorithm concerns the check for states al-
ready contained in the chart. In the original algorithm, the ENQUEUE function
refused to enter into the chart any state that was identical to one already present in
the chart. “Identical” meant the same rule, with the same start and finish positions,
and the same position of the •. It is this check that allows the algorithm to, among
other things, avoid the infinite recursion problems associated with left-recursive
rules.

The problem, of course, is that our states are now more complex since they
have complex feature structures associated with them. States that appeared identi-
cal under the original criteria might in fact now be different since their associated
DAGs may differ. One solution to this problem is to extend the identity check to
include the DAGs associated with the states, but it turns out that we can improve
on this solution.

The motivation for the improvement lies in the motivation for the identity
check. Its purpose is to prevent the wasteful addition of a state into the chart whose
effect on the parse would be accomplished by an already existing state. Put another
way, we want to prevent the entry into the chart of any state that would duplicate
the work that will eventually be done by other states. Of course, this will clearly
be the case with identical states, but it turns out it is also the case for states in the
chart that are more general than new states being considered.

Consider the situation where the chart contains the following state, where the
Dag places no constraints on the Det.

NP → •Det NP, [i, i], [],Dag

Such a state simply says that it is expecting a Det at position i, and that any Det
will do.

Now consider the situation where the parser wants to insert a new state into
the chart that is identical to this one, with the exception that its DAG restricts the



DRAFT

34 Chapter 16. Features and Unification

function EARLEY-PARSE(words, grammar) returns chart

ADDTOCHART((γ → • S, [0,0], dagγ ), chart[0])
for i← from 0 to LENGTH(words) do
for each state in chart[i] do

if INCOMPLETE?(state) and
NEXT-CAT(state) is not a part of speech then

PREDICTOR(state)
elseif INCOMPLETE?(state) and

NEXT-CAT(state) is a part of speech then
SCANNER(state)

else
COMPLETER(state)

end
end
return(chart)

procedure PREDICTOR((A → α • B β , [i, j], dagA))
for each (B → γ) in GRAMMAR-RULES-FOR(B, grammar) do

ADDTOCHART((B → • γ, [ j, j], dagB), chart[j])
end

procedure SCANNER((A → α • B β , [i, j], dagA))
if B ∈ PARTS-OF-SPEECH(word[j]) then

ADDTOCHART((B → word[ j]•, [ j, j +1], dagB), chart[j+1])

procedure COMPLETER((B → γ •, [ j,k], dagB))
for each (A → α • B β , [i, j], dagA) in chart[j] do

if new-dag←UNIFY-STATES(dagB, dagA, B) �= Fails!
ADDTOCHART((A → α B • β , [i,k],new-dag), chart[k])

end

procedure UNIFY-STATES(dag1, dag2, cat)
dag1-cp←COPYDAG(dag1)
dag2-cp←COPYDAG(dag2)
UNIFY(FOLLOW-PATH(cat, dag1-cp), FOLLOW-PATH(cat, dag2-cp))

procedure ADDTOCHART(state, chart-entry)
if state is not subsumed by a state in chart-entry then

PUSH-ON-END(state, chart-entry)
end

Figure 16.11 Modifications to the Earley algorithm to include unification.
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Det to be singular. In this case, although the states in question are not identical,
the addition of the new state to the chart would accomplish nothing and should
therefore be prevented.

To see this let’s consider all the cases. If the new state is added, then a subse-
quent singular Det will match both rules and advance both. Due to the unification
of features, both will have DAGs indicating that their Dets are singular, with the
net result being duplicate states in the chart. If on the other hand, a plural Det is
encountered, the new state will reject it and not advance, while the old rule will
advance, entering a single new state into the chart. On the other hand, if the new
state is not placed in the chart, a subsequent plural or singular Det will match the
more general state and advance it, leading to the addition of one new state into the
chart. Note that this leaves us in exactly the same situation as if the new state had
been entered into the chart, with the exception that the duplication is avoided. In
sum, nothing worthwhile is accomplished by entering into the chart a state that is
more specific than a state already in the chart.

Fortunately, the notion of subsumption introduced earlier gives us a formal
way to talk about the generalization and specialization relations among feature
structures. This suggests that the proper way to alter ENQUEUE is to check whether
a newly created state is subsumed by any existing states in the chart. If it is, then it
will not be allowed into the chart. More specifically, a new state that is identical in
terms of its rule, start and finish positions, subparts, and • position, to an existing
state, will be not be entered into the chart if its DAG is subsumed by the DAG of
an existing state (ie. if Dagold � Dagnew). The necessary change to the original
Earley ENQUEUE procedure is shown in Figure 16.11.

The Need for Copying

The calls to COPYDAG within the UNIFY-STATE procedure require some elabora-
tion. Recall that one of the strengths of the Earley algorithm (and of the dynamic
programming approach in general) is that once states have been entered into the
chart they may be used again and again as part of different derivations, including
ones that in the end do not lead to successful parses. This ability is the motivation
for the fact that states already in the chart are not updated to reflect the progress of
their •, but instead are copied and then updated, leaving the original states intact so
that they can be used again in further derivations.

The call to COPYDAG in UNIFY-STATE is required to preserve this behavior
because of the destructive nature of our unification algorithm. If we simply unified
the DAGs associated with the existing states, those states would be altered by the
unification, and hence would not be available in the same form for subsequent uses
by the COMPLETER function. Note that this has negative consequences regardless
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of whether the unification succeeds or fails, since in either case the original states
are altered.

Let’s consider what would happen if the call to COPYDAG was absent in the
following example where an early unification attempt fails.

(16.22) Show me morning flights.

Let’s assume that our parser has the following entry for the ditransitive version of
the verb show, as well as the following transitive and ditransitive verb phrase rules.

Verb → show

〈Verb HEAD SUBCAT FIRST CAT〉 = NP

〈Verb HEAD SUBCAT SECOND CAT〉 = NP

〈Verb HEAD SUBCAT THIRD〉 = END

VP → Verb NP

〈VP HEAD〉 = 〈Verb HEAD〉
〈VP HEAD SUBCAT FIRST CAT〉 = 〈NP CAT 〉
〈VP HEAD SUBCAT SECOND〉 = END

VP → Verb NP NP

〈VP HEAD〉 = 〈Verb HEAD〉
〈VP HEAD SUBCAT FIRST CAT〉 = 〈NP1 CAT 〉
〈VP HEAD SUBCAT SECOND CAT〉 = 〈NP2 CAT 〉
〈VP HEAD SUBCAT THIRD〉 = END

When the word me is read, the state representing the transitive verb phrase
will be completed since its dot has moved to the end. COMPLETER will, therefore,
call UNIFY-STATES before attempting to enter this complete state into the chart.
This will fail since the SUBCAT structures of these two rules can not be unified.
This is, of course, exactly what we want since this version of show is ditransitive.
Unfortunately, because of the destructive nature of our unification algorithm we
have already altered the DAG attached to the state representing show, as well as the
one attached to the VP thereby ruining them for use with the correct verb phrase
rule later on. Thus, to make sure that states can be used again and again with
multiple derivations, copies are made of the dags associated with states before
attempting any unifications involving them.

All of this copying can be quite expensive. As a result, a number of alter-
native techniques have been developed that attempt to minimize this cost (Pereira,
1985; Karttunen and Kay, 1985; Tomabechi, 1991; Kogure, 1990). Kiefer et al.
(1999b) and Penn and Munteanu (2003) describe a set of related techniques used
to speed up a large unification-based parsing system.
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16.5.2 Unification-Based Parsing

A more radical approach to using unification in parsing can be motivated by look-
ing at an alternative way of denoting our augmented grammar rules. Consider the
following S rule that we have been using throughout this chapter.

S → NP VP

〈NP HEAD AGREEMENT〉 = 〈VP HEAD AGREEMENT〉
〈S HEAD〉 = 〈VP HEAD〉

An interesting way to alter the context-free part of this rule is to change the way
its grammatical categories are specified. In particular, we can place the categorical
information about the parts of the rule inside the feature structure, rather than inside
the context-free part of the rule. A typical instantiation of this approach would give
us the following rule (Shieber, 1986).

X0 → X1 X2

〈X0 CAT〉 = S

〈X1 CAT〉 = NP

〈X2 CAT〉 = VP

〈X1 HEAD AGREEMENT〉 = 〈X2 HEAD AGREEMENT〉
〈 X0 HEAD〉 = 〈X2 HEAD〉

Focusing solely on the context-free component of the rule, this rule now sim-
ply states that the X0 constituent consists of two components, and that the X1 con-
stituent is immediately to the left of the X2 constituent. The information about the
actual categories of these components is placed inside the rule’s feature structure;
in this case, indicating that X0 is an S, X1 is an NP, and X2 is a VP. Altering the
Earley algorithm to deal with this notational change is trivial. Instead of seeking
the categories of constituents in the context-free components of the rule, it simply
needs to look at the CAT feature in the DAG associated with a rule.

Of course, since it is the case that these two rules contain precisely the same
information, it isn’t clear that there is any benefit to this change. To see the potential
benefit of this change, consider the following rules.

X0 → X1 X2

〈X0 CAT〉 = 〈 X1 CAT〉
〈X2 CAT〉 = PP

X0 → X1 and X2

〈X1 CAT〉 = 〈 X2 CAT〉
〈X0 CAT〉 = 〈 X1 CAT〉
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The first rule is an attempt to generalize over various rules that we have al-
ready seen, such as NP → NP PP and VP → VP PP. It simply states that any cat-
egory can be followed by a prepositional phrase, and that the resulting constituent
has the same category as the original. Similarly, the second rule is an attempt to
generalize over rules such as S → S and S, NP → NP and NP, and so on.1 It states
that any constituent can be conjoined with a constituent of the same category to
yield a new category of the same kind. What these rules have in common is their
use of phrase structure rules that contain constituents with constrained, but unspec-
ified, categories, something that can not be accomplished with our old rule format.

Of course, since these rules rely on the use the CAT feature, their effect could
be approximated in the old format by simply enumerating all the various instantia-
tions of the rule. A more compelling case for the new approach is motivated by the
existence of grammatical rules, or constructions, that contain constituents that are
not easily characterized using any existing syntactic category.

Consider the following examples of the English HOW-MANY construction
from the WSJ (Jurafsky, 1992).

(16.23) How early does it open?
(16.24) How deep is her Greenness?
(16.25) How papery are your profits?
(16.26) How quickly we forget.
(16.27) How many of you can name three famous sporting Blanchards?

As is illustrated in these examples, the HOW-MANY construction has two com-
ponents: the lexical item how, and a lexical item or phrase that is rather hard to
characterize syntactically. It is this second element that is of interest to us here.
As these examples show, it can be an adjective, adverb, or some kind of quantified
phrase (although not all members of these categories yield grammatical results).
Clearly, a better way to describe this second element is as a scalar concept, a con-
straint can be captured using feature structures, as in the following rule.

X0 → X1 X2

〈X1 ORTH〉 = 〈how〉
〈X2 SEM〉 = 〈 SCALAR〉

A complete account of rules like this involves semantics and will therefore have to
wait for Ch. 17. The key point here is that by using feature structures a grammatical
rule can place constraints on its constituents in a manner that does not make any
use of the notion of a syntactic category.

1 These rules should not be mistaken for correct, or complete, accounts of the phenomena in ques-
tion.
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Of course, dealing this kind of rule requires some changes to our parsing
scheme. All of the parsing approaches we have considered thus far are driven by
the syntactic category of the various constituents in the input. More specifically,
they are based on simple atomic matches between the categories that have been pre-
dicted, and categories that have been found. Consider, for example, the operation
of the COMPLETER function shown in Figure 16.11. This function searches the
chart for states that can be advanced by a newly completed state. It accomplishes
this by matching the category of the newly completed state against the category of
the constituent following the • in the existing state. Clearly this approach will run
into trouble when there are no such categories to consult.

The remedy for this problem with COMPLETER is to search the chart for
states whose DAGs unify with the DAG of the newly completed state. This elim-
inates any requirement that states or rules have a category. The PREDICTOR can
be changed in a similar fashion by having it add states to the chart states whose X0

DAG component can unify with the constituent following the • of the predicting
state. Exercise 16.6 asks you to make the necessary changes to the pseudo-code in
Figure 16.11 to effect this style of parsing. Exercise 16.7 asks you to consider some
of the implications of these alterations, particularly with respect to prediction.

16.6 TYPES AND INHERITANCE

I am surprised that ancient and modern writers have not attributed greater
importance to the laws of inheritance. . .

Alexis de Tocqueville, Democracy in America, 1840

The basic feature structures we have presented so far have two problems that
have led to extensions to the formalism. The first problem is that there is no way
to place a constraint on what can be the value of a feature. For example, we have
implicitly assumed that the NUMBER attribute can take only sg and pl as values.
But in our current system, there is nothing, for example, to stop NUMBER from
have the value 3rd or feminine as values:

[

NUMBER FEMININE
]

This problem has caused many unification-based grammatical theories to add
various mechanisms to try to constrain the possible values of a feature. Formalisms
like Functional Unification Grammar (FUG) (Kay, 1979, 1984, 1985) and Lexi-
cal Functional Grammar (LFG) (Bresnan, 1982), for example, focused on ways
to keep intransitive verb like sneeze from unifying with a direct object (Marin
sneezed Toby). This was addressed in FUG by adding a special atom none whichNONE

is not allowed to unify with anything, and in LFG by adding coherence condi-
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tions which specified when a feature should not be filled. The Generalized Phrase
Structure Grammar (GPSG) (Gazdar et al., 1985, 1988) added a class of feature
co-occurrence restrictions, to prevent, for example, nouns from having some ver-
bal properties.

The second problem with simple feature structures is that there is no way
to capture generalizations across them. For example, the many types of English
verb phrases described in the Subcategorization section on page 16 share many
features, as do the many kinds of subcategorization frames for verbs. Syntacticians
were looking for ways to express these generalities.

A general solution to both of these problems is the use of types. Type systemsTYPES

for unification grammars have the following characteristics:

1. Each feature structure is labeled by a type.

2. Conversely, each type has appropriateness conditions expressing whichAPPROPRIATENESS

features are appropriate for it and what types of values then can take.

3. The types are organized into a type hierarchy, in which more specific typesTYPE HIERARCHY

inherit properties of more abstract ones.

4. The unification operation is modified to unify the types of feature structures
in addition to unifying the attributes and values.

In such typed feature structure systems, types are a new class of objects,TYPED FEATURE
STRUCTURE

just like attributes and values were for standard feature structures. Types come in
two kinds: simple types (also called atomic types), and complex types. Let’sSIMPLE TYPES

COMPLEX TYPES begin with simple types. A simple type is an atomic symbol like sg or pl (we
will use boldface for all types), and replaces the simple atomic values used in
standard feature structures. All types are organized into a multiple-inheritance
type hierarchy (a kind of partial order called a lattice). Fig. 16.12 shows the
type hierarchy for the new type agreement, which will be the type of the kind of
atomic object that can be the value of an AGREE feature.

In the hierarchy in Fig. 16.12, 3rd is a subtype of agr, and 3-sg is a subtypeSUBTYPE

of both 3rd and sg. Types can be unified in the type hierarchy; the unification
of any two types is the most-general type that is more specific than the two input
types. Thus:

3rd � sg = 3sg
1st � pl = 1pl
1st � agr = 1st
3rd � 1st = undefined

The unification of two types which do not have a defined unifier is undefined,
although it is also possible to explicitly represent this fail type using the symbol ⊥FAIL TYPE

(Aı̈t-Kaci, 1984).
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agr

1st 3rd sg pl

1st-sg 3rd-sg 1st-pl 3rd-pl

3sg-masc 3sg-fem 3sg-neut

Figure 16.12 A simple type hierarchy for the subtypes of type agr which can be
the value of the AGREE attribute. After Carpenter (1992).

The second kind of types are complex types, which specify:

• a set of features that are appropriate for that type
• restrictions on the values of those features (expressed in terms of types)
• equality constraints between the values

Consider a simplified representation of the complex type verb, which just
represents agreement and verbal morphology information. A definition of verb
would define the two appropriate features, AGREE and VFORM, and would also de-
fine the type of the values of the two features. Let’s suppose that the AGREE feature
takes values of type agr defined in Fig. 16.12 above, and the VFORM feature takes
values of type vform where vform subsumes the seven subtypes finite, infinitive,
gerund, base, present-participle, past-participle, and passive-participle. Thus
verb would be defined as follows (where the convention is to indicate the type
either at the top of the AVM or just to the lower left of the left bracket):







verb
AGREE agr
VFORM vform







By contrast, the type noun might be defined with the AGREE feature, but
without the VFORM feature:

[

noun
AGREE agr

]
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The unification operation is augmented for typed feature structures just by
requiring that the types of the two structures unify in addition to the values of the
component features unifying.







verb
AGREE 1st
VFORM gerund







�






verb
AGREE sg
VFORM gerund







=






verb
AGREE 1-sg
VFORM gerund







Complex types are also part of the type hierarchy. Subtypes of complex types
inherit all the features of their parents, together with the constraints on their val-
ues. Sanfilippo (1993), for example, uses a type hierarchy to encode the hierar-
chical structure of the lexicon. Fig. 16.13 shows a small part of this hierarchy,
the part that models the various subcategories of verbs which take sentential com-
plements; these are divided into the transitive ones (which take direct objects: (ask
yourself whether you have become better informed) and the intransitive ones (Mon-
sieur asked whether I wanted to ride). The type trans-comp-cat would introduce
the required direct object, constraining it to be of type noun-phrase, while types
like sbase-comp-cat would introduce the baseform (bare stem) complement and
constrain its vform to be the baseform.

comp-cat

trans-comp-cat sfin-comp-cat swh-comp-cat sbase-comp-cat intrans-comp-catsinf-comp-cat

intr-swh-comp-cat intr-sinf-comp-cat

tr-swh-comp-cat intr-sfin-comp-cat intr-sbase-comp-cat

tr-sbase-comp-cattr-sfin-comp-cat

Figure 16.13 Part of the type hierarchy for the verb type verb-cat, showing the subtypes of the comp-
cat type. These are all subcategories of verbs which take sentential complements. After Sanfilippo (1993).

16.6.1 Advanced: Extensions to Typing

Typed feature structures can be extended by allowing for inheritance with defaults.DEFAULTS

Default systems have mainly been used in lexical type hierarchies of the sort de-
scribed in the previous section, in order to encode generalizations and subregular
exceptions to them. In early versions of default unification the operation was order-
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dependent, based on the priority union operation (Kaplan, 1987). More recentPRIORITY UNION

architectures are order-independent (Lascarides and Copestake, 1997; Young and
Rounds, 1993), related to Reiter’s default logic (Reiter, 1980).

Many unification-based theories of grammar, including HPSG (Pollard and
Sag, 1987, 1994) and LFG (Bresnan, 1982) use an additional mechanism besides
inheritance for capturing lexical generalizations: the lexical rule. Lexical rulesLEXICAL RULE

(Jackendoff, 1975) express lexical generalizations by allowing a reduced, hence
more redundancy-free lexicon to be automatically expanded by the rules. See Pol-
lard and Sag (1994) for examples, Carpenter (1991) on complexity issues, and
Meurers and Minnen (1997) on efficient implementation. Conversely, see Krieger
and Nerbonne (1993) on using the type hierarchy to replace lexical rules.

Types can also be used to represent constituency. Rules like (16.12) on page
15 used a normal phrase structure rule template and added the features via path
equations. Instead, it’s possible to represent the whole phrase structure rule as a
type. In order to do this, we need a way to represent constituents as features. One
way to do this, following Sag and Wasow (1999), is to take a type phrase which has
a feature called DTRS (“daughters”), whose value is a list of phrases. For example
the phrase I love New York could have the following representation, (showing only
the DTRS feature):














phrase

DTRS 〈
[

CAT PRO

ORTH I

]

,









CAT VP

DTRS 〈
[

CAT Verb

ORTH love

]

,

[

CAT NP

ORTH New York

]

〉









〉















16.6.2 Other Extensions to Unification

There are many other extensions to unification besides typing, including path in-
equations (Moshier, 1988; Carpenter, 1992; Carpenter and Penn, 1994), negationPATH INEQUATIONS

NEGATION (Johnson, 1988, 1990), set-valued features (Pollard and Moshier, 1990), and dis-
SET-VALUED

FEATURES junction (Kay, 1979; Kasper and Rounds, 1986). In some unification systems these
DISJUNCTION operations are incorporated into feature structures. Kasper and Rounds (1986) and

others, by contrast, implement them in a separate metalanguage which is used to
describe feature structures. This idea derives from the work of Pereira and Shieber
(1984), and even earlier work by Kaplan and Bresnan (1982), all of whom distin-
guished between a metalanguage for describing feature structures and the actual
feature structures themselves. The descriptions may thus use negation and disjunc-
tion to describe a set of feature structures (i.e., a certain feature must not contain
a certain value, or may contain any of a set of values) but an actual instance of
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a feature structure that meets the description would not have negated or disjoint
values.

The unification grammars as described so far have no mechanism for disam-
biguation. Much recent work in unification grammars has focused on this disam-
biguation problem, particular via the use of probabilistic augmentations. See the
History section for important references.

16.7 SUMMARY

This chapter introduced feature structures and the unification operation which is
used to combine them.

• A feature structure is a set of features-value pairs, where features are un-
analyzable atomic symbols drawn from some finite set, and values are ei-
ther atomic symbols or feature structures. They are represented either as
attribute-value matrices (AVMs) or as directed acyclic graphs (DAGs),
where features are directed labeled edges and feature values are nodes in
the graph.

• Unification is the operation for both combining information (merging the
information content of two feature structures) and comparing information
(rejecting the merger of incompatible features).

• A phrase-structure rule can be augmented with feature structures, and with
feature constraints expressing relations among the feature structures of the
constituents of the rule. Subcategorization constraints can be represented as
feature structures on head verbs (or other predicates). The elements which
are subcategorized for by a verb may appear in the verb phrase or may be
realized apart from the verb, as a long-distance dependency.

• Feature structures can be typed. The resulting typed feature structures
place constraints on which type of values a given feature can take, and can
also be organized into a type hierarchy to capture generalizations across
types.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The use of features in linguistic theory comes originally from phonology. An-
derson (1985) credits Jakobson (1939) with being the first to use features (called
distinctive features) as an ontological type in a theory, drawing on previous uses
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of features by Trubetskoi (1939) and others. The semantic use of features fol-
lowed soon after; see Ch. 19 for the history of componential analysis in semantics.
Features in syntax were well established by the 1950s and were popularized by
Chomsky (1965).

The unification operation in linguistics was developed independently by Kay
(1979) (feature structure unification) and Colmerauer (1970, 1975) (term unifi-
cation) (see page ??). Both were working in machine translation and looking
for a formalism for combining linguistic information which would be reversible.
Colmerauer’s original Q-system was a bottom-up parser based on a series of rewrite
rules which contained logical variables, designed for a English to French machine
translation system. The rewrite rules were reversible to allow them to work for
both parsing and generation. Colmerauer, Fernand Didier, Robert Pasero, Philippe
Roussel, and Jean Trudel designed the Prolog language based on extended Q-
systems to full unification based on the resolution principle of Robinson (1965),
and implemented a French analyzer based on it (Colmerauer and Roussel, 1996).
The modern use of Prolog and term unification for natural language via Definite
Clause Grammars was based on Colmerauer’s (1975) metamorphosis grammars,DEFINITE CLAUSE

GRAMMARS

and was developed and named by Pereira and Warren (1980). Meanwhile Mar-
tin Kay and Ron Kaplan had been working with Augmented Transition Network
(ATN) grammars. An ATN is a Recursive Transition Network (RTN) in which theATN

nodes are augmented with feature registers. In an ATN analysis of a passive, the
first NP would be assigned to the subject register, then when the passive verb was
encountered, the value would be moved into the object register. In order to make
this process reversible, they restricted assignments to registers so that certain reg-
isters could only be filled once, that is, couldn’t be overwritten once written. They
thus moved toward the concepts of logical variables without realizing it. Kay’s
original unification algorithm was designed for feature structures rather than terms
(Kay, 1979). The integration of unification into an Earley-style approach given in
Section 16.5 is based on Shieber (1985).

See Shieber (1986) for a clear introduction to unification, and Knight (1989)
for a multidisciplinary survey of unification.

Inheritance and appropriateness conditions were first proposed for linguis-
tic knowledge by Bobrow and Webber (1980) in the context of an extension of
the KL-ONE knowledge representation system (Brachman and Schmolze, 1985).
Simple inheritance without appropriateness conditions was taken up by number of
researchers; early users include Jacobs (1985, 1987). Aı̈t-Kaci (1984) borrowed
the notion of inheritance in unification from the logic programming community.
Typing of feature structures, including both inheritance and appropriateness con-
ditions, was independently proposed by Calder (1987), Pollard and Sag (1987),
and Elhadad (1990). Typed feature structures were formalized by King (1989)
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and Carpenter (1992). There is an extensive literature on the use of type hierar-
chies in linguistics, particularly for capturing lexical generalizations; besides the
papers previously discussed, the interested reader should consult Evans and Gazdar
(1996) for a description of the DATR language, designed for defining inheritance
networks for linguistic knowledge representation, Fraser and Hudson (1992) for the
use of inheritance in a dependency grammar, and Daelemans et al. (1992) for a gen-
eral overview. Formalisms and systems for the implementation of constraint-based
grammars via typed feature structures include the PAGE system using the TDL
language (Krieger and Schäfer, 1994), ALE (Carpenter and Penn, 1994), ConTroll
(Götz et al., 1997) and LKB (Copestake, 2002).

Efficiency issues in unification parsing are discussed by Kiefer et al. (1999a),
Malouf et al. (2000), and Munteanu and Penn (2004).

Grammatical theories based on unification include Lexical Functional Gram-
mar (LFG) (Bresnan, 1982), Head-Driven Phrase Structure Grammar (HPSG) (Pol-
lard and Sag, 1987, 1994), Construction Grammar (Kay and Fillmore, 1999), and
Unification Categorial Grammar (Uszkoreit, 1986).

Much recent computational work on unification grammars has focused on
probabilistic augmentations for disambiguation. Key relevant papers include Ab-
ney (1997), Goodman (1997), Johnson et al. (1999), Riezler et al. (2000), Geman
and Johnson (2002), Riezler et al. (2002, 2003), Kaplan et al. (2004), Miyao and
Tsujii (2005), Toutanova et al. (2005), Ninomiya et al. (2006) and Blunsom and
Baldwin (2006).

EXERCISES

16.1 Draw the DAGs corresponding to the AVMs given in Examples 16.1–16.2.

16.2 Consider the following BERP examples, focusing on their use of pronouns.

I want to spend lots of money.
Tell me about Chez-Panisse.
I’d like to take her to dinner.
She doesn’t like Italian.

Assuming that these pronouns all belong to the category Pro, write lexical and
grammatical entries with unification constraints that block the following examples.
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*Me want to spend lots of money.
*Tell I about Chez-Panisse.
*I would like to take she to dinner.
*Her doesn’t like Italian.

16.3 Draw a picture of the subsumption semilattice corresponding to the feature
structures in Examples 16.3 to 16.7. Be sure to include the most general feature
structure [].

16.4 Consider the following examples.

The sheep are baaaaing.
The sheep is baaaaing.

Create appropriate lexical entries for the words the, sheep, and baaaaing. Show
that your entries permit the correct assignment of a value to the NUMBER feature
for the subjects of these examples, as well as their various parts.

16.5 Create feature structures expressing the different SUBCAT frames for while
and during shown on page 21.

16.6 Alter the pseudocode shown in Figure 16.11 so that it performs the more
radical kind of unification-based parsing described on page 37.

16.7 Consider the following problematic grammar suggested by Shieber (1985).

S → T

〈T F〉 = a

T1 → T2 A

〈T1 F〉 = 〈T2 F F〉
S → A

A → a

Show the first S state entered into the chart using your modified PREDICTOR

from the previous exercise, then describe any problematic behavior displayed by
PREDICTOR on subsequent iterations. Discuss the cause of the problem and how
in might be remedied.

16.8 Using the list approach to representing a verb’s subcategorization frame,
show how a grammar could handle any number of verb subcategorization frames
with only the following two VP rules. More specifically, show the constraints that
would have to be added to these rules to make this work.

VP → Verb

VP → VP X
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The solution to this problem involves thinking about a recursive walk down a verb’s
subcategorization frame. This is a hard problem; you might consult Shieber (1986)
if you get stuck.

16.9 Page 43 showed how to use typed feature structures to represent constituency.
Use that notation to represent rules 16.12, 16.13, and 16.14 shown on page 15.
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17
REPRESENTING
MEANING

ISHMAEL: Surely all this is not without meaning.
Herman Melville, Moby Dick

The approach to semantics introduced here, and elaborated on in the next four
chapters, is based on the notion that the meaning of linguistic utterances can be
captured in formal structures, which we will call meaning representations. Cor-MEANING

REPRESENTATIONS

respondingly, the frameworks that are used to specify the syntax and semantics of
these representations will be called meaning representation languages. TheseMEANING

REPRESENTATION
LANGUAGES

meaning representations play a role analogous to that of the phonological, mor-
phological, and syntactic representations introduced in earlier chapters.

The need for meaning representations arises when neither the raw linguistic
inputs, nor any of the structures derivable from them by any of the transducers
we have studied thus far, facilitate the kind of semantic processing that is desired.
More specifically, what we need are representations that bridge the gap from lin-
guistic inputs to the non-linguistic knowledge of the world needed to perform tasks
involving the meaning of linguistic inputs. To illustrate this notion, consider the
following everyday language tasks that require some form of semantic processing
of natural language:

• Answering an essay question on an exam;

• Deciding what to order at a restaurant by reading a menu;

• Learning to use a new piece of software by reading the manual;

• Realizing that you’ve been insulted; and

• Following a recipe.

Simply having access to the phonological, morphological, and syntactic represen-
tations that we have discussed thus far will not get us very far on accomplishing
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any of these tasks. These tasks require access to representations that link the lin-
guistic elements involved in the task to the non-linguistic knowledge of the world
needed to successfully accomplish them. For example, some of the world knowl-
edge needed to perform the above tasks would include the following:

• Answering and grading essay questions requires background knowledge about
the topic of the question, the desired knowledge level of the students, and how
such questions are normally answered.

• Reading a menu and deciding what to order, giving advice about where to go
to dinner, following a recipe, and generating new recipes all require knowl-
edge about food, its preparation, what people like to eat and what restaurants
are like.

• Learning to use a piece of software by reading a manual, or giving advice
about how to do the same, requires knowledge about current computers, the
specific software in question, similar software applications, and knowledge
about users in general.

In the representational approach explored here, we take linguistic inputs and
construct meaning representations that are made up of the same kind of stuff that is
used to represent this kind of everyday commonsense knowledge of the world. The
process whereby such representations are created and assigned to linguistic inputs
is called semantic analysis.SEMANTIC ANALYSIS

To make this notion a bit more concrete, consider Fig. 17.1, which shows
sample meaning representations for the sentence I have a car using four repre-
sentative meaning representation languages. The first row illustrates a sentence in
First-Order Logic, which will be covered in detail in Section 17.4; the graph in
the center illustrates a Semantic Network, which will be discussed further in Sec-
tion 17.6; the third row contains a Conceptual Dependency diagram, discussed in
more detail in Ch. 19, and finally a Frame-Based representation, also covered in
Section 17.6.

While there are non-trivial differences among these approaches, at an abstract
level they all share as a common foundation the notion that a meaning represen-
tation consists of structures composed from a set of symbols, or representational
vocabulary. When appropriately arranged, these symbol structures are taken to cor-
respond to the objects, properties of objects and relations among objects in some
state of affairs being represented. In this case, all four representations make use of
symbols corresponding to the speaker, a car, and relations denoting the possession
of one by the other.

It is important to note that these representations can be viewed from at least
two distinct perspectives in all four of these approaches: as representations of the
meaning of the particular linguistic input I have a car, and as representations of
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∃x,y Having(x)∧Haver(Speaker,x)∧HadT hing(y,x)∧Car(y)

Having

Haver Had-Thing

Speaker Car

Car Having
⇑ POSS-BY Haver: Speaker

Speaker HadThing: Car

Figure 17.1 A list of symbols, two directed graphs, and a record structure: a sam-
pler of meaning representations for I have a car.

the state of affairs in some world. It is this dual perspective that allows these rep-
resentations to be used to link linguistic inputs to the world and to our knowledge
of it.

The structure of this part of the book parallels that of the previous parts. We
will alternate discussions of the nature of meaning representations with discus-
sions of the computational processes that can produce them. More specifically,
this chapter introduces the basics of what is needed in a meaning representation,
while Ch. 18 introduces a number of techniques for assigning meanings to linguis-
tic inputs. Ch. 19 explores a range of complex representational issues related to
the meanings of words. Ch. 20 then explores some robust computational methods
designed to exploit these lexical representations.

Since the focus of this chapter is on some of the basic requirements for mean-
ing representations, we will defer a number of extremely important issues to later
chapters. In particular, the focus of this chapter is on representing what is some-
times called the literal meaning of sentences. By this, we have in mind represen-LITERAL MEANING

tations that are closely tied to the conventional meanings of the words that are used
to create them, and that do not reflect much of the context in which they occur. The
shortcomings of such representations with respect to phenomena such as idioms
and metaphor will be discussed in the next two chapters, while the role of context
in ascertaining the deeper meaning of sentences will be covered in Chs. 20 and 23.
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There are four major parts to this chapter. Section 17.1 explores some of the
key computational requirements for what we need in a meaning representation lan-
guage. Section 17.2 then discusses some of the ways that languages are structured
to convey meaning. Section 17.3 describes how we can more formally specify the
meanings of our meaning representations. Section 17.4 then provides an introduc-
tion to First Order Logic, which has historically been the primary technique used
to investigate issues in natural language semantics.

17.1 COMPUTATIONAL DESIDERATA FOR REPRESENTATIONS

We begin by considering the issue of why meaning representations are needed and
what they should do for us. To focus this discussion, we will consider in more
detail the task of giving advice about restaurants to tourists. In this discussion, we
will assume that we have a computer system that accepts spoken language queries
from tourists and construct appropriate responses by using a knowledge base of
relevant domain knowledge. A series of examples will serve to introduce some
of the basic requirements that a meaning representation must fulfill, and some of
the complications that inevitably arise in the process of designing such meaning
representations. In each of these examples, we will examine the role that the rep-
resentation of the meaning of the request must play in the process of satisfying
it.

17.1.1 Verifiability

Let us begin by considering the following simple question:

(17.1) Does Maharani serve vegetarian food?

This example illustrates the most basic requirement for a meaning representation:
it must be possible to use the representation to determine the relationship between
the meaning of a sentence and the world as we know it. In other words, we need to
be able to determine the truth of our representations. The most straightforward way
to implement this notion is make it possible for a system to compare, or match, the
representation of the meaning of an input against the representations in its knowl-
edge base, its store of information about its world.KNOWLEDGE BASE

In this example, let us assume that the meaning of this question contains, as
a component, the meaning underlying the proposition Maharani serves vegetarian
food. For now, we will simply gloss this representation as:

Serves(Maharani,VegetarianFood)
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It is this representation of the input that will be matched against the knowl-
edge base of facts about a set of restaurants. If the system finds a representation
matching the input proposition in its knowledge base, it can return an affirmative
answer. Otherwise, it must either say No, if its knowledge of local restaurants is
complete, or say that it does not know if there is reason to believe that its knowl-
edge is incomplete.

This notion is known as verifiability, and concerns a system’s ability to com-VERIFIABILITY

pare the state of affairs described by a representation to the state of affairs in some
world as modeled in a knowledge base.

17.1.2 Unambiguous Representations

The domain of semantics, like all the other domains we have studied, is subject
to ambiguity. Specifically, single linguistic inputs can legitimately have different
meaning representations assigned to them based on the circumstances in which
they occur.

Consider the following example from the BERP corpus:

(17.2) I wanna eat someplace that’s close to ICSI.

Given the allowable argument structures for the verb eat, this sentence can either
mean that the speaker wants to eat at some nearby location, or under a Godzilla as
speaker interpretation, the speaker may want to devour some nearby location. The
answer generated by the system for this request will depend on which interpretation
is chosen as the correct one.

Since ambiguities such as this abound in all genres of all languages, some
means of determining that certain interpretations are preferable (or alternatively
less preferable) than others is needed. The various linguistic phenomena that give
rise to such ambiguities, and the techniques that can be employed to deal with
them, will be discussed in detail in the next four chapters.

Our concern in this chapter, however, is with the status of our meaning rep-
resentations with respect to ambiguity, and not with the means by which we might
arrive at correct interpretations. Since we reason about, and act upon, the semantic
content of linguistic inputs, the final representation of an input’s meaning should
be free from any ambiguity. Therefore, regardless of any ambiguity in the raw
input, it is critical that a meaning representation language support representations
that have a single unambiguous interpretation1.

A concept closely related to ambiguity is vagueness. Like ambiguity, vague-VAGUENESS

1 This does not preclude the use of intermediate semantic representations that maintain some level
of ambiguity on the way to a single unambiguous form. Examples of such representations will be
discussed in Ch. 18.
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ness can make it difficult to determine what to do with a particular input based
on its meaning representation. Vagueness, however, does not give rise to multiple
representations.

Consider the following request as an example:

(17.3) I want to eat Italian food.

While the use of the phrase Italian food may provide enough information for a
restaurant advisor to provide reasonable recommendations, it is nevertheless quite
vague as to what the user really wants to eat. Therefore, a vague representation of
the meaning of this phrase may be appropriate for some purposes, while a more
specific representation may be needed for other purposes. It will, therefore, be
advantageous for a meaning representation language to support representations that
maintain a certain level of vagueness. Note that it is not always easy to distinguish
ambiguity from vagueness. Zwicky and Sadock (1975) provide a useful set of tests
that can be used as diagnostics.

17.1.3 Canonical Form

The notion that single sentences can be assigned multiple meanings leads to the re-
lated phenomenon of distinct inputs that should be assigned the same meaning rep-
resentation. Consider the following alternative ways of expressing example (17.1):

(17.4) Does Maharani have vegetarian dishes?
(17.5) Do they have vegetarian food at Maharani?
(17.6) Are vegetarian dishes served at Maharani?
(17.7) Does Maharani serve vegetarian fare?

Given that these alternatives use different words and have widely varying
syntactic analyses, it would not be unreasonable to expect them to have substan-
tially different meaning representations. Such a situation would, however, have
undesirable consequences for our matching approach to determining the truth of
our representations. If the system’s knowledge base contains only a single repre-
sentation of the fact in question, then the representations underlying all but one of
our alternatives will fail to produce a match. We could, of course, store all possible
alternative representations of the same fact in the knowledge base, but this would
lead to an enormous number of problems related to keeping such a knowledge base
consistent.

The way out of this dilemma is motivated by the fact that since the answers
given for each of these alternatives should be the same in all situations, we might
say that they all mean the same thing, at least for the purposes of giving restaurant
recommendations. In other words, at least in this domain, we can legitimately
consider assigning the same meaning representation to the propositions underlying
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each of these requests. Taking such an approach would guarantee that our matching
scheme for answering Yes-No questions will still work.

The notion that inputs that mean the same thing should have the same mean-
ing representation is known as the doctrine of canonical form. This approachCANONICAL FORM

greatly simplifies various reasoning tasks since systems need only deal with a sin-
gle meaning representation for a potentially wide range of expressions.

Canonical form does, of course, complicate the task of semantic analysis.
To see this, note that the alternatives given above use completely different words
and syntax to refer to vegetarian fare and to what restaurants do with it. More
specifically, to assign the same representation to all of these requests our system
will have to conclude that vegetarian fare, vegetarian dishes and vegetarian food
refer to the same thing in this context, that the use here of having and serving
are similarly equivalent, and that the different syntactic parses underlying these
requests are all compatible with the same meaning representation.

Being able to assign the same representation to such diverse inputs is a tall
order. Fortunately there are some systematic meaning relationships among word
senses and among grammatical constructions that can be exploited to make this
task tractable. Consider the issue of the meanings of the words food, dish and
fare in these examples. A little introspection, or a glance at a dictionary, reveals
that these words have a fair number of distinct uses. Fortunately, it also reveals
that there is at least one sense that is shared among them all. If a system has the
ability to choose that shared sense, then an identical meaning representation can be
assigned to the phrases containing these words.

In general, we say that these words all have various word senses and thatWORD SENSES

some of the senses are synonymous with one another. The process of choosing the
right sense in context is called word sense disambiguation, or word sense taggingWORD SENSE

DISAMBIGUATION

by analogy to part-of-speech tagging. The topics of synonymy, sense tagging, and
a host of other topics related to word meanings will be covered in Chs. 17 and
18. Suffice it to say here that the fact that inputs may use different words does not
preclude the assignment of identical meanings to them.

Just as there are systematic relationships among the meanings of different
words, there are similar relationships related to the role that syntactic analyses
play in assigning meanings to sentences. Specifically, alternative syntactic analyses
often have meanings that are, if not identical, at least systematically related to one
another. Consider the following pair of examples:

(17.8) Maharani serves vegetarian dishes.

(17.9) Vegetarian dishes are served by Maharani.

Despite the different placement of the arguments to serve in these examples, we
can still assign Maharani and vegetarian dishes to the same roles in both of these
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examples because of our knowledge of the relationship between active and passive
sentence constructions. In particular, we can use knowledge of where grammatical
subjects and direct objects appear in these constructions to assign Maharani, to the
role of the server, and vegetarian dishes to the role of thing being served in both of
these examples, despite the fact that they appear in different surface locations. The
precise role of the grammar in the construction of meaning representations will be
covered in Ch. 18.

17.1.4 Inference and Variables

Continuing with the topic of the computational purposes that meaning representa-
tions should serve, we should consider more complex requests such as the follow-
ing:

(17.10) Can vegetarians eat at Maharani?

Here, it would be a mistake to invoke canonical form to force our system to assign
the same representation to this request as for the previous examples. The fact
that this request results in the same answer as the others arises not because they
mean the same thing, but because there is a commonsense connection between
what vegetarians eat and what vegetarian restaurants serve. This is a fact about the
world and not a fact about any particular kind of linguistic regularity. This implies
that no approach based on canonical form and simple matching will give us an
appropriate answer to this request. What is needed is a systematic way to connect
the meaning representation of this request with the facts about the world as they
are represented in a knowledge base.

We will use the term inference to refer generically to a system’s ability toINFERENCE

draw valid conclusions based on the meaning representation of inputs and its store
of background knowledge. It must be possible for the system to draw conclusions
about the truth of propositions that are not explicitly represented in the knowledge
base, but are nevertheless logically derivable from the propositions that are present.

Now consider the following somewhat more complex request:

(17.11) I’d like to find a restaurant where I can get vegetarian food.

Unlike our previous examples, this request does not make reference to any par-
ticular restaurant. The user is stating that they would like information about an
unknown and unnamed entity that is a restaurant that serves vegetarian food. Since
this request does not mention any particular restaurant, the kind of simple matching-
based approach we have been advocating is not going to work. Rather, answering
this request requires a more complex kind of matching that involves the use of
variables. We can gloss a representation containing such variables as follows:

Serves(x,VegetarianFood)
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Matching such a proposition succeeds only if the variable x can be replaced
by some known object in the knowledge base in such a way that the entire propo-
sition will then match. The concept that is substituted for the variable can then
be used to fulfill the user’s request. Of course, this simple example only hints at
the issues involved in the use of such variables. Suffice it to say that linguistic in-
puts contain many instances of all kinds of indefinite references and it is therefore
critical for any meaning representation language to be able to handle this kind of
expression.

17.1.5 Expressiveness

Finally, to be useful a meaning representation scheme must be expressive enough
to handle an extremely wide range of subject matter. The ideal situation, of course,
would be to have a single meaning representation language that could adequately
represent the meaning of any sensible natural language utterance. Although this is
probably too much to expect from any single representational system, Section 17.4
will show that First-Order Logic is expressive enough to handle quite a lot of what
needs to be represented.

17.2 MEANING STRUCTURE OF LANGUAGE

The previous section focused on some of the purposes that meaning representations
must serve, without saying much about what we will call the meaning structure
of language. By this, we have in mind the various methods by which human lan-MEANING

STRUCTURE OF
LANGUAGE

guages convey meaning. These include a variety of conventional form-meaning
associations, word-order regularities, tense systems, conjunctions and quantifiers,
and a fundamental predicate-argument structure. The remainder of this section fo-
cuses exclusively on this last notion of a predicate-argument structure, which is the
mechanism that has had the greatest practical influence on the nature of meaning
representation languages. The remaining topics will be addressed in Ch. 18 where
the primary focus will be on how they contribute to how meaning representations
are assembled, rather than on the nature of the representations.

17.2.1 Predicate-Argument Structure

Human languages have a form of predicate-argument arrangement at the core of
their semantic structure. To a first approximation, this predicate-argument struc-
ture asserts that specific relationships, or dependencies, hold among the various
concepts underlying the constituent words and phrases that make up sentences. It
is this underlying structure that permits the creation of a single composite meaning
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representation from the meanings of the various parts of an input. One of the most
important jobs of a grammar is to help organize this predicate-argument structure.
Correspondingly, it is critical that our meaning representation languages support
the predicate-argument structures presented to us by language.

We have already seen the beginnings of this concept in our discussion of
verb complements in Chs. 11 and 15. There we saw that verbs dictate specific
constraints on the number, grammatical category, and location of the phrases that
are expected to accompany them in syntactic structures. To briefly review this idea,
consider the following examples:

(17.12) I want Italian food.

(17.13) I want to spend less than five dollars.

(17.14) I want it to be close by here.

These examples can be classified as having one of the following three syntactic
argument frames:

NP want NP

NP want Inf-VP

NP want NP Inf-VP

These syntactic frames specify the number, position and syntactic category of
the arguments that are expected to accompany a verb. For example, the frame for
the variety of want that appears in example (17.12) specifies the following facts:

• There are two arguments to this predicate.

• Both arguments must be NPs.

• The first argument is pre-verbal and plays the role of the subject.

• The second argument is post-verbal and plays the role of the direct object.

As we have shown in previous chapters, this kind of information is quite valu-
able in capturing a variety of important facts about syntax. By analyzing easily
observable semantic information associated with these frames, we can also gain
considerable insight into our meaning representations. We will begin by consid-
ering two extensions of these frames into the semantic realm: semantic roles and
semantic restrictions on these roles.

The notion of a semantic role can be understood by looking at the similari-
ties among the arguments in examples (17.12) through (17.14). In each of these
cases, the pre-verbal argument always plays the role of the entity doing the want-
ing, while the post-verbal argument plays the role of the concept that is wanted.
By noticing these regularities and labeling them accordingly, we can associate the
surface arguments of a verb with a set of discrete roles in its underlying semantics.
More generally, we can say that verb subcategorization frames allow the linking ofLINKING
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arguments in the surface structure with the semantic roles these arguments play in
the underlying semantic representation of an input. The study of roles associated
with specific verbs and across classes of verbs is usually referred to as thematic
role or case role analysis and will be studied more fully in Ch. 19.THEMATIC ROLE

CASE ROLE The notion of semantic restrictions arises directly from these semantic roles.
Returning to examples 17.12 through 17.14, we can see that it is not merely the
case that each initial noun phrase argument will be the wanter but that only certain
kinds, or categories, of concepts can play the role of wanter in any straightforward
manner. Specifically, want restricts the constituents appearing as the first argument
to those whose underlying concepts can actually partake in a wanting. Tradition-
ally, this notion is referred to as a selectional restriction. Through the use of theseSELECTIONAL

RESTRICTION

selectional restrictions, verbs can specify semantic restrictions on their arguments.
Before leaving this topic, we should note that verbs are by no means the only

objects in a grammar that can carry a predicate-argument structure. Consider the
following phrases from the BERP corpus:

(17.15) an Italian restaurant under fifteen dollars

In this example, the meaning representation associated with the preposition under
can be seen as having something like the following structure:

Under(ItalianRestaurant,$15)

In other words, prepositions can be characterized as two-argument predicates where
the first argument is an object that is being placed in some relation to the second
argument.

Another non-verb based predicate-argument structure is illustrated in the fol-
lowing example:

(17.16) Make a reservation for this evening for a table for two persons at 8.

Here, the predicate-argument structure is based on the concept underlying
the noun reservation, rather than make, the main verb in the phrase. This example
gives rise to a four argument predicate structure like the following:

Reservation(Hearer,Today,8PM,2)

This discussion makes it clear that any useful meaning representation lan-
guage must be organized in a way that supports the specification of semantic
predicate-argument structures. Specifically, it must include support for the kind
of semantic information that languages present:

• variable arity predicate-argument structures

• the semantic labeling of arguments to predicates

• the statement of semantic constraints on the fillers of argument roles
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17.3 MODEL-THEORETIC SEMANTICS

The last two sections focused on various desiderata for meaning representations
and on some of the ways in which natural languages convey meaning. We haven’t
said much formally about what it is about meaning representation languages that
allows them to do all the things we want them to. In particular, we might like to
have some kind of guarantee that these representations can do the work that we
require of them: bridge the gap from merely formal representations to representa-
tions that tell us something about some state of affairs in the world.

To see how we might provide such a guarantee, let’s start with the basic no-
tions shared by most meaning representation schemes. What they all have in com-
mon is the ability to represent objects, properties of objects and relations among
objects. This point of view can be formalized via the notion of a model. The basicMODEL

idea is that a model is a formal construct that stands for the particular state of affairs
in the world that we’re trying to represent. Expressions in a meaning representation
language will then be mapped in a systematic way to the elements of the model. If
the model accurately captures the facts we’re interested in concerning some state
of affairs in the world, then a systematic mapping between the meaning representa-
tion and model provides the necessary bridge between the meaning representation
and world being considered. As we’ll see, models provide a surprisingly simple
and powerful way to ground the expressions in meaning representation languages.

Before we start let’s introduce some terminology. The vocabulary of a mean-
ing representation consists of two parts: the non-logical vocabulary and the logical
vocabulary. The non-logical vocabulary consists of the open-ended set of namesNON-LOGICAL

VOCABULARY

for the objects, properties and relations that make up the world we’re trying to rep-
resent. These appear in various schemes as predicates, nodes, labels on links, or
labels in slots in frames, The logical vocabulary consists of the closed set of sym-LOGICAL

VOCABULARY

bols, operators, quantifiers, links, etc. that provide the formal means for composing
expressions in a given meaning representation language.

We’ll start by requiring that each element of the non-logical vocabulary of a
meaning representation have a denotation in the model. By denotation, we sim-
ply mean that every element of the non-logical vocabulary corresponds to a fixed
well-defined part of the model. Let’s start with objects, the most basic notion in
most representational schemes. The domain of a model is simply the set of objectsDOMAIN

that are part of the application, or state of affairs, being represented. Each distinct
concept, category or individual in an application denotes a unique element in the
domain. A domain is therefore formally a set. Note that it isn’t the case that every
element of the domain have a corresponding concept in our meaning representa-
tion; it’s perfectly acceptable to have domain elements that aren’t mentioned or
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conceived of in the meaning representation. Nor do we require that elements of
the domain have a single denoting concept in the meaning representation; a given
element in the domain might have several distinct representations denoting it, such
as Mary, WifeOf(Abe), or MotherOf(Robert).

We can capture properties of objects in a model by denoting those domain el-
ements that have the property in question; that is, properties denote sets. Similarly,
relations among objects denote sets of ordered lists, or tuples, of domain elements
that take part in the corresponding relations. This approach to properties and rela-
tions is thus an extensional one; the denotation of properties like red is the set of
things we think are red, the denotation of a relation like Married is simply the set
of pairs of domain elements that are married. To summarize:

• Objects denote elements of the domain

• Properties denote sets of elements of the domain

• Relations denote sets of tuples of elements of the domain

There is one additional element that we need to make this scheme work. We
need a mapping that systematically gets us from our meaning representation to the
corresponding denotations. More formally, we need a function that maps from the
non-logical vocabulary of our meaning representation to the proper denotations in
the model. We’ll call such a mapping an interpretation.INTERPRETATION

To make these notions more concrete, let’s return to the realm of restaurants
we introduced in Ch. 4. Assume that our application concerns a particular set of
restaurant patrons and restaurants, various facts about the likes and dislikes of the
patrons, and facts about the restaurants such as their cuisine, typical cost, and noise
level.

To begin populating our domain, D , let’s assume that in the current state
of affairs we’re dealing with four patrons designated by the non-logical symbols
Matthew, Franco, Katie and Caroline. These four symbols will denote 4 unique
domain elements. We’ll use the constants a,b,c and, d to stand for these domain el-
ements. Note that we’re deliberately using meaningless, non-mnemonic names for
our domain elements to emphasize the fact that whatever it is that we know about
these entities has to come from the formal properties of the model and not from the
names of the symbols. Continuing, let’s assume that our application includes three
restaurants, designated as Frasca, Med and Rio in our meaning representation, that
denote the domain elements e, f and g. Finally, let’s assume that we’re dealing
with the three cuisines Italian, Mexican, and Eclectic, denoting i, j, and k in our
model.

Having populated the domain, let’s move on to the properties and relations
we believe to be true in this particular state of affairs. Let’s assume that in our
application we need to represent some properties of restaurants such as the fact that
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Domain D = {a,b,c,d,e, f ,g,h, i, j}
Matthew, Franco, Katie and Caroline a,b,c,d
Frasca, Med, Rio e, f ,g
ItalianCuisine, MexicanCuisne, EclecticCuisine h, i, j

Noisy Noisy = {e, f ,g}
Frasca, Med and Rio are noisy

Likes Likes = {〈a, f 〉,〈c, f 〉,〈c,g〉,〈b,e〉,〈d, f ,〉,〈d,g〉}
Matthew likes the Med
Katie likes the Med and Rio
Franco likes Frasca
Caroline likes the Med and Rio

Serves Serves = {〈e, j〉,〈 f , i〉,〈e,h〉}
Med serves eclectic
Rio serves Mexican
Frasca serves Italian

Figure 17.2 A model of the restaurant world.

some are noisy or expensive. Properties like Noisy denote the subset of restaurants
from our domain that are known to be noisy. Two-place relational notions, such
as which restaurants individual patrons Like, denote ordered pairs, or tuples, of
the objects from the domain. Similarly, since we decided to represent cuisines as
objects in our model, we can also capture which restaurants Serve which cuisines
as a set of tuples. One particular state of affairs using this scheme is given in
Fig. 17.2.

Given this simple scheme, we can ground the meaning of pretty much any of
the representations shown earlier in Fig. ?? by simply consulting the appropriate
denotations in the corresponding model. A representation claiming, for example,
that Matthew likes the Rio , or that the The Med serves Italian can be evaluated by
mapping the objects in the meaning representations to their corresponding domain
elements, and any links, predicates, or slots in the meaning representation to the
appropriate relations in the model. More concretely, a representation asserting that
Matthew likes Frasca can be verified by first using our interpretation function to
map the symbol Matthew to its denotation a, Frasca to e, and the Likes relation
to the appropriate set of tuples. We then simply check that set of tuples for the
presence of the tuple 〈a,e〉. If, as it is in this case, the tuple is present in the model
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then we can conclude that Matthew likes Frasca is true, and if it isn’t we can’t.
This is all pretty much straightforward, we’re simply using sets and opera-

tions on sets to ground the expressions in our meaning representations. Of course,
the more interesting part comes when we consider more complex examples such
as the following:

(17.17) Katie likes the Rio and Matthew likes the Med.

(17.18) Katie and Caroline like the same restaurants.

(17.19) Franco likes noisy, expensive restaurants.

(17.20) Not everybody likes Frasca.

Clearly, our simple scheme for grounding the meaning of representations is
not adequate for examples such as these. Plausible meaning representations for
these examples will not map directly to individual entities, properties or relations.
Instead, they involve complications such as conjunctions, equality, quantified vari-
ables and negations. To assess whether or not these statements are consistent with
our model we’ll have to tear them apart, assess the parts and then determine the
meaning of the whole from the meaning of the parts according to the details of
how the whole is assembled.

Consider the first example given above. A typical meaning representation for
examples like this will include two distinct propositions expressing the individual
patron’s preferences, conjoined with some kind of implicit or explicit conjunction
operator. Obviously, our model doesn’t have a relation that encodes the pairwise
preferences for all of the patrons and restaurants in our model, nor does it need
to. We know from our model that Matthew likes the Med and separately that Katie
likes the Rio (that is, we know that the tuples 〈a, f 〉 and 〈c,g〉 are members of
the set denoted by the Likes relation.) All we really need to know is how to deal
with the semantics of the conjunction operator. If we assume the simplest possible
semantics for the English word and, the whole statement is true if it is the case
each of the components is true in our model. In this case, both components are
true since the appropriate tuples are present and therefore the sentence as a whole
is true.

What we’ve done implicitly in this example is to provide what is called a
truth-conditional semantics for the assumed conjunction operator in some mean-TRUTH-CONDITIONAL

SEMANTICS

ing representation. That is, we’ve provided a method for determining the truth of
a complex expression from the meanings of the parts (by consulting a model) and
the meaning of an operator by essentially consulting a truth-table. The various rep-
resentations that populate Fig. 17.1 are truth-conditional to the extent that they give
a formal specification as to how we can assess the meaning of complex sentences
from the meaning of their parts. In particular, we’ll need to know the semantics of
the entire logical vocabulary of the meaning representation scheme being used.
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Note that although the details of how this happens is dependent on details of
the particular meaning representation being used, it should be clear that assessing
the truth conditions of examples like these involves nothing beyond the simple set
operations we’ve been discussing. We’ll return to these issues in the next section
where we discuss them in the context of the semantics of First Order Logic.

17.4 FIRST-ORDER LOGIC

First-Order Logic (FOL) is a flexible, well-understood, and computationally tractable
approach to the representation of knowledge that satisfies many of the desiderata
given in Sections 17.1 and 17.2 for a meaning representation language. Specifi-
cally, it provides a sound computational basis for the verifiability, inference, and
expressiveness requirements, and as we’ll see a sound model-theoretic semantics.

However, the most attractive feature of FOL is the fact that it makes very few
specific commitments as to how things ought to be represented. As we will see, the
specific commitments it does make are ones that are fairly easy to live with and are
shared by many of the schemes mentioned earlier; the represented world consists
of objects, properties of objects, and relations among objects.

The remainder of this section first provides an introduction to the basic syntax
and semantics of FOPC, and then describes the application of FOPC to a number of
linguistically relevant topics. Section 17.7 then discusses the connections between
FOPC and some of the other representations shown earlier in Figure 17.1.

17.4.1 Elements of First Order Logic

We will explore FOL in a bottom-up fashion by first examining its various
atomic elements and then showing how they can be composed to create larger
meaning representations. Fig. 17.3, which provides a complete context-free gram-
mar for the particular syntax of FOL that we will be using, will be our roadmap for
this section.

Let’s begin by examining the notion of a Term, the FOL device for represent-TERM

ing objects. As can be seen from Figure 17.3, FOL provides three ways to represent
these basic building blocks: constants, functions, and variables. Each of these de-
vices can be thought of as a way of naming, or pointing to, an object in the world
under consideration.

Constants in FOL refer to specific objects in the world being described. SuchCONSTANTS

constants are conventionally depicted as either single capitalized letters such as A
and B or single capitalized words that are often reminiscent of proper nouns such as
Maharani and Harry. Like programming language constants, FOL constants refer
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Formula → AtomicFormula

| Formula Connective Formula

| Quantifier Variable, . . . Formula

| ¬ Formula

| (Formula)

AtomicFormula → Predicate(Term, . . .)

Term → Function(Term, . . .)

| Constant

| Variable

Connective → ∧ | ∨ | ⇒
Quantifier → ∀ | ∃
Constant → A | VegetarianFood | Maharani · · ·
Variable → x | y | · · ·

Predicate → Serves | Near | · · ·
Function → LocationO f | CuisineO f | · · ·

Figure 17.3 A context-free grammar specification of the syntax of First Order
Predicate Calculus representations. Adapted from Russell and Norvig (1995).

to exactly one object. Objects can, however, have multiple constants that refer to
them.

Functions in FOPC correspond to concepts that are often expressed in EnglishFUNCTIONS

as genitives such as Frasca’s location. A FOL translation of such an expression
might look like the following.

LocationO f (Frasca)

FOPC functions are syntactically the same as single argument predicates. It is im-
portant to remember, however, that while they have the appearance of predicates
they are in fact Terms in that they refer to unique objects. Functions provide a
convenient way to refer to specific objects without having to associate a named
constant with them. This is particularly convenient in cases where many named
objects, like restaurants, will have a unique concept such as a location associated



DRAFT

18 Chapter 17. Representing Meaning

with them.
The notion of a variable is our final FOPC mechanism for referring to ob-VARIABLE

jects. Variables, which are normally depicted as single lower-case letters, give us
the ability to make assertions and draw inferences about objects without having to
make reference to any particular named object. This ability to make statements
about anonymous objects comes in two flavors: making statements about a partic-
ular unknown object and making statements about all the objects in some arbitrary
world of objects. We will return to the topic of variables after we have presented
quantifiers, the elements of FOPC that will make them useful.

Now that we have the means to refer to objects, we can move on to the FOPC

mechanisms that are used to state relations that hold among objects. As one might
guess from its name, FOPC is organized around the notion of the predicate. Predi-
cates are symbols that refer to, or name, the relations that hold among some fixed
number of objects in a given domain. Returning to the example introduced in-
formally in Section 17.1, a reasonable FOPC representation for Maharani serves
vegetarian food might look like the following formula:

Serves(Maharani,VegetarianFood)

This FOPC sentence asserts that Serves, a two-place predicate, holds between the
objects denoted by the constants Maharani and VegetarianFood.

A somewhat different use of predicates is illustrated by the following typical
representation for a sentence like Maharani is a restaurant:

Restaurant(Maharani)

This is an example of a one-place predicate that is used, not to relate multiple ob-
jects, but rather to assert a property of a single object. In this case, it encodes the
category membership of Maharani. We should note that while this is a common-
place way to deal with categories it is probably not the most useful. Section 17.5
will return to the topic of the representation of categories.

With the ability to refer to objects, to assert facts about objects, and to relate
objects to one another, we have the ability to create rudimentary composite repre-
sentations. These representations correspond to the atomic formula level in Figure
17.3. Recall that this ability to create composite meaning representations was one
of the core components of the meaning structure of language described in Section
17.2.

This ability to compose complex representations is not limited to the use
of single predicates. Larger composite representations can also be put together
through the use of logical connectives. As can be seen from Figure 17.3, logicalLOGICAL

CONNECTIVES

connectives give us the ability to create larger representations by conjoining logical
formulas using one of three operators. Consider, for example, the following BERP

sentence and one possible representation for it:
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(17.21) I only have five dollars and I don’t have a lot of time.

Have(Speaker,FiveDollars)∧¬Have(Speaker,LotO f Time)

The semantic representation for this example is built up in a straightforward way
from semantics of the individual clauses through the use of the ∧ and ¬ operators.
Note that the recursive nature of the grammar in Figure 17.3 allows an infinite
number of logical formulas to be created through the use of these connectives. Thus
as with syntax, we have the ability to create an infinite number of representations
using a finite device.

17.4.2 The Semantics of First Order Logic

The various objects, properties, and relations represented in a FOPC knowledge
base acquire their meanings by virtue of their correspondence to objects, properties,
and relations out in the external world being modeled by the knowledge base. FOPC

sentences can, therefore, be assigned a value of True or False based on whether
the propositions they encode are in accord with the world or not.

Consider the following example:

(17.22) Ay Caramba is near ICSI.

Capturing the meaning of this example in FOPC involves identifying the Terms and
Predicates that correspond to the various grammatical elements in the sentence,
and creating logical formulas that capture the relations implied by the words and
syntax of the sentence. For this example, such an effort might yield something like
the following:

Near(LocationO f (AyCaramba),LocationO f (ICSI))

The meaning of this logical formula then arises from the relationship between
the terms LocationO f (AyCaramba), LocationO f (ICSI), the predicate Near, and
the objects and relation they correspond to in the world being modeled. Specif-
ically, this sentence can be assigned a value of True or False based on whether
or not the real Ay Caramba is actually close to ICSI or not. Of course, since our
computers rarely have direct access to the outside world we have to rely on some
other means to determine the truth of formulas like this one.

For our current purposes, we will adopt what is known as a database se-
mantics for determining the truth of our logical formulas. Operationally, atomic
formulas are taken to be true if they are literally present in the knowledge base or
if they can be inferred from other formula that are in the knowledge base. The
interpretations of formulas involving logical connectives is based on the meaning
of the components in the formulas combined with the meanings of the connectives
they contain. Fig. 17.4 gives interpretations for each of the logical operators shown
in Figure 17.3.
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P Q ¬P P∧Q P∨Q P ⇒ Q

False False True False False True
False True True False True True
True False False False True False
True True False True True True

Figure 17.4 Truth table giving the semantics of the various logical connectives.

The semantics of the ∧ (and), and ¬ (not) operators are fairly straightforward,
and are correlated with at least some of the senses of their corresponding English
terms. However, it is worth pointing out that the ∨ (or) operator is not disjunctive
in the same way that the corresponding English word is, and that the ⇒ (implies)
operator is only loosely based on any commonsense notions of implication or cau-
sation. As we will see in more detail in Section 17.5, in most cases it is safest to
rely directly on the entries in the truth table, rather than on intuitions arising from
the names of the operators.

17.4.3 Variables and Quantifiers

We now have all the machinery necessary to return to our earlier discussion of vari-
ables. As noted above, variables are used in two ways in FOPC: to refer to particular
anonymous objects and to refer generically to all objects in a collection. These two
uses are made possible through the use of operators known as quantifiers. The twoQUANTIFIERS

operators that are basic to FOPC are the existential quantifier, which is denoted ∃,
and is pronounced as “there exists”, and the universal quantifier, which is denoted
∀, and is pronounced as “for all”.

The need for an existentially quantified variable is often signaled by the pres-
ence of an indefinite noun phrase in English. Consider the following example:

(17.23) a restaurant that serves Mexican food near ICSI.

Here reference is being made to an anonymous object of a specified category with
particular properties. The following would be a reasonable representation of the
meaning of such a phrase:

∃xRestaurant(x)
∧Serves(x,MexicanFood)
∧Near((LocationO f (x),LocationO f (ICSI))

The existential quantifier at the head of this sentence instructs us on how to
interpret the variable x in the context of this sentence. Informally, it says that for
this sentence to be true there must be at least one object such that if we were to
substitute it for the variable x, the resulting sentence would be true. For example,
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if AyCaramba is a Mexican restaurant near ICSI, then substituting AyCaramba for
x results in the following logical formula:

Restaurant(AyCaramba)
∧Serves(AyCaramba,MexicanFood)
∧Near((LocationO f (AyCaramba),LocationO f (ICSI))

Based on the semantics of the ∧ operator, this sentence will be true if all of
its three component atomic formulas are true. These in turn will be true if they are
either present in the system’s knowledge base or can be inferred from other facts
in the knowledge base.

The use of the universal quantifier also has an interpretation based on sub-
stitution of known objects for variables. The substitution semantics for the uni-
versal quantifier takes the expression for all quite literally; the ∀ operator states
that for the logical formula in question to be true the substitution of any object in
the knowledge base for the universally quantified variable should result in a true
formula. This is in marked contrast to the ∃ operator which only insists on a single
valid substitution for the sentence to be true.

Consider the following example:

(17.24) All vegetarian restaurants serve vegetarian food.

A reasonable representation for this sentence would be something like the follow-
ing:

∀xVegetarianRestaurant(x) ⇒ Serves(x,VegetarianFood)

For this sentence to be true, it must be the case that every substitution of a known
object for x must result in a sentence that is true. We can divide up the set of all
possible substitutions into the set of objects consisting of vegetarian restaurants
and the set consisting of everything else. Let us first consider the case where the
substituted object actually is a vegetarian restaurant; one such substitution would
result in the following sentence:

VegetarianRestaurant(Maharani)
⇒ Serves(Maharani,VegetarianFood)

If we assume that we know that the consequent clause,

Serves(Maharani,VegetarianFood)

is true then this sentence as a whole must be true. Both the antecedent and the
consequent have the value True and, therefore, according to the first two rows of
Fig. 17.4 the sentence itself can have the value True. This result will, of course, be
the same for all possible substitutions of Terms representing vegetarian restaurants
for x.
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Remember, however, that for this sentence to be true it must be true for all
possible substitutions. What happens when we consider a substitution from the
set of objects that are not vegetarian restaurants? Consider the substitution of a
non-vegetarian restaurant such as Ay Caramba’s for the variable x:

VegetarianRestaurant(AyCaramba)
⇒ Serves(AyCaramba,VegetarianFood)

Since the antecedent of the implication is False, we can determine from
Fig. 17.4 that the sentence is always True, again satisfying the ∀ constraint.

Note, that it may still be the case that Ay Caramba serves vegetarian food
without actually being a vegetarian restaurant. Note also, that despite our choice
of examples, there are no implied categorical restrictions on the objects that can be
substituted for x by this kind of reasoning. In other words, there is no restriction of
x to restaurants or concepts related to them. Consider the following substitution:

VegetarianRestaurant(Carburetor)
⇒ Serves(Carburetor,VegetarianFood)

Here the antecedent is still false and hence the rule remains true under this kind of
irrelevant substitution.

To review, variables in logical formulas must be either existentially (∃) or uni-
versally (∀) quantified. To satisfy an existentially quantified variable, there must be
at least one substitution that results in a true sentence. Sentences with universally
quantified variables must be true under all possible substitutions.

17.4.4 Inference

One of the most important desiderata given in Section 17.1 for a meaning repre-
sentation language is that it should support inference—the ability to add valid new
propositions to a knowledge base, or to determine the truth of propositions not ex-
plicitly contained within a knowledge base. This section briefly discusses modus
ponens, the most important inference method provided by FOPC. Applications of
modus ponens will be discussed in Ch. 21.

Modus ponens is a familiar form of inference that corresponds to what isMODUS PONENS

informally known as if-then reasoning. We can abstractly define modus ponens as
follows, where α and β should be taken as FOPC formulas:

α
α ⇒ β

β

In general, schemas like this indicate that the formula below the line can be inferred
from the formulas above the line by some form of inference. Modus ponens simply
states that if the left-hand side of an implication rule is present in the knowledge
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base, then the right-hand side of the rule can be inferred. In the following discus-
sions, we will refer to the left-hand side of an implication as the antecedent, and
the right-hand side as the consequent.

As an example of a typical use of modus ponens, consider the following
example, which uses a rule from the last section:

(17.25)

VegetarianRestaurant(Rudys)
∀xVegetarianRestaurant(x) ⇒ Serves(x,VegetarianFood)

Serves(Rudys,VegetarianFood)

Here, the formula VegetarianRestaurant(Rudys) matches the an-
tecedent of the rule, thus allowing us to use modus ponens to conclude
Serves(Rudys,VegetarianFood).

Modus ponens is typically put to practical use in one of two ways: forward
chaining and backward chaining. In forward chaining systems, modus ponens isFORWARD CHAINING

used in precisely the manner just described. As individual facts are added to the
knowledge base, modus ponens is used to fire all applicable implication rules. In
this kind of arrangement, as soon as a new fact is added to the knowledge base, all
applicable implication rules are found and applied, each resulting in the addition
new facts to the knowledge base. These new propositions in turn can be used to fire
implication rules applicable to them. The process continues until no further facts
can be deduced.

The forward chaining approach has the advantage that facts will be present in
the knowledge base when needed, since in a sense all inference is performed in ad-
vance. This can substantially reduce the time needed to answer subsequent queries
since they should all amount to simple lookups. The disadvantage of this approach
is that facts may be inferred and stored that will never be needed. Production
systems, which are heavily used in cognitive modeling work, are forward chain-PRODUCTION

SYSTEMS

ing inference systems augmented with additional control knowledge that governs
which rules are to be fired.

In backward chaining, modus ponens is run in reverse to prove specificBACKWARD
CHAINING

propositions, called queries. The first step is to see if the query formula is true by
determining if it is present in the knowledge base. If it is not, then the next step
is to search for applicable implication rules present in the knowledge base. An
applicable rule is one where the consequent of the rule matches the query formula.
If there are any such rules, then the query can be proved if the antecedent of any one
them can be shown to be true. Not surprisingly, this can be performed recursively
by backward chaining on the antecedent as a new query. The Prolog programming
language is a backward chaining system that implements this strategy.
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To see how this works, let’s assume that we have been asked to verify the
truth of the proposition Serves(Rudys,VegetarianFood), assuming the facts given
above the line in (17.25). Since it is not present in the knowledge base, a search for
an applicable rule is initiated that results in the rule given above. After substituting,
the constant Rudys for the variable x, our next task is to prove the antecedent of
the rule, VegetarianRestaurant(Rudys), which of course is one of the facts we are
given.

Note that it is critical to distinguish between reasoning via backward chaining
from queries to known facts, and reasoning backwards from known consequents to
unknown antecedents. To be specific, by reasoning backwards we mean that if the
consequent of a rule is known to be true, we assume that the antecedent will be as
well. For example, let’s assume that we know that Serves(Rudys,VegetarianFood)
is true. Since this fact matches the consequent of our rule, we might reason back-
wards to the conclusion that VegetarianRestaurant(Rudys).

While backward chaining is a sound method of reasoning, reasoning back-
wards is an invalid, though frequently useful, form of plausible reasoning. Plausi-
ble reasoning from consequents to antecedents is known as abduction, and as weABDUCTION

will see in Ch. 21 is often useful in accounting for many of the inferences people
make while analyzing extended discourses.

While forward and backward reasoning are sound, neither is complete. ThisCOMPLETE

means that there are valid inferences that can not be found by systems using these
methods alone. Fortunately, there is an alternative inference technique called reso-
lution that is sound and complete. Unfortunately, inference systems based on res-RESOLUTION

olution are far more computationally expensive than forward or backward chaining
systems. In practice, therefore, most systems use some form of chaining, and place
a burden on knowledge base developers to encode the knowledge in a fashion that
permits the necessary inferences to be drawn.

17.5 SOME LINGUISTICALLY RELEVANT CONCEPTS

Entire lives have been spent studying the representation of various aspects of hu-
man knowledge. These efforts have ranged from tightly focused efforts to repre-
sent individual domains such as time, to monumental efforts to encode all of our
commonsense knowledge of the world (Lenat and Guha, 1991). Our focus here
is considerably more modest. This section provides a brief overview of the repre-
sentation of a few important topics that have clear implications for language pro-
cessing. Specifically, the following sections provide introductions to the meaning
representations of categories, events, time, and beliefs.
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17.5.1 Categories

As we noted in Section 17.2, words with predicate-like semantics often express
preferences for the semantics of their arguments in the form of selectional restric-
tions. These restrictions are typically expressed in the form of semantically-based
categories where all the members of a category share a set of relevant features.

The most common way to represent categories is to create a unary predicate
for each category of interest. Such predicates can then be asserted for each member
of that category. For example, in our restaurant discussions we have been using the
unary predicate VegetarianRestaurant as in:

VegetarianRestaurant(Maharani)

Similar logical formulas would be included in our knowledge base for each
known vegetarian restaurant.

Unfortunately, in this method categories are relations, rather than full-fledged
objects. It is, therefore, difficult to make assertions about categories themselves,
rather than about their individual members. For example, we might want to desig-
nate the most popular member of a given category as in the following expression:

MostPopular(Maharani,VegetarianRestaurant)

Unfortunately, this is not a legal FOPC formula since the arguments to predicates
in FOPC must be Terms, not other predicates.

One way to solve this problem is to represent all the concepts that we want to
make statements about as full-fledged objects via a technique called reification. InREIFICATION

this case, we can represent the category of VegetarianRestaurant as an object just
as Maharani is. The notion of membership in such a category is then denoted via
a membership relation as in the following:

ISA(Maharani,VegetarianRestaurant)

The relation denoted by ISA (is a) holds between objects and the categories
in which they are members. This technique can be extended to create hierarchies
of categories through the use of other similar relations, as in the following:

AKO(VegetarianRestaurant,Restaurant)

Here, the relation AKO (a kind of) holds between categories and denotes a category
inclusion relationship. Of course, to truly give these predicates meaning they would
have to be situated in a larger set of facts defining categories as sets.

Ch. 19 discusses the practical use of such relations in databases of lexical
relations, in the representation of selectional restrictions, and in word sense disam-
biguation.
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17.5.2 Events

The representations for events that we have used until now have consisted of sin-
gle predicates with as many arguments as are needed to incorporate all the roles
associated with a given example. For example, the representation for making a
reservation discussed in Section 17.2 consisted of a single predicate with argu-
ments for the person making the reservation, the restaurant, the day, the time, and
the number of people in the party, as in the following:

Reservation(Hearer,Maharani,Today,8PM,2)

In the case of verbs, this approach simply assumes that the predicate representing
the meaning of a verb has the same number of arguments as are present in the
verb’s syntactic subcategorization frame.

Unfortunately, there are four problems with this approach that make it awk-
ward to apply in practice:

• Determining the correct number of roles for any given event.

• Representing facts about the roles associated with an event.

• Ensuring that all the correct inferences can be derived directly from the rep-
resentation of an event.

• Ensuring that no incorrect inferences can be derived from the representation
of an event.

We will explore these, and other related issues, by considering a series of
representations for events. This discussion will focus on the following examples of
the verb eat:

(17.26) I ate.

(17.27) I ate a turkey sandwich.

(17.28) I ate a turkey sandwich at my desk.

(17.29) I ate at my desk.

(17.30) I ate lunch.

(17.31) I ate a turkey sandwich for lunch.

(17.32) I ate a turkey sandwich for lunch at my desk.

Clearly, the variable number of arguments for a predicate-bearing verb like
eat poses a tricky problem. While we would like to think that all of these examples
denote the same kind of event, predicates in FOPC have fixed arity—they take aARITY

fixed number of arguments.
One possible solution is suggested by the way that examples like these are

handled syntactically. The solution given in Ch. 16 was to create one subcatego-
rization frame for each of the configurations of arguments that a verb allows. The
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semantic analog to this approach is to create as many different eating predicates
as are needed to handle all of the ways that eat behaves. Such an approach would
yield the following kinds of representations for examples (17.26) through (17.26).

Eating1(Speaker)
Eating2(Speaker,TurkeySandwich)
Eating3(Speaker,TurkeySandwich,Desk)
Eating4(Speaker,Desk)
Eating5(Speaker,Lunch)
Eating6(Speaker,TurkeySandwich,Lunch)
Eating7(Speaker,TurkeySandwich,Lunch,Desk)

This approach simply sidesteps the issue of how many arguments the Eating
predicate should have by creating distinct predicates for each of the subcatego-
rization frames. Unfortunately, this approach comes at a rather high cost. Other
than the suggestive names of the predicates, there is nothing to tie these events to
one another even though there are obvious logical relations among them. Specif-
ically, if example (17.32) is true then all of the other examples are true as well.
Similarly, if example (17.31) is true then examples (17.26), (17.27), and (17.30)
must also be true. Such logical connections can not be made on the basis of these
predicates alone. Moreover, we would expect a commonsense knowledge base to
contain logical connections between concepts like Eating and related concepts like
Hunger and Food.

One method to solve these problems involves the use of what are called
meaning postulates. Consider the following example postulate:MEANING

POSTULATES

∀w,x,y,z Eating7(w,x,y,z) ⇒ Eating6(w,x,y)

This postulate explicitly ties together the semantics of two of our predicates. Other
postulates could be created to handle the rest of the logical relations among the
various Eatings and the connections from them to other related concepts.

Although such an approach might be made to work in small domains, it
clearly has scalability problems. A somewhat more sensible approach is to say
that examples (17.26) through (17.32) all reference the same predicate with some
of the arguments missing from some of the surface forms. Under this approach, as
many arguments are included in the definition of the predicate as ever appear with
it in an input. Adopting the structure of a predicate like Eating7 as an example
would give us a predicate with four arguments denoting the eater, thing eaten, meal
being eaten and the location of the eating. The following formulas would then
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capture the semantics of our examples:

∃w,x,y Eating(Speaker,w,x,y)
∃w,x Eating(Speaker,TurkeySandwich,w,x)
∃w Eating(Speaker,TurkeySandwich,w,Desk)
∃w,x Eating(Speaker,w,x,Desk)
∃w,x Eating(Speaker,w,Lunch,x)
∃w Eating(Speaker,TurkeySandwich,Lunch,w)
Eating(Speaker,TurkeySandwich,Lunch,Desk)

This approach directly yields the obvious logical connections among these
formulas without the use of meaning postulates. Specifically, all of the sentences
with ground terms as arguments logically imply the truth of the formulas with
existentially bound variables as arguments.

Unfortunately, this approach still has at least two glaring deficiencies: it
makes too many commitments, and it does not let us individuate events. As an
example of how it makes too many commitments, consider how we accommodated
the for lunch complement in examples (17.30) through (17.32); a third argument,
the meal being eaten, was added to the Eating predicate. The presence of this
argument implicitly makes it the case that all eating events are associated with a
meal (i.e., breakfast, lunch, or dinner). More specifically, the existentially quanti-
fied variable for the meal argument in the above examples states that there is some
formal meal associated with each of these eatings. This is clearly silly since one
can certainly eat something independent of it being associated with a meal.

To see how this approach fails to properly individuate events, consider the
following formulas.

∃w,x Eating(Speaker,w,x,Desk)
∃w,x Eating(Speaker,w,Lunch,x)
∃w,x Eating(Speaker,w,Lunch,Desk)

If we knew that the first two formulas were referring to the same event, they could
be combined to create the third representation. Unfortunately, with the current
representation we have no way of telling if this is possible. The independent facts
that I ate at my desk and I ate lunch do not permit us to conclude that I ate lunch at
my desk. Clearly what is lacking is some way of referring to the events in question.

As with categories, we can solve these problems if we employ reification to
elevate events to objects that can be quantified and related to other objects via sets
of defined relations (Davidson, 1967; Parsons, 1990). Consider the representation
of example (17.27) under this kind of approach.

∃w ISA(w,Eating)
∧Eater(w,Speaker)∧Eaten(w,TurkeySandwich)
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This representation states that there is an eating event where the Speaker is
doing the eating and a TurkeySandwich is being eaten. The meaning representa-
tions for examples (17.26) and (17.31) can be constructed similarly.

∃w ISA(w,Eating)∧Eater(w,Speaker)
∃w ISA(w,Eating)

∧Eater(w,Speaker)∧Eaten(w,TurkeySandwich)
∧MealEaten(w,Lunch)

Under this reified-event approach:

• There is no need to specify a fixed number of arguments for a given surface
predicate; rather as many roles and fillers can be glued on as appear in the
input.

• No more roles are postulated than are mentioned in the input.
• The logical connections among closely related examples are satisfied without

the need for meaning postulates.

17.5.3 Representing Time

In the preceding discussion of events, we did not address the issue of representing
the time when the represented events are supposed to have occurred. The represen-
tation of such information in a useful form is the domain of temporal logic. ThisTEMPORAL LOGIC

discussion will serve to introduce the most basic concerns of temporal logic along
with a brief discussion of the means by which human languages convey temporal
information, which among other things includes tense logic, the ways that verbTENSE LOGIC

tenses convey temporal information.
The most straightforward theory of time hold that it flows inexorably for-

ward, and that events are associated with either points or intervals in time, as on a
timeline. Given these notions, an ordering can be imposed on distinct events by sit-
uating them on the timeline. More specifically, we can say that one event precedes
another, if the flow of time leads from the first event to the second. Accompanying
these notions in most theories is the idea of the current moment in time. Combin-
ing this notion with the idea of a temporal ordering relationship yields the familiar
notions of past, present and future.

Not surprisingly, there are a large number of schemes for representing this
kind of temporal information. The one presented here is a fairly simple one that
stays within the FOPC framework of reified events that we have been pursuing.
Consider the following examples:

(17.33) I arrived in New York.
(17.34) I am arriving in New York.
(17.35) I will arrive in New York.
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These sentences all refer to the same kind of event and differ solely in the tense of
the verb. In our current scheme for representing events, all three would share the
following kind of representation, which lacks any temporal information:

∃w ISA(w,Arriving)
∧Arriver(w,Speaker)∧Destination(w,NewYork)

The temporal information provided by the tense of the verbs can be exploited
by predicating additional information about the event variable w. Specifically, we
can add temporal variables representing the interval corresponding to the event, the
end point of the event, and temporal predicates relating this end point to the current
time as indicated by the tense of the verb. Such an approach yields the following
representations for our arriving examples:

∃i,e,w, t ISA(w,Arriving)
∧Arriver(w,Speaker)∧Destination(w,NewYork)
IntervalO f (w, i)∧EndPoint(i,e)∧Precedes(e,Now)

∃i,e,w, t ISA(w,Arriving)
∧Arriver(w,Speaker)∧Destination(w,NewYork)
IntervalO f (w, i)∧MemberO f (i,Now)

∃i,e,w, t ISA(w,Arriving)
∧Arriver(w,Speaker)∧Destination(w,NewYork)
IntervalO f (w, i)∧EndPoint(i,e)∧Precedes(Now,e)

This representation introduces a variable to stand for the interval of time associated
with the event, and a variable that stands for the end of that interval. The two-place
predicate Precedes represents the notion that the first time point argument precedes
the second in time; the constant Now refers to the current time. For past events, the
end point of the interval must precede the current time. Similarly, for future events
the current time must precede the end of the event. For events happening in the
present, the current time is contained within the event interval.

Unfortunately, the relation between simple verb tenses and points in time is
by no means straightforward. Consider the following examples:

(17.36) Ok, we fly from San Francisco to Boston at 10.

(17.37) Flight 1390 will be at the gate an hour now.

In the first example, the present tense of the verb fly is used to refer to a future
event, while in the second the future tense is used to refer to a past event.

More complications occur when we consider some of the other verb tenses.
Consider the following examples:

(17.38) Flight 1902 arrived late.
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(17.39) Flight 1902 had arrived late.

Although both refer to events in the past, representing them in the same way seems
wrong. The second example seems to have another unnamed event lurking in the
background (e.g., Flight 1902 had already arrived late when something else hap-
pened). To account for this phenomena, Reichenbach (1947) introduced the notion
of a reference point. In our simple temporal scheme, the current moment in timeREFERENCE POINT

is equated with the time of the utterance, and is used as a reference point for when
the event occurred (before, at, or after). In Reichenbach’s approach, the notion of
the reference point is separated out from the utterance time and the event time. The
following examples illustrate the basics of this approach:

(17.40) When Mary’s flight departed, I ate lunch.
(17.41) When Mary’s flight departed, I had eaten lunch.

In both of these examples, the eating event has happened in the past, i.e. prior
to the utterance. However, the verb tense in the first example indicates that the eat-
ing event began when the flight departed, while the second example indicates that
the eating was accomplished prior to the flight’s departure. Therefore, in Reichen-
bach’s terms the departure event specifies the reference point. These facts can be
accommodated by asserting additional constraints relating the eating and departure
events. In the first example, the reference point precedes the eating event, and in
the second example, the eating precedes the reference point. Figure 17.5 illustrates
Reichenbach’s approach with the primary English tenses. Exercise 17.9 asks you
to represent these examples in FOPC.

Figure 17.5 Reichenbach’s approach applied to various English tenses. In these
diagrams, time flows from left to right, an E denotes the time of the event, an R
denotes the reference time, and an U denotes the time of the utterance.

This discussion has focused narrowly on the broad notions of past, present,
and future and how they are signaled by verb tenses. Of course, languages also have
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many other more direct and more specific ways to convey temporal information,
including the use of a wide variety of temporal expressions as in the following
ATIS examples:

(17.42) I’d like to go at 6:45, in the morning.

(17.43) Somewhere around noon, please.

(17.44) Later in the afternoon, near 6PM.

As we will see in the next chapter, grammars for such temporal expressions are of
considerable practical importance in information extraction and question-answering
applications.

Finally, we should note that there is a systematic conceptual organization re-
flected in examples like these. In particular, temporal expressions in English are
frequently expressed in spatial terms, as is illustrated by the various uses of at, in,
somewhere and near in these examples (Lakoff and Johnson, 1980; Jackendoff,
1983) Metaphorical organizations such as these, where one domain is systemati-
cally expressed in terms of another, will be discussed in more detail in Ch. 19.

17.5.4 Aspect

In the last section, we discussed ways to represent the time of an event with respect
to the time of an utterance describing it. In this section, we address the notion
of aspect, which concerns a cluster of related topics, including whether an eventASPECT

has ended or is ongoing, whether it is conceptualized as happening at a point in
time or over some interval, and whether or not any particular state in the world
comes about because of it. Based on these and related notions, event expressions
have traditionally been divided into four general classes: statives, activities, ac-
complishments, and achievements. The following examples provide prototypical
instances of each class.

Stative: I know my departure gate.

Activity: John is flying.

Accomplishment: Sally booked her flight.

Achievement: She found her gate.

Although the earliest versions of this classification were discussed by Aristotle,
the one presented here is due to Vendler (1967). In the following discussion, we’ll
present a brief characterization of each of the four classes, along with some di-
agnostic techniques suggested in Dowty (1979) for identifying examples of each
kind.

Stative expressions represent the notion of an event participant having a par-STATIVE
EXPRESSIONS

ticular property, or being in a state, at a given point in time. As such, they can be
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thought of as capturing an aspect of a world at a single point in time. Consider the
following ATIS examples.

(17.45) I like Flight 840 arriving at 10:06.
(17.46) I need the cheapest fare.
(17.47) I have a round trip ticket for $662.
(17.48) I want to go first class.

In examples like these, the event participant denoted by the subject can be seen as
experiencing something at a specific point in time. Whether or not the experiencer
was in the same state earlier, or will be in the future is left unspecified.

There are a number of diagnostic tests for identifying statives. As an exam-
ple, stative verbs are distinctly odd when used in the progressive form.

(17.49) *I am needing the cheapest fare on this day.
(17.50) *I am wanting to go first class.

We should note that in these and subsequent examples, we are using an * to indicate
a broadened notion of ill-formedness that may include both semantic and syntactic
factors.

Statives are also odd when used as imperatives.

(17.51) *Need the cheapest fare!

Finally, statives are not easily modified by adverbs like deliberately and care-
fully.

(17.52) *I deliberately like Flight 840 arriving at 10:06.
(17.53) *I carefully like Flight 840 arriving at 10:06.

Activity expressions describe events undertaken by a participant that haveACTIVITYEXPRESSIONS

no particular end point. Unlike statives, activities are seen as occurring over some
span of time, and are therefore not associated with single points in time. Consider
the following examples:

(17.54) She drove a Mazda.
(17.55) I live in Brooklyn.

These examples both specify that the subject is engaged in, or has engaged in, the
activity specified by the verb for some period of time.

Unlike statives, activity expressions are fine in both the progressive and im-
perative forms.

(17.56) She is living in Brooklyn.
(17.57) Drive a Mazda!

However, like statives, activity expressions are odd when temporally modi-
fied with temporal expressions using in.
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(17.58) *I live in Brooklyn in a month.

(17.59) *She drove a Mazda in an hour.

They can, however, successfully be used with for temporal adverbials, as in the
following examples:

(17.60) I live in Brooklyn for a month.

(17.61) She drove a Mazda for an hour.

Unlike activities, accomplishment expressions describe events that have aACCOMPLISHMENT
EXPRESSIONS

natural end point and result in a particular state. Consider the following examples:

(17.62) He booked me a reservation.

(17.63) United flew me to New York.

In these examples, there is an event that is seen as occurring over some period of
time that ends when the intended state is accomplished.

A number of diagnostics can be used to distinguish accomplishment events
from activities. Consider the following examples, which make use of the word stop
as a test.

(17.64) I stopped living in Brooklyn.

(17.65) She stopped booking my flight.

In the first example, which is an activity, one can safely conclude that the statement
I lived in Brooklyn even though this activity came to an end. However, from the
second example, one can not conclude the statement She booked her flight, since
the activity was stopped before the intended state was accomplished. Therefore,
although stopping an activity entails that the activity took place, stopping an ac-
complishment event indicates that the event did not succeed.

Activities and accomplishments can also be distinguished by how they can
be modified by various temporal adverbials. Consider the following examples:

(17.66) *I lived in Brooklyn in a year.

(17.67) She booked a flight in a minute.

In general, accomplishments can be modified by in temporal expressions, while
simple activities can not.

The final aspectual class, achievement expressions, are similar to accom-ACHIEVEMENT
EXPRESSIONS

plishments in that they result in a state. Consider the following examples:

(17.68) She found her gate.

(17.69) I reached New York.

Unlike accomplishments, achievement events are thought of as happening in an
instant, and are not equated with any particular activity leading up to the state. To
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be more specific, the events in these examples may have been preceded by extended
searching or traveling events, but the events corresponding directly to found and
reach are conceived of as points not intervals.

The point-like nature of these events has implications for how they can be
temporally modified. In particular, consider the following examples:

(17.70) I lived in New York for a year.

(17.71) *I reached New York for a few minutes.

Unlike activity and accomplishment expressions, achievements can not be modi-
fied by for adverbials.

Achievements can also be distinguished from accomplishments by employ-
ing the word stop, as we did earlier. Consider the following examples:

(17.72) I stopped booking my flight.

(17.73) *I stopped reaching New York.

As we saw earlier, using stop with an accomplishment expression results in a fail-
ure to reach the intended state. Note, however, that the resulting expression is per-
fectly well-formed. On the other hand, using stop with an achievement example is
unacceptable.

We should note that since both accomplishments and achievements are events
that result in a state, they are sometimes characterized as sub-types of a single
aspectual class. Members of this combined class are known as telic eventualities.TELICEVENTUALITIES

Before moving on, we should make two points about this classification scheme.
The first point is that event expressions can easily be shifted from one class to an-
other. Consider the following examples:

(17.74) I flew.

(17.75) I flew to New York.

The first example is a simple activity; it has no natural end point and can not be
temporally modified by in temporal expressions. On the other hand, the second
example is clearly an accomplishment event since it has an end point, results in a
particular state, and can be temporally modified in all the ways that accomplish-
ments can. Clearly the classification of an event is not solely governed by the verb,
but by the semantics of the entire expression in context.

The second point is that while classifications such as this one are often useful,
they do not explain why it is that events expressed in natural languages fall into
these particular classes. We will revisit this issue in Ch. 19 where we will sketch a
representational approach due to Dowty (1979) that accounts for these classes.
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17.5.5 Representing Beliefs

There are a fair number of words and expressions that have what might be called
a world creating ability. By this, we mean that their meaning representations con-
tain logical formulas that are not intended to be taken as true in the real world,
but rather as part of some kind of hypothetical world. In addition, these meaning
representations often denote a relation from the speaker, or some other entity, to
this hypothetical world. Examples of words that have this ability are believe, want,
imagine and know. World-creating words generally take various sentence-like con-
stituents as arguments.

Consider the following example:

(17.76) I believe that Mary ate British food.

Applying our event-oriented approach we would say that there are two events un-
derlying this sentence: a believing event relating the speaker to some specific be-
lief, and an eating event that plays the role of the believed thing. Ignoring temporal
information, a straightforward application of our reified event approach would pro-
duce the following kind of representation:

∃u,v ISA(u,Believing)∧ ISA(v,Eating)
∧Believer(u,Speaker)∧BelievedProp(u,v)
∧Eater(v,Mary)∧Eaten(v,BritishFood)

This seems relatively straightforward, all the right roles are present and the
two events are tied together in a reasonable way. Recall, however, that in conjunc-
tive representations like this all of the individual conjuncts must be taken to be true.
In this case, this results in a statement that there actually was an eating of British
food by Mary. Specifically, by breaking this formula apart into separate formulas
by conjunction elimination, the following formula can be produced:

∃v ISA(v,Eating)
∧Eater(v,Mary)∧Eaten(v,BritishFood)

This is clearly more than we want to say. The fact that the speaker believes this
proposition does not make it true; it is only true in the world represented by the
speaker’s beliefs. What is needed is a representation that has a structure similar to
this, but where the Eating event is given a special status.

Note that reverting to the simpler predicate representations we used earlier in
this chapter does not help. A common mistake using such representations would
be to represent this sentence with the following kind of formula:

Believing(Speaker,Eating(Mary,BritishFood))

The problem with this representation is that it is not even valid FOPC. The sec-
ond argument to the Believing predicate should be a FOPC term, not a formula.
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This syntactic error reflects a deeper semantic problem. Predicates in FOPC hold
between the objects in the domain being modeled, not between the relations that
hold among the objects in the domain. Therefore, FOPC lacks a meaningful way to
assert relations about full propositions, which is unfortunately exactly what words
like believe, want, imagine and know want to do.

The standard method for handling this situation is to augment FOPC with op-
erators that allow us to make statements about full logical formulas. Let’s consider
how this approach might work in the case of example (17.76). We can introduce
an operator called Believes that takes two FOPC formulas as its arguments: a for-
mula designating a believer, and a formula designating the believed proposition.
Applying this operator would result in the following meaning representation:

Believes(Speaker,∃vISA(v,Eating)
∧Eater(v,Mary)∧Eaten(v,BritishFood)

Under this approach, the contribution of the word believes to this meaning
representation is not a FOPC proposition at all, but rather an operator that is applied
to the believed proposition. Therefore, as we discuss in Ch. 18, these world creating
verbs play quite a different role in the semantic analysis than more ordinary verbs
like eat.

As one might expect, keeping track of who believes what about whom at
any given point in time gets rather complex. As we will see in Ch. 21, this is an
important task in interactive systems that must track users’ beliefs as they change
during the course of a dialogue.

Operators like Believes that apply to logical formulas are known as modal
operators. Correspondingly, a logic augmented with such operators is known as aMODAL OPERATORS

modal logic. Modal logics have found many uses in the representation of common-MODAL LOGIC

sense knowledge in addition to the modeling of belief, among the more prominent
are representations of time and hypothetical worlds.

Not surprisingly, modal operators and modal logics raise a host of complex
theoretical and practical problems that we cannot even begin to do justice to here.
Among the more important issues are the following:

• How inference works in the presence of specific modal operators.
• The kinds of logical formula that particular operators can be applied to.
• How modal operators interact with quantifiers and logical connectives.
• The influence of these operators on the equality of terms across formulas.

The last issue in this list has consequences for modeling agent’s knowledge
and beliefs in dialogue systems and deserves some elaboration here. In standard
FOPC systems, logical terms that are known to be equal to one another can be
freely substituted without having any effect on the truth of sentences they occur in.
Consider the following examples:
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(17.77) Snow has delayed Flight 1045.
(17.78) John’s sister’s flight serves dinner.

Assuming that these two flights are the same, substituting Flight 1045 for John’s
sister’s flight has no effect on the truth of either sentence.

Now consider, the following variation on the first example:

(17.79) John knows that snow has delayed Flight 1045.
(17.80) John knows that his sister’s flight serves dinner.

Here the substitution does not work. John may well know that Flight 1045 has
been delayed without knowing that his sister’s flight is delayed, simply because he
may not know the number of his sister’s flight. In other words, even if we assume
that these sentences are true, and that John’s sister is on Flight 1045, we can not
say anything about the truth of the following sentence:

(17.81) John knows that snow has delayed his sister’s flight.

Settings like this where a modal operator like Know is involved are called
referentially opaque. In referentially opaque settings, substitution of equal termsREFERENTIALLY

OPAQUE

may or may not succeed. Ordinary settings where such substitutions always work
are said to be referentially transparent.REFERENTIALLY

TRANSPARENT

17.5.6 Pitfalls

As noted in Section 17.4, there are a number of common mistakes in representing
the meaning of natural language utterances, that arise from confusing, or equat-
ing, elements from real languages with elements in FOPC. Consider the following
example, which on the surface looks like a candidate for a standard implication
rule:

(17.82) If you’re interested in baseball, the Rockies are playing tonight.

A straightforward translation of this sentence into FOPC might look something like
this:

HaveInterestIn(Hearer,Baseball)
⇒ Playing(Rockies,Tonight)

This representation is flawed for a large number of reasons. The most obvious
ones arise from the semantics of FOPC implications. In the event that the hearer
is not interested in baseball, this formula becomes meaningless. Specifically, we
can not draw any conclusion about the consequent clause when the antecedent is
false. But of course this is a ridiculous conclusion, we know that the Rockies game
will go forward regardless of whether or not the hearer happens to like baseball.
Exercise 17.10 asks you to come up with a more reasonable FOPC translation of
this example.
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Now consider the following example:

(17.83) One more beer and I’ll fall off this stool.

Again, a simple-minded translation of this sentence might consist of a conjunction
of two clauses: one representing a drinking event and one representing a falling
event. In this case, the surface use of the word and obscures the fact that this
sentence instead has an implication underlying it. The lesson of both of these
examples is that English words like and, or and if are only tenuously related to the
elements of FOPC with the same names.

Along the same lines, it is important to remember the complete lack of sig-
nificance of the names we make use of in representing FOPC formulas. Consider
the following constant:

InexpensiveVegetarianIndianFoodOnTuesdays

Despite its impressive morphology, this term, by itself, has no more meaning than
a constant like X99 would have. See McDermott (1976) for a discourse on the
inherent dangers of such naming schemes.

As we noted at the beginning of this chapter,
Basics and current applications/versions OWL as a kind of description logic

as applied to the Semantic Web. See the Brachman thing.
basically we’re going to arrange the concepts in a domain into a hierarchy.

Then we’re going to relate the elements in the hierarchy via type slot-filler relations
(value/resritictions). Then there’s inheritance.

unary and binary predicates only? I.e. what you get in a network.

17.6 RELATED REPRESENTATIONAL APPROACHES

Over the years, a fair number of representational schemes have been invented to
capture the meaning of linguistic utterances for use in natural language process-
ing systems. Other than First Order Logic, the most widely used schemes have
been semantic networks and frames, which are also known as slot-filler repre-SEMANTIC

NETWORKS

FRAMES sentations. The KL-ONE (Brachman and Schmolze, 1985), and KRL (Bobrow and
Winograd, 1977) systems were influential efforts to represent knowledge for use in
natural language processing systems.

In semantic networks, objects are represented as nodes in a graph, with rela-
tions between objects being represented by named links. In frame-based systems,
objects are represented as feature-structures similar to those discussed in Ch. 16,
which can, of course, also be naturally represented as graphs. In this approach fea-
tures are called slots and the values, or fillers, of these slots can either be atomic
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values or other embedded frames. The following diagram illustrates how example
(17.76) might be captured in a frame-based approach.

I believe Mary ate British food.
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It is now widely accepted that meanings represented in these approaches can
in principle be translated into equivalent statements in FOL with relative ease. The
difficulty is that in many of these approaches the semantics of a statement is defined
procedurally. That is, the meaning arises from whatever the system that interprets
it does with it.

17.6.1 Description Logics

Description Logics can be viewed as an effort to better understand and specify the
semantics of these earlier structured network representations, and to provide
a conceptual framework that is especially well-suited to certain kinds of domain
modeling. Formally, the term Description Logics refers to a family of logical ap-
proaches that correspond to varying subsets of FOL. The various restrictions placed
on the expressiveness of Description Logics serve to guarantee the tractability of
various critical kinds of inference. Our focus here, however, will be on the model-
ing aspects of DLs rather than computational complexity issues.

When using Description Logics to model an application domain, the empha-
sis is on the representation of knowledge about categories, individuals that belong
to those categories, and the relationships that can hold among these individuals.
The set of categories, or concepts, that make up the particular application domain
is called its Terminology. The portion of a knowledge-base that contains the termi-TERMINOLOGY

nology is traditionally called the TBox; this is in contrast to the ABox that containsTBOX

ABOX facts about individuals. The terminology is typically arranged into a hierarchical
organization called an Ontology that captures the subset/superset relations amongONTOLOGY

the categories.
To illustrate this approach, let’s return to our earlier culinary domain, which

included notions like restaurants, cuisines, and patrons, among others. We repre-
sented concepts like these in FOL by using unary predicates such as Restaurant(x);
the DL equivalent simply omits the variable, so the category corresponding to the
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notion of a restaurant is simply written as Restaurant.2 To capture the notion
that a particular domain element, such as Frasca, is a restaurant we simply assert
Restaurant(Frasca) in much the same way we would in FOL. The semantics of
these categories is specified in precisely the same way that was introduced earlier
in Sec. 17.3: a category like Restaurant simply denotes the set of domain elements
that are restaurants.

Having specified the categories of interest in a state of affairs, the next step
is to arrange these categories into a hierarchical structure. There are two ways
to capture the hierarchical relationships present in a terminology: we can directly
assert relations between categories that are related hierarchically, or we can provide
complete definitions for our concepts and then rely on these definitions to infer
hierarchical relationships. The choice between these methods hinges on the use to
which the resulting categories will be put and the feasibility of formulating precise
definitions for many naturally occurring categories. We’ll discuss the first option
here, and the return to the notion of definitions later in this section.

To directly specify a hierarchical structure, we can assert subsumption rela-SUBSUMPTION

tions between the appropriate concepts in a terminology. The subsumption relation
is conventionally written as C 
 D, and is read as C is subsumed by D; that is,
all members of the category C are also members of the category D. Not surpris-
ingly, the formal semantics of this relation is provided by a simple set relation; any
domain element that is in the set denoted by C is also in the set denoted by D.

Continuing with our restaurant theme, adding the following statements to the
TBox asserts that all restaurants are commercial establishments, and moreover that
there are various sub-types of restaurants.

Restaurant 
 CommercialEstablishment

ItalianRestaurant 
 Restaurant

ChineseRestaurant 
 Restaurant

MexicanRestaurant 
 Restaurant

Ontologies such as this are conventionally illustrated using diagrams such as the
one shown in Fig. 17.6 where subsumption relations are denoted by links between
the nodes representing the categories.

Note however that it was precisely the vague nature of network diagrams like
this that motivated the development of Description Logics. For example, from this
diagram we can’t tell whether or not the given set of categories is exhaustive or
disjoint. That is, we can’t tell if these are all the kinds of restaurants that we’ll
be dealing with in our domain, or whether there might be others. We also can’t

2 DL statements are conventionally typeset with a sans serif font. We’ll follow that convention here,
reverting back to our standard mathematical notation when giving FOL equivalents of DL statements.
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Commercial
Establishment

Restaurant

Chinese
Restaurant 

Mexican
Restaurant

Italian
Restaurant

Figure 17.6 A graphical network representation of a set of subsumption relations
in the restaurant domain.

tell if an individual restaurant must fall into only one of these categories, or if
it is possible, for example, for a restaurant to be both Italian and Chinese. The
DL statements given above are more transparent in their meaning; they simply
assert a set of subsumption relations between categories and make no claims about
coverage or mutual exclusion.

If an application requires coverage and disjointness information then it needs
to be made explicitly. The simplest ways to capture this kind of information is
through the use of negation and disjunction operators. For example, the following
assertion would tell us that Chinese restaurants can’t also be Italian restaurants.

ChineseRestaurant 
 not ItalianRestaurant

Specifying that a set of sub-concepts covers a category can be achieved with with
disjunction, as in the following:

Restaurant 
 (or ItalianRestaurant ChineseRestaurant MexicanRestaurant)
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Of course, having a hierarchy such as the one given in Fig. 17.6 tells us next
to nothing about the concepts in it. We certainly don’t know anything about what
makes a restaurant a restaurant, much less Italian, Chinese or expensive. What is
needed are additional assertions about what it means to be a member of any of
these categories. In Description Logics such statements come in the form of rela-
tions between the concepts being described and other concepts in the domain. In
keeping with its origins in structured network representations, relations in Descrip-
tion Logics are typically binary and are often referred to as roles, or role-relations.

To see how such relations work, let’s consider some of the facts about restau-
rants discussed earlier in the chapter. We’ll use the hasCuisine relation to capture
information as to what kinds of food restaurants serve, and the hasPriceRange re-
lation to capture how pricey particular restaurants tend to be. We can use these
relations to say something more concrete about our various classes of restaurants.
Let’s start with our ItalianRestaurant concept. As a first approximation, we might
say something uncontroversial like Italian restaurants serve Italian cuisine. To cap-
ture these notions, let’s first add some new concepts to our terminology to represent
various kinds of cuisine.

MexicanCuisine 
 Cuisine

ItalianCuisine 
 Cuisine

ChineseCuisine 
 Cuisine

VegetarianCuisine 
 Cuisine

ExpensiveRestaurant 
 Restaurant

ModerateRestaurant 
 Restaurant

CheapRestaurant 
 Restaurant

Next let’s revise our earlier version of ItalianRestaurant to capture cuisine
information.

ItalianRestaurant 
 Restaurant�∃hasCuisine.ItalianCuisine

The way to read this expression is that individuals in the category Italian-
Restaurant are subsumed both by the category Restaurant, and by an unnamed
class defined by the existential clause — the set of entities that serve Italian cui-
sine. An equivalent statement in FOL would be:

∀xItalianRestaurant(x) → Restaurant(x)∧ (∃yServes(x,y)∧ ItalianCuisine(y))

This FOL translation should make it clear what the DL assertions given above
do, and do not entail. In particular, they don’t say that domain entities classified
as Italian restaurants can’t engage in other relations like being expensive, or even
serving Chinese cuisine. And critically, they don’t say much about domain entities
that we know do serve Italian cuisine. In fact, inspection of the FOL translation the
makes it clear that we can’t infer that any new entities belong to this category based
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on their characteristics. The best we can do is infer new facts about restaurants that
we’re explicitly told are members of this category

Of course, inferring the category membership of individuals given certain
characteristics is a common and critical reasoning task that we need to support.
This brings us back to the alternative approach to creating hierarchical structures
in a terminology: actually providing a definition of the categories we’re creating
in the form of necessary and sufficient conditions for category membership. In
this case, we might explicitly provide a definition for ItalianRestaurant as being
those restaurants that serve Italian cuisine, and ModerateRestaurant as being those
whose price range is moderate.

ItalianRestaurant ≡ Restaurant�∃hasCuisine.ItalianCuisine

ModerateRestaurant ≡ Restaurant�hasPriceRange.ModeratePrices

While our earlier statements provided necessary conditions for membership
in these categories, these statements provide both necessary and sufficient condi-
tions.

Finally, let’s now consider the superficially similar case of vegetarian restau-
rants. Clearly, vegetarian restaurants are those that serve vegetarian cuisine. But
they don’t merely serve vegetarian fare, that’s all they serve. We can accommodate
this kind of constraint by adding an additional restriction in the form of a universal
quantifier to our earlier description of VegetarianRestaurants, as follows:

VegetarianRestaurant ≡ Restaurant

�∃hasCuisine.VegetarianCuisine

�∀hasCuisine.VegetarianCuisine

Inference

Paralleling the focus of Description Logics on categories, relations and individuals,
is a processing focus on a restricted subset of logical inference. Rather than employ
the full range of reasoning permitted by FOL, DL reasoning systems emphasize the
closely coupled problems of subsumption and instance checking.

Subsumption, as a form of inference, is the task of determining whether a su-SUBSUMPTION

perset/subset relationship exists between two concepts based on the facts asserted
in a terminology. Correspondingly, instance checking asks if an individual canINSTANCE CHECKING

be a member of a particular category given the facts we know about both the in-
dividual and the terminology. The inference mechanisms underlying subsumption
and instance checking go beyond simply checking for explicitly stated subsump-
tion relations in a terminology. They must explicitly reason using the relational
information asserted about the terminology to infer appropriate subsumption and
membership relations.
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Returning to our restaurant domain, let’s add a new kind of restaurant using
the following statement:

OliveGarden 
 ModerateRestaurant�∃hasCuisine.ItalianCuisine

Given this assertion, we might ask whether the OliveGarden chain of restaurants
might be classified as an Italian restaurant, or a vegetarian restaurant. More pre-
cisely, we can pose the following questions to our reasoning system:

OliveGarden 
 ItalianRestaurant

OliveGarden 
 VegetarianRestaurant

The answer to the first question is positive since OliveGarden meets the cri-
teria we specified for the category ItalianRestaurant: it’s a Restaurant since we
explicitly classified it as a ModerateRestaurant, which is a subtype of Restaurant,
and it meets the has.Cuisine class restriction since we’ve asserted that directly.

The answer to the second question is negative. Recall, that our criteria for
vegetarian restaurants contains two requirements: it has to serve vegetarian fare,
and that’s all it can serve. Our current definition for OliveGarden fails on both
counts since we have not asserted any relations that state that OliveGarden serves
vegetarian fare, and the relation we have asserted, hasCuisine.ItalianCuisine, con-
tradicts the second criteria.

A related reasoning task, based on the basic subsumption inference, is to de-
rive the implied hierarchy for a terminology given facts about the categories in
the terminology. This task roughly corresponds to a repeated application of the
subsumption operator to pairs of concepts in the terminology. Given our current
collection of statements, the expanded hierarchy shown in Fig. 17.7 can be in-
ferred. You should convince yourself that this diagram contains all and only the
subsumption links that should be present given our current knowledge.

Note that whereas subsumption is all about concepts and categories, instance
checking is the task of determining whether a particular individual can be classi-
fied as a member of a particular category. This process takes what is known about
a given individual, in the form of relations and explicit categorical statements, and
then compares that information against what is known about the current terminol-
ogy. It then returns a list of the most specific categories to which the individual can
belong.

As an example of a categorization problem consider an establishment that
we’re told is a restaurant and serves Italian cuisine.

Restaurant(Gondolier)

hasCuisine(Gondolier, ItalianCuisine)

Here, we’re being told that the entity denoted by the term Gondolier is a restaurant
and serves Italian food. Given this new information and the contents of our current
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Restaurant

Chinese
Restaurant 

Mexican
Restaurant

Italian
Restaurant

Expensive
Restaurant

Cheap
Restaurant

Moderate
Restaurant

OliveGarden

Vegetarian
Restaurant

Figure 17.7 A graphical network representation of the complete set of subsump-
tion relations in the restaurant domain given the current set of assertions in the TBox.

TBox, we might reasonably like to ask if this is an Italian restaurant, a vegetarian
restaurant or if it has moderate prices.

Assuming the definitional statements given earlier, we can indeed categorize
the Gondolier as an Italian restaurant. That is, the information we’ve been given
about it meets the necessary and sufficient conditions required for membership in
this category. And as with the OliveGarden category, this individual fails to match
the stated criteria for the VegetarianRestaurant. Finally, the Gondolier might also
turn out to be an moderately priced restaurant, but we can’t tell at this point since
we don’t know anything about its prices. What this means is that given our cur-
rent knowledge the answer to the query ModerateRestaurant(Gondolier) would be
false since it lacks the required hasPriceRange relation.

The implementation of subsumption, instance checking, as well as other
kinds of inferences needed for practical applications, varies depending on the ex-
pressivity of the Description Logic being used. However, for Description Logics
of even modest power, the primary implementation techniques are based on satis-
fiability methods that in turn rely on the underlying model-based semantics intro-
duced earlier in this chapter.

OWL and the Semantic Web

The highest-profile role for Description Logics has been as a part of the develop-
ment of the Semantic Web. The Semantic Web is an effort to provide a way to
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formally specific the semantics of the contents of... A key component of this effort
involves the creation and deployment of ontologies for various application areas of
interest.

The meaning representation language used to represent this knowledge is the
Web Ontology Language (OWL). OWL embodies a Description Logic that cor-WEB ONTOLOGY

LANGUAGE

responds roughly to the one we’ve been describing here. There are now widely
available tools to facilitate the creation of and reasoning with OWL-based knowl-
edge bases().

17.7 ALTERNATIVE APPROACHES TO MEANING

The idea that the translation of linguistic inputs into a formal representation made
up of discrete symbols adequately captures the notion of meaning is, not surpris-
ingly, subject to a considerable amount of debate. The following section give brief,
wholly inadequate, overviews of some of the major concerns in these debates.

17.7.1 Meaning as Action

An approach that holds considerable appeal when we consider the semantics of im-
perative sentences is the notion of meaning as action. Under this view, utterancesMEANING AS ACTION

are viewed as actions, and the meanings of these utterances reside in procedures
that are activated in the hearer as a result of hearing the utterance. This approach
was followed in the creation of the historically important SHRDLU system, and is
summed up well by its creator Terry Winograd (1972).

One of the basic viewpoints underlying the model is that all language
use can be thought of as a way of activating procedures within the
hearer. We can think of an utterance as a program—one that indirectly
causes a set of operations to be carried out within the hearer’s cognitive
system.

A more recent procedural model of semantics is the executing schema or x-
schema model of Bailey et al. (1997), Narayanan (1997a, 1997b), and Chang et al.X-SCHEMA

(1998). The intuition of this model is that various parts of the semantics of events,
including the aspectual factors discussed on page 32, are based on schematized
descriptions of sensory-motor processes like inception, iteration, enabling, com-
pletion, force, and effort. The model represents the aspectual semantics of events
via a kind of probabilistic automaton called a Petri net (Murata, 1989). The nets
used in the model have states like ready, process, finish, suspend, and result.

The meaning representation of an example like Jack is walking to the store
activates the process state of the walking event. An accomplishment event like
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Jack walked to the store activates the result state. An iterative activity like Jack
walked to the store every week is simulated in the model by an iterative activation
of the process and result nodes. This idea of using sensory-motor primitives as a
foundation for semantic description is also based on the work of Regier (1996) on
the role of visual primitives in a computational model of learning the semantics of
spatial prepositions.

17.7.2 Embodiment as the Basis for Meaning

Coming soon...

17.8 SUMMARY

This chapter has introduced the representational approach to meaning. The follow-
ing are some of the highlights of this chapter:

• A major approach to meaning in computational linguistics involves the cre-
ation of formal meaning representations that capture the meaning-related
content of linguistic inputs. These representations are intended to bridge the
gap from language to commonsense knowledge of the world.

• The frameworks that specify the syntax and semantics of these representa-
tions are called meaning representation languages. A wide variety of such
languages are used in natural language processing and artificial intelligence.

• Such representations need to be able to support the practical computational
requirements of semantic processing. Among these are the need to deter-
mine the truth of propositions, to support unambiguous representations,
to represent variables, to support inference, and to be sufficiently expres-
sive.

• Human languages have a wide variety of features that are used to convey
meaning. Among the most important of these is the ability to convey a
predicate-argument structure.

• First Order Predicate Calculus is a well-understood computationally tractable
meaning representation language that offers much of what is needed in a
meaning representation language.

• Important classes of meaning including categories, events, and time can be
captured in FOPC. Propositions corresponding to such concepts as beliefs
and desires require extensions to FOPC including modal operators.

• Semantic networks and frames can be captured within the FOPC framework.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

NB. Not yet updated.
The earliest computational use of declarative meaning representations in nat-

ural language processing was in the context of question-answering systems (Green
et al., 1961; Raphael, 1968; Lindsey, 1963). These systems employed ad-hoc repre-
sentations for the facts needed to answer questions. Questions were then translated
into a form that could be matched against facts in the knowledge base. Simmons
(1965) provides an overview of these early efforts.

Woods (1967) investigated the use of FOPC-like representations in question
answering as a replacement for the ad-hoc representations in use at the time. Woods
(1973) further developed and extended these ideas in the landmark Lunar system.
Interestingly, the representations used in Lunar had both a truth-conditional and a
procedural semantics. Winograd (1972) employed a similar representation based
on the Micro-Planner language in his SHRDLU system.

During this same period, researchers interested in the cognitive modeling of
language and memory had been working with various forms of associative network
representations. Masterman (1957) was probably the first to make computational
use of a semantic network-like knowledge representation, although semantic net-
works are generally credited to Quillian (1968). A considerable amount of work
in the semantic network framework was carried out during this era (Norman and
Rumelhart, 1975; Schank, 1972; Wilks, 1975b, 1975a; Kintsch, 1974). It was dur-
ing this period that a number of researchers began to incorporate Fillmore’s notion
of case roles (Fillmore, 1968) into their representations. Simmons (1973) was the
earliest adopter of case roles as part of representations for natural language pro-
cessing.

Detailed analyses by Woods (1975) and Brachman (1979) aimed at figuring
out what semantic networks actually mean led to the development of a number of
more sophisticated network-like languages including KRL (Bobrow and Winograd,
1977) and KL-ONE (Brachman and Schmolze, 1985). As these frameworks became
more sophisticated and well-defined it became clear that they were restricted vari-
ants of FOPC coupled with specialized inference procedures. A useful collection of
papers covering much of this work can be found in Brachman and Levesque (1985).
Russell and Norvig (1995) describe a modern perspective on these representational
efforts.

Linguistic efforts to assign semantic structures to natural language sentences
in the generative era began with the work of Katz and Fodor (1963). The lim-
itations of their simple feature-based representations and the natural fit of logic
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to many of linguistic problems of the day quickly led to the adoption of a vari-
ety of predicate-argument structures as preferred semantic representations (Lakoff,
1972; McCawley, 1968). The subsequent introduction by Montague (1973) of
truth-conditional model-theoretic framework into linguistic theory led to a much
tighter integration between theories of formal syntax and a wide range of formal
semantic frameworks. Good introductions to Montague semantics and its role in
linguistic theory can be found in Dowty et al. (1981), Partee (1976).

The representation of events as reified objects is due to Davidson (1967).
The approach presented here, which explicitly reifies event participants, is due to
Parsons (1990). The use of modal operators and in the representation of knowl-
edge and belief is due to Hintikka (1969). Moore (1977) was the first to make
computational use of this approach. Fauconnier (1985) deals with a wide range
of issues relating to beliefs and belief spaces from a cognitive science perspective.
Most current computational approaches to temporal reasoning are based on Allen’s
notion of temporal intervals (Allen, 1984). ter Meulen (1995) provides a modern
treatment of tense and aspect. Davis (1990) describes the use of FOPC to represent
knowledge across a wide range of common sense domains including quantities,
space, time, and beliefs.

A recent comprehensive treatment of logic and language can be found in
van Benthem and ter Meulen (1997). The classic semantics text is Lyons (1977).
McCawley (1993) is an indispensable textbook covering a wide range of topics
concerning logic and language. Chierchia and McConnell-Ginet (1991) also pro-
vides broad coverage of semantic issues from a linguistic perspective. Heim and
Kratzer (1998) is a more recent text written from the perspective of current gener-
ative theory.

EXERCISES

17.1 Choose a recipe from your favorite cookbook and try to make explicit all
the common-sense knowledge that would be needed to follow it.

17.2 Proponents of information retrieval occasionally claim that natural language
texts in their raw form are a perfectly suitable source of knowledge for question
answering. Sketch an argument against this claim.

17.3 Peruse your daily newspaper for three examples of ambiguous sentences.
Describe the various sources of the ambiguities.

17.4 Consider a domain where the word coffee can refer to the following concepts
in a knowledge-based: a caffeinated or decaffeinated beverage, ground coffee used
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to make either kind of beverage, and the beans themselves. Give arguments as to
which of the following uses of coffee are ambiguous and which are vague.

a. I’ve had my coffee for today.

b. Buy some coffee on your way home.

c. Please grind some more coffee.

17.5 Encode in FOPC as much of the knowledge as you can that you came up
with for Exercise 17.1

17.6 The following rule, which we gave as a translation for Example 17.24, is
not a reasonable definition of what it means to be a vegetarian restaurant.

∀xVegetarianRestaurant(x) ⇒ Serves(x,VegetarianFood)

Give a FOPC rule that better defines vegetarian restaurants in terms of what they
serve.

17.7 Give a FOPC translations for the following sentences:

a. Vegetarians do not eat meat.

b. Not all vegetarians eat eggs.

17.8 Give a set of facts and inferences necessary to prove the following asser-
tions:

a. McDonalds is not a vegetarian restaurant.

b. Some vegetarians can eat at McDonalds.

Don’t just place these facts in your knowledge base. Show that they can be
inferred from some more general facts about vegetarians and McDonalds.

17.9 Give FOPC translations for the following sentences that capture the temporal
relationships between the events.

a. When Mary’s flight departed, I ate lunch.

b. When Mary’s flight departed, I had eaten lunch.

17.10 Give a reasonable FOPC translation of the following example.

If you’re interested in baseball, the Rockies are playing tonight.

17.11 On Page 19 we gave the following FOPC translation for Example 17.21.

Have(Speaker,FiveDollars)∧¬Have(Speaker,LotO f Time)

This literal representation would not be particularly useful to a restaurant-oriented
question answering system. Give a deeper FOPC meaning representation for this
example that is closer to what it really means.
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17.12 On Page 19, we gave the following representation as a translation for the
sentence Ay Caramba is near ICSI.

Near(LocationO f (AyCaramba),LocationO f (ICSI))

In our truth-conditional semantics, this formula is either true or false given the
contents of some knowledge-base. Critique this truth-conditional approach with
respect to the meaning of words like near.
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18
COMPUTATIONAL
SEMANTICS

“Then you should say what you mean,” the March Hare went on.
“I do,” Alice hastily replied; “at least–at least I mean what I say–
that’s the same thing, you know.”
“Not the same thing a bit!” said the Hatter. “You might just as well
say that ‘I see what I eat’ is the same thing as ‘I eat what I see’!”

Lewis Carroll, Alice in Wonderland

This chapter presents a principled computational approach to the problem of se-
mantic analysis, the process whereby meaning representations of the kind dis-SEMANTIC ANALYSIS

cussed in the last chapter are composed and associated with linguistic expressions.
The automated creation of accurate and expressive meaning representations nec-
essarily involves a wide range of knowledge-sources and inference techniques.
Among the sources of knowledge that are typically involved are the meanings
of words, the conventional meanings associated with grammatical constructions,
knowledge about the structure of the discourse, common-sense knowledge about
the topic at hand and knowledge about the state of affairs in which the discourse is
occurring.

The focus of this chapter is a kind of syntax-driven semantic analysis that isSYNTAX-DRIVEN
SEMANTIC ANALYSIS

fairly modest in its scope. In this approach, meaning representations are assigned to
sentences based solely on knowledge gleaned from the lexicon and the grammar.
When we refer to an expression’s meaning, or meaning representation, we have
in mind a representation that is both context independent and free of inference.
Representations of this type correspond to the traditional notion of literal meaning
discussed in the last chapter.

There are two motivations for proceeding along these lines: there are applica-
tion domains, including question answering, where such primitive representations
are sufficient to produce useful results, and these impoverished representations can
serve as useful inputs to subsequent processes that can produce richer, more com-
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Syntactic Analysis Semantic AnalysisInputs

Syntactic Structures

Meaning
Representations

Figure 18.1 A simple pipeline approach to semantic analysis.

plete, meaning representations. Chs. 21 and 24 will discuss how these meaning
representations can be used in processing extended discourses and dialogs.

18.1 SYNTAX-DRIVEN SEMANTIC ANALYSIS

The approach detailed in this section is based on the principle of composition-
ality. The key idea behind this approach is that the meaning of a sentence canPRINCIPLE OF

COMPOSITIONALITY

be constructed from the meanings of its parts. When interpreted superficially this
principle is somewhat less than useful. We know that sentences are composed of
words, and that words are the primary carriers of meaning in language. It would
seem then that all this principle tells us is that we should compose the meaning
representation for sentences from the meanings of the words that make them up.

Fortunately, the Mad Hatter has provided us with a hint as to how to make
this principle useful. The meaning of a sentence is not based solely on the words
that make it up, but also on the ordering and grouping of words, and on the re-
lations among the words in the sentence. Of course, this is simply another way
of saying that the meaning of a sentence is partially based on its syntactic struc-
ture. Therefore, in syntax-driven semantic analysis, the composition of meaning
representations is guided by the syntactic components and relations provided by
the kind of grammars discussed in Ch. 12.

Let’s begin by assuming that the syntactic analysis of an input sentence serves
as the input to a semantic analyzer. Figure 18.1 illustrates an obvious pipeline-
oriented approach that follows directly from this assumption. An input is first
passed through a parser to derive its syntactic analysis. This analysis is then passed
as input to a semantic analyzer to produce a meaning representation. Note thatSEMANTIC ANALYZER
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although this diagram shows a parse tree as input, other syntactic representations
such as flat chunks, feature structures, or dependency structures can also be used.
For the remainder of this chapter we’ll assume tree-like inputs.

Before moving on, we should touch on the role of ambiguity in this story. As
we’ve seen, ambiguous representations can arise from numerous sources includ-
ing competing syntactic analyses, ambiguous lexical items, competing anaphoric
references and as we’ll see later in this chapter ambiguous quantifier scopes. In
the syntax-driven approach presented here, we assume that syntactic, lexical and
anaphoric ambiguities are not a problem. That is, we’ll assume that some larger
system is capable of iterating through the possible ambiguous interpretations and
passing them individually to the kind of semantic analyzer described here.

Let’s consider how such an analysis might proceed with the following exam-
ple:

(18.1) Franco likes Frasca.

Fig. 18.1 shows a simplified parse tree (lacking any feature attachments), along
with a plausible meaning representation for this example. As suggested by the
dashed arrows, a semantic analyzer given this tree as input might fruitfully pro-
ceed by first retrieving a skeletal meaning representation from the subtree corre-
sponding to the verb likes. The analyzer would then retrieve or compose meaning
representations corresponding to the two noun phrases in the sentence. Then using
the representation acquired from the verb as a kind of template, the noun phrase
meaning representations would be used to bind the appropriate variables in the
verb representation, thus producing the meaning representation for the sentence as
a whole.

Unfortunately, there are a number of serious difficulties with this simplified
story. As described, the function used to interpret the tree in Fig. 18.1 must know,
among other things, that it is the verb that carries the template upon which the
final representation is based, where its corresponding arguments are and which
argument fills which role in the verb’s meaning representation. In other words, it
requires a good deal of specific knowledge about this particular example and its
parse tree to create the required meaning representation. Given that there are an
infinite number of such trees for any reasonable grammar, any approach based on
one semantic function for every possible tree is in serious trouble.

Fortunately, we have faced this problem before. Languages are not defined
by enumerating the strings or trees that are permitted, but rather by specifying
finite devices that are capable of generating the desired set of outputs. It would
seem, therefore, that the right place for semantic knowledge in a syntax-directed
approach is with the finite set of devices that are used to generate trees in the first
place: the grammar rules and the lexical entries. This is known as the rule-to-rule
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S ∃eLiking(e)∧Liker(e,Franco)∧Liked(e,Frasca)

NP VP

NP

ProperNoun Verb ProperNoun

Franco likes Frasca

Figure 18.2 Parse tree for the sentence Franco likes Frasca.

hypothesis (Bach, 1976).RULE-TO-RULE
HYPOTHESIS

Designing an analyzer based on this approach brings us back to the notion of
parts and what it means for them to have meanings. The following section is an
attempt to answer the following two questions:

• What does it mean for a syntactic constituent to have a meaning?

• What do these meanings have to be like so that they can be composed into
larger meanings?

18.2 SEMANTIC AUGMENTATIONS TO CONTEXT-FREE GRAMMAR RULES

In keeping with the approach used in Ch. 16, we will begin by augmenting our
context-free grammar rules with semantic attachments. These attachments areSEMANTIC

ATTACHMENTS

instructions that specify how to compute the meaning representation of a construc-
tion from the meanings of its constituent parts. Abstractly, our augmented rules
have the following structure:

A → α1 . . .αn { f (α j.sem, . . . ,αk.sem)}
The semantic attachment to the basic context-free rule is shown in the {. . .}

to the right of the rule’s syntactic constituents. This notation states that the meaning
representation assigned to the construction A, which we will denote as A.sem, can
be computed by running the function f on some subset of the semantic attachments
of A’s constituents.

There are myriad ways to instantiate this style of rule-to-rule approach. Our
semantic attachments could, for example, take the form of arbitrary programming
language fragments. A meaning representation for a given derivation could then be
constructed by passing the appropriate fragments to an interpreter in a bottom-up
fashion and then storing the resulting representations as the value for the associated
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non-terminals.1 Such an approach would allow us to create any meaning represen-
tation we might like. Unfortunately, the unrestricted power of this approach would
also allow us to create representations that have no correspondence at all with the
kind of formal logical expressions described in the last chapter. Moreover, this ap-
proach would provide us with very little guidance as to how to go about designing
the semantic attachments to our grammar rules.

For these reasons, more principled approaches are typically used to instan-
tiate the rule-to-rule approach. We’ll introduce two such constrained approaches
in this chapter. The first makes direct use of FOL and the λ -calculus notation in-
troduced in Ch. 17. This approach essentially uses a logical notation to guide the
creation of logical forms in a principled fashion. The second approach, described
later in Sec. 18.4 is based on the feature-structure and unification formalisms in-
troduced in Ch. 16.

To get started, let’s take a look at a very basic example along with a simplified
target semantic representation.

(18.2) Maharani closed.

Closed(Maharani)
Let’s work our way bottom-up through the rules involved in this example’s

derivation. Starting with the proper noun, the simplest possible approach is to
assign a unique FOL constant to it, as in the following.

ProperNoun → Maharani {Maharani}
The non-branching NP rule that dominates this one doesn’t add anything seman-
tically, so we’ll just copy the semantics of the ProperNoun up unchanged to the
NP.

NP → ProperNoun {ProperNoun.sem}
Moving on to the VP, the semantic attachment for the verb needs to provide

the name of the predicate, specify its arity and provide the means to incorporate
an argument once it’s discovered. We’ll make use of a λ -expression to accomplish
these tasks.

VP → Verb {Verb.sem}
Verb → closed {λx.Closed(x)}

This attachment stipulates that the verb closed has a unary predicate Closed as its
representation. The λ -notation gives us the means to leave unspecified, as the x
variable, the entity that is closing. As with our earlier NP rule, the intransitive VP
rule that dominates the verb simply copies upward the semantics of the verb below
it.
1 Those familiar with the UNIX compiler tools YACC and Bison will recognize this approach.



DRAFT

6 Chapter 18. Computational Semantics

Proceeding upward, it remains for the semantic attachment for the S rule to
bring things together by inserting the semantic representation of the subject NP as
the first argument to the predicate.

S → NP VP {VP.sem(NP.sem)}
Since the value of VP.sem is a λ -expression and the value of NP.sem is a simply
a FOL constant, we can create our desired final meaning representation by using
λ -reduction to apply the VP.sem to the NP.sem.

λx.Closed(x)(Maharani) =⇒Closed(Maharani)

This example illustrates a general pattern which will repeat itself throughout
this chapter. The semantic attachments to our grammar rules will consist primarily
of λ -reductions, where one element of an attachment serves as a functor and the
rest serve as arguments to it. As we’ll see, the real work resides in the lexicon
where the bulk of the meaning representations are introduced.

Although this example illustrates the basic approach, the full story is a bit
more complex. Let’s begin by replacing our earlier target representation with one
that is more in keeping with the event-oriented representations introduced in the
last chapter, and by considering an example with a more complex noun phrase as
its subject.

(18.3) Every restaurant closed.

The target representation for this example should be the following.

∀xRestaurant(x) ⇒ (∃eClosing(e)∧ClosedThing(e,x)

Clearly, the semantic contribution of the subject noun phrase in this exam-
ple is much more extensive than in our previous one. In our earlier example, the
FOL constant representing the subject was simply plugged into the correct place in
Closed predicate via a single λ -reduction. Here the final result involves a complex
intertwining of the content provided by the NP and the content provided by the VP.
We’ll have to do some work if we want rely on λ -reduction to produce what we
want here.

The first step is to determine exactly what we’d like the meaning represen-
tation of Every restaurant to be. Let’s start by assuming that Every invokes the ∀
quantifier and that restaurant specifies the category of concept that we’re quantify-
ing over, which we’ll call the restriction of the noun phrase. Putting these togetherRESTRICTION

we might expect the meaning representation to be something like ∀xRestaurant(x).
Although this is a valid FOL formula its not a terribly useful one, since it says that
everything is a restaurant. What’s missing from it is the notion that noun phrases
like every restaurant are normally embedded in expressions that stipulate some-
thing about the universally quantified variable. That is, we’re probably trying to
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say something about all restaurants. This notion is traditionally referred to as the
NP’s nuclear scope. In this case, the nuclear scope of this noun phrase is closed.NUCLEAR SCOPE

We can capture these notions in our target representation by adding a dummy
predicate, Q, representing the scope and attaching that predicate to the restriction
predicate with an ⇒ logical connective, leaving us with the following expression:

∀xRestaurant(x) ⇒ Q(x)

Ultimately, what we need to do to make this expression meaningful is to replace
Q with the logical expression corresponding to the nuclear scope. Fortunately, the
λ -calculus can come to our rescue again. All we need to do is to permit λ -variables
to range over FOL predicates as well as terms. The following expression captures
exactly what we need.

λQ.∀xRestaurant(x) ⇒ Q(x)

The following series of grammar rules with their semantic attachments serve
to produce this desired meaning representation for this kind of NP.

NP → Det Nominal {Det.Sem(Nominal.Sem)}
Det → every {λP.λQ.∀xP(x) ⇒ Q(x)}
Nominal → Noun {Noun.sem}
Noun → restaurant {λxRestaurant(x)}
The critical step in this sequence involves the λ -reduction in the NP rule.

This rule applies the λ -expression attached to the Det to the semantic attachment
of the Nominal, which is itself a λ -expression. The following are the intermediate
steps in this process.

λP.λQ.∀xP(x) ⇒ Q(x)(λx.Restaurant(x))

λQ.∀xλx.Restaurant(x)(x) ⇒ Q(x)

λQ.∀x Restaurant(x) ⇒ Q(x)

The first expression is the expansion of the Det.Sem(Nominal.Sem) semantic at-
tachment to the NP rule. The second formula is the result of this λ -reduction.
Note that this second formula has a λ -application embedded in it. Reducing this
expression in place gives us the final form.

Having revised our semantic attachment for the subject noun phrase portion
of our example, let’s move to the S and VP and Verb rules to see how they need to
change to accommodate these revisions. Let’s start with the S rule and work our
way down. Since the meaning of the subject NP is now a λ -expression, it makes
sense to consider it as a functor to be called with the meaning of the VP as its
argument. The following attachment accomplishes this.

S → NP VP {NP.sem(VP.sem)}
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Note that we’ve flipped the role of functor and argument from our original proposal
for this S rule.

The last attachment to revisit is the one for the verb close. We need to update
it to provide a proper event-oriented representation and to make sure that it is in-
terfaces well with the new S and NP rules. The following attachment accomplishes
both goals.

Verb → close {λx.∃eClosed(e)∧Closed(e,x)}
This attachment is passed unchanged to the VP constituent via the intransitive VP
rule. It is then combined with the meaning representation of Every restaurant as
dictated by the semantic attachment for the S given earlier. The following expres-
sions illustrate the intermediate steps in this process.

λQ.∀xRestaurant(x) ⇒ Q(x)(λy.∃eClosed(e)∧Closed(e,y))

∀xRestaurant(x) ⇒ λy.∃eClosed(e)∧Closed(e,y)(x)

∀xRestaurant(x) ⇒ ∃eClosed(e)∧Closed(e,x)

These steps achieve our goal of getting the VP’s meaning representation spliced in
as the nuclear scope in the NP’s representation.

As is always the case with any kind of grammar engineering effort we now
need to make sure that our earlier simpler examples still work. One area that we
need to revisit is our representation of proper nouns. Let’s consider them in the
context of our earlier example.

(18.4) Maharani closed.

The S rule now expects the subject NP’s semantic attachment to be a functor
applied to the semantics of the VP, therefore our earlier representation of proper
nouns as FOL constants won’t do. Fortunately, we can once again exploit the flexi-
bility of the λ -calculus to accomplish what we need with the following expression.

λx.x(Maharani)

This trick turns a simple FOL constant into a lambda-expression, which when
reduced serves to inject the constant into a larger expression. You should work
through our original example with all of the new semantic rules to make sure that
you can come up with the following intended representation:

∃eClosing(e)∧ closed(Maharani)

As one final exercise, let’s see how this approach extends to an expression
involving a transitive verb phrase, as in the following.

(18.5) Matthew opened a restaurant.
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If we’ve done things correctly we ought to be able to specify the semantic attach-
ments for transitive verb phrases, for the verb open and for the determiner a, while
leaving the rest of our rules alone.

Let’s start by modeling the semantics for the determiner a on our earlier at-
tachment for every.

Det → a {λP.λQ.∃xP(x)∧Q(x)}
This rule differs from the attachment for every in two ways. First we’re using the
existential quantifier ∃ to capture the semantics of a. And second we’ve replaced
the ⇒ operator with a logical ∧. The overall framework remains the same with
the λ -variables P and Q standing in for the restriction and nuclear scopes to be
filled in later. With this addition our existing NP rule will create the appropriate
representation for a restaurant:

λQ∃xRestaurant(x)∧Q(x)

Next let’s move on to the Verb and VP rules. There are two arguments that
need to be incorporated into the underlying meaning representation. One argument
is available at the level of the transitive VP rule, and the second at the S rule. Let’s
assume the following form for the VP semantic attachment.

VP → Verb NP {Verb.Sem(NP.Sem)}
This attachment assumes that the verb’s semantic attachment will be applied as
a functor to the semantics of its noun phrase argument. And let’s assume for now
that the representations we developed earlier for quantified noun phrases and proper
nouns will remain unchanged. With these assumptions in mind, the following at-
tachment for the verb opened will do what we want.

Verb → opened{λw.λ z.w(λx∃eOpening(e)∧Opener(e,z)∧Opened(e,x))}
With this attachment in place, the transitive VP rule will incorporate the vari-

able standing for a restaurant as the second argument to opened, incorporate the
entire expression representing the opening event as the nuclear scope of a restau-
rant and finally produce a λ -expression suitable for use with our S rule. As with
the previous example you should walk through this example step by step to make
sure that you arrive at our intended meaning representation.

∃xRestaurant(x)∧∃eOpening(e)∧Opener(e,Matthew)∧Opened(e,x)

The list of semantic attachments which we’ve developed for this small gram-
mar fragment is shown in Fig. 18.2. Sec. 18.5 expands the coverage of this frag-
ment to some of the more important constructions in English.

In walking through these examples, we have introduced three techniques that
instantiate the rule-to-rule approach to semantic analysis introduced at the begin-
ning of this section:
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Grammar Rule Semantic Attachment
S → NP VP {NP.sem(VP.sem)}
NP → Det Nominal {Det.sem(Nominal.sem)}
NP → ProperNoun {ProperNoun.sem}
Nominal → Noun {Noun.sem}
VP → Verb {Verb.sem}
VP → Verb NP {Verb.sem(NP.sem)}
Det → every {λP.λQ.∀xP(x) ⇒ Q(x)}
Det → a {λP.λQ.∃xP(x)∧Q(x)}
Noun → restaurant {λ r.Restaurant(r)}
ProperNoun → Matthew {λm.m(Matthew)}
ProperNoun → Franco {λ f . f (Franco)}
ProperNoun → Franco {λ f . f (Frasca)}
Verb → closed {λx.∃eClosing(e)∧Closed(e,x)}
Verb → opened {λw.λ z.w(λx.∃eOpening(e)∧Opener(e,z)

∧Opened(e,x))

Figure 18.3 Semantic attachments for a fragment of our English grammar and
lexicon.

1. Associating complex, function-like, λ -expressions with lexical items

2. Copying of semantic values from children to parents in non-branching rules

3. Function-like application of the semantics of one of the children of a rule to
the semantics of the other children of the rule via λ -reduction.

These techniques serve to illustrate a general division of labor that guides the
design of semantic attachments in this compositional framework. In general, it is
the lexical rules that introduce quantifiers, predicates and terms into our meaning
representations. The semantic attachments for grammar rules put these elements
together in the right ways, but do not in general introduce new elements into the
representations being created.

18.3 QUANTIFIER SCOPE AMBIGUITY AND UNDERSPECIFICATION

The grammar fragment developed in the last section appears to be sufficient to han-
dle examples like the following that contain two or more quantified noun phrases.

(18.6) Every restaurant has a menu.
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Systematically applying the rules given in Fig. 18.2 to this example produces
the following perfectly reasonable meaning representation.

∀x Restaurant(x) ⇒
∃y Menu(y)∧∃eHaving(e)∧Haver(e,x)∧Had(e,y)

This formula more or less corresponds to the common sense notion that all restau-
rants have menus.

Unfortunately, this isn’t the only possible interpretation for this example. The
following is also possible.

∃y Menu(y)∧∀x Restaurant(x) ⇒
∃e Having(e)∧Haver(e,x)∧Had(e,y)

This formula asserts that there is one menu out there in the world and all restaurants
share it. Now from a common sense point of view this seems pretty unlikely, but
remember that our semantic analyzer only has access to the semantic attachments
in the grammar and the lexicon in producing meaning representations. Of course,
world knowledge and contextual information can be used to select between these
two readings, but only if we are able to produce both.

This example illustrates that expressions containing quantified terms can give
rise to ambiguous representations even in the absence of syntactic, lexical or anaphoric
ambiguities. This is generally known as the problem of quantifier scoping. TheQUANTIFIER

SCOPING

difference between the two interpretations given above arises from which of the
two quantified variables has the outer scope.

The approach outlined in the last section can not handle this phenomena. To
fix this we’ll need the following capabilities.

• The ability to efficiently create underspecified representations that embody
all possible readings without explicitly enumerating them

• A means to generate, or extract, all of the possible readings from this repre-
sentation

• And the ability to choose among the possible readings

The following sections will outline approaches to the first two problems. The
solution to the last, most important problem, requires the use of context and world
knowledge and unfortunately remains a largely unsolved problem.

18.3.1 Store and Retrieve Approaches

One way to address the quantifier scope problem is to add a new notation to our
existing semantic attachments to facilitate the compositional creation of the desired
meaning representations. In this case, we’ll introduce the notion of a complex-
term that permits FOL expressions like ∀x Restaurant(x) to appear in places whereCOMPLEX-TERM
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we would normally only allow FOL terms to appear. Formally, a complex-term will
be an expression with the following three-part structure:

〈Quanti f ier variable f ormula〉
Applying this notation to our current example, we would arrive at the follow-

ing representation:

∃e Having(e)
∧Haver(e,〈∀x Restaurant(x)〉)
∧Had(e,〈∃y Menu(y)〉)

The intent of the this approach is to capture the basic predicate argument structure
of an expression, while remaining agnostic about where the various quantifiers will
end up in the final representation.

As was the case with λ -expressions, this notational device is only useful if
we can provide an algorithm to convert it back into an ordinary FOL expression.
This can be accomplished by rewriting any predicate containing a complex-term
according to the following schema:

P(〈Quanti f ier variable f ormula〉)
=⇒
Quanti f ier variable f ormula Connective P(variable)

In other words, the complex-term:

1. is extracted from the predicate in which it appears,
2. is replaced by the specified variable,
3. and has its variable, quantifier, and formula prepended to the new expression

through the use of an appropriate connective.

The connective that is used to attach the extracted formula to the front of the new
expression depends on the type of the quantifier being used: ∧ is used with ∃, and
⇒ is used with ∀.

How does this scheme help with our ambiguity problem? Note that our new
representation contains two complex terms. The order in which we process them
determines which of the two readings we end up with. Let’s consider the case
where we proceed left-to-right through the expression transforming the complex
terms as we find them. In this case, we encounter Every restaurant first; transform-
ing it yields the following expression.

∀xRestaurant(x) ⇒ ∃e Having(e)∧Haver(e,x)∧Had(e,〈∃yMenu(y)〉)
Proceeding onward we next encounter a menu. Transforming this complex term
yields the following final form which corresponds to the non-intuitive reading that
we couldn’t get with our earlier method.

∃yMenu(y)∧∀xRestaurant(x) ⇒ ∃e Having(e)∧Haver(e,x)∧Had(e,y)
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To get the more common-sense reading that we had earlier all we have to is
pull out the complex-terms in the other order; first a menu and then every restau-
rant.

This approach to quantifier scope provides solutions to the two of the desider-
ata given earlier: complex terms provide a compact underspecified representation
of all the possible quantifier-based ambiguous readings, and the method for trans-
forming them provides a deterministic method for eliminating complex terms and
thus retrieving valid FOL formulas. And by altering the ordering by which complex
terms are eliminated we can recover all the possible readings. Of course, sentences
with N quantifiers will have O(N!) different quantifier-based readings.

In practice, most systems employ an ad hoc set of heuristic preference rules
that can be used to generate preferred forms in order of their overall likelihood.
In cases where no preference rules apply, a left-to-right quantifier ordering that
mirrors the surface order of the quantifiers is used. Domain specific knowledge
can then be used to either accept a quantified formula, or reject it and request
another formula. Alshawi (1992) presents a comprehensive approach to generating
plausible quantifier scopings.

18.3.2 Constraint-Based Approaches

NEXT DRAFT HOLE SEMANTICS

18.4 UNIFICATION-BASED APPROACHES TO SEMANTIC ANALYSIS

As mentioned in Sec. 18.2, feature structures and the unification operator pro-
vide an effective way to implement syntax-driven semantic analysis. Recall that in
Ch. 16 we paired complex feature structures with individual context-free grammar
rules to encode syntactic constraints such as number agreement and subcategoriza-
tion; constraints that were awkward or in some cases impossible to convey directly
using context-free grammars. For example, the following rule was used to capture
agreement constraints on English noun phrases.

NP → Det Nominal

〈Det AGREEMENT〉 = 〈Nominal AGREEMENT〉
〈NP AGREEMENT〉 = 〈Nominal AGREEMENT〉

Rules such as this one serve two functions at the same time: they insure that the
grammar rejects expressions that violate this constraint, and more importantly for
our current topic, they create complex structures that can be associated with parts
of grammatical derivations. The following structure, for example, results from the
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application of the above rule to a singular noun phrase.
[

AGREEMENT
[

NUMBER SG
]

]

We’ll use this latter capability to compose meaning representations and associate
them with constituents in parse.

In this unification-based approach, our FOL representations and λ -based se-
mantic attachments are replaced by complex feature structures and unification equa-
tions. To see how this works, let’s walk through a series of examples similar to
those discussed earlier in Sec. 18.2. Let’s start with a simple intransitive sentence
with a proper noun as it’s subject.

(18.7) Rhumba closed

Using an event-oriented approach, the meaning representation for this sentence
should be something like the following.

∃e Closing(e)∧Closed(e,Rhumba)

Our first task will be to show that we can encode representations like this within the
feature structure framework. The most straightforward way to approach this task
is to simply follow the BNF-style definition of FOL statements given in Ch. 17.
The relevant elements of this definition stipulate that FOL formulas come in three
varieties: atomic formulas consisting of predicates with the appropriate number
of term arguments, formulas conjoined with other formulas via the ∧, ∨ and ⇒
operators, and finally quantified formulas which consist of a quantifier, variables
and a formula. Using this definition as a guide, we can capture this FOL expression
with the following feature structure.
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Fig. 18.4 shows this expression using the DAG-style notation introduced in
Ch. 16. This figure reveals the way that variables are handled. Instead of introduc-
ing explicit FOL variables, we’ll use the path-based feature-sharing capability of
feature structures to accomplish the same goal. In this example, the event variable
e is captured by the three paths leading to the same shared node.
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ARG0

ARG1
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VAR
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Rhumba

Closed

Closing

∃

∧

FORMULA2

Figure 18.4 A directed graph notation for semantic feature structures.

Our next step is to associate unification equations with the grammar rules
involved in this example’s derivation. Let’s start at the top with the S rule.

S → NP VP

〈S SEM〉 = 〈NP SEM〉
〈VP ARG0〉 = 〈NP INDEXVAR〉
〈NP SCOPE〉 = 〈VP SEM〉

The first line simply equates the meaning representation of the NP (encoded under
the SEM feature) with our top-level S. The purpose of the second equation is to as-
sign the subject NP to the appropriate role inside the VP’s meaning representation.
More concretely, it fills the appropriate role in the VP’s semantic representation by
unifying the ARG0 feature with a path that leads to a representation of the semantics
of the NP. Finally, it unifies the SCOPE feature in the NP’s meaning representation
with a pointer to the VP’s meaning representation. As we’ll see, this is a somewhat
convoluted way to bring the representation of an event up to where it belongs in
the representation. The motivation for this apparatus should become clear in the
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ensuing discussion where we consider quantified noun phrases.
Carrying on, let’s consider the attachments for the NP and ProperNoun parts

of this derivation.

NP → ProperNoun

〈NP SEM〉 = 〈ProperNoun SEM〉
〈NP SCOPE〉 = 〈ProperNoun SCOPE〉
〈NP INDEXVAR〉 = 〈ProperNoun INDEXVAR〉

ProperNoun → Rhumba

〈ProperNoun SEM PRED〉 = RHUMBA

〈ProperNoun INDEXVAR〉 = 〈ProperNoun SEM PRED〉
As we saw earlier, there isn’t much to the semantics of proper nouns in this ap-
proach. Here we’re just introducing a constant and providing an index variable to
point at that constant.

Next, let’s move on to the semantic attachments for the VP and Verb rules.

VP → Verb

〈VP SEM〉 = 〈 Verb SEM〉
〈VP ARG0〉 = 〈 Verb ARG0〉

Verb → closed

〈Verb SEM QUANT〉 = ∃
〈Verb SEM FORMULA OP〉 = ∧
〈Verb SEM FORMULA FORMULA1 PRED〉 = CLOSING

〈Verb SEM FORMULA FORMULA1 ARG0〉 = 〈Verb SEM VAR〉
〈Verb SEM FORMULA FORMULA2 PRED〉 = CLOSED

〈Verb SEM FORMULA FORMULA2 ARG0〉= 〈Verb SEM VAR〉
〈Verb SEM FORMULA FORMULA2 ARG1〉 = 〈Verb ARG0〉

The attachments for the VP rule parallel our earlier treatment of non-branching
grammatical rules. These unification equations are simply making the appropriate
semantic fragments of the Verb available at the VP level. In contrast, the unifica-
tion equations for the Verb introduce the bulk of the event representation that is at
the core of this example. Specifically, it introduces the quantifier, event variable
and predications that make up the body of the final expression. What would be
an event variable in FOL is captured by the equations unifying the Verb SEM VAR

path with the appropriate arguments to the predicates in the body of the formula.
Finally, it exposes the single missing argument (the entity being closed) through
the 〈 Verb ARG0〉 equation.
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Taking a step back we can see that these equations serve the same basic func-
tions as the λ -expressions in Sec. 18.2; they provide the content of the FOL formula
being created, and they serve to expose and name the external arguments that will
be filled in later at higher levels in the grammar.

These last few rules also display the division of labor that we’ve seen several
times now; lexical rules introduce the bulk of the semantic content, while higher
level grammatical rules assemble the pieces in the right way, rather than introduc-
ing content.

Of course, as was the case with the λ -based approach things get quite a bit
more complex when we look at expressions containing quantifiers. To see this,
let’s work through the following example.

(18.8) Every restaurant closed

Again, the meaning representation for this expression should be the following

∀xRestaurant(x) ⇒ (∃eClosing(e)∧Closed(e,x))

which is captured by the following feature structure.






























































QUANT ∀
VAR 1

FORMULA





















































OP ⇒

FORMULA1

[

PRED RESTAURANT

ARG0 1

]

FORMULA2



































QUANT EXISTS

VAR 2

FORMULA

























OP ∧

FORMULA1

[

PRED CLOSING

ARG0 2

]

FORMULA2







PRED CLOSED

ARG0 2

ARG1 1





















































































































































































DRAFT

18 Chapter 18. Computational Semantics

As we saw earlier with the λ -based approach, the outer structure for expres-
sions like this comes largely from the subject noun phrase. Recall that schemati-
cally this semantic structure has the form ∀xP(x) ⇒ Q(x) where the P expression
is traditionally referred to as the restrictor and is provided by the head noun and Q
is referred to as the nuclear scope and comes from the verb phrase.

This structure gives rise to two distinct tasks for our semantic attachments:
the semantics of the VP semantics must be unified with the nuclear scope of the
subject noun phrase, and the variable representing that noun phrase must be as-
signed to the ARG1 role of the CLOSED predicate in the event structure. The fol-
lowing rules involved in the derivation of Every restaurant address these two tasks

NP → Det Nominal

〈 NP SEM〉 = 〈Det SEM 〉
〈 NP SEM VAR 〉 = 〈 NP INDEXVAR 〉
〈 NP SEM FORMULA FORMULA1 〉 = 〈 Nominal SEM 〉
〈 NP SEM FORMULA FORMULA2 〉 = 〈 NP SCOPE 〉

Nominal → Noun

〈 Nominal SEM 〉 = 〈 Noun SEM 〉
〈 Nominal INDEXVAR 〉 = 〈 Noun INDEXVAR 〉

Noun → restaurant

〈 Noun SEM PRED 〉 = 〈 RESTAURANT 〉
〈 Noun INDEXVAR 〉 = 〈 Noun SEM PRED 〉

Det → every

〈 Det SEM QUANT 〉 = ∀
〈 Det SEM FORMULA OP 〉 = ⇒

As one final exercise, let’s walk through an example with a transitive verb
phrase.

(18.9) Franco opened a restaurant

This example has the following meaning representation.

∃x Resaurant(x)∧∃e Opening(e)∧Opener(e,Franco)∧Opened(e,x)
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The only really new element that we need to address in this example is the
following transitive VP rule.

VP → Verb NP

〈VP SEM〉 = 〈Verb SEM〉
〈NP SCOPE〉 = 〈VP SEM〉
〈Verb ARG1〉 = 〈NP INDEXVAR〉

This rule has the two primary tasks that parallel those in our S rule: it has to fill
the nuclear scope of the object NP with the semantics of the VP, and it has to
insert the variable representing the object into to the right role in the VP’s meaning
representation.

One obvious problem with the approach we just described is that it fails to
generate all the possible ambiguous representations arising from quantifier scope
ambiguities. Fortunately, the approaches to underspecification described earlier in
Sec. 18.3 can be adapted to the unification-based approach.



DRAFT

20 Chapter 18. Computational Semantics

18.5 SEMANTIC ATTACHMENTS FOR A FRAGMENT OF ENGLISH

This section describes a set of semantic attachments for a small fragment of En-
glish, the bulk of which are based on those used in the Core Language Engine
(Alshawi, 1992). As in the rest of this chapter, to keep the presentation simple, we
omit the feature structures associated with these rules when they are not needed.
Remember that these features are needed to ensure that the correct rules are applied
in the correct situations. Most importantly for this discussion, they are needed to
ensure that the correct verb entries are being employed based on their subcatego-
rization feature structures.

18.5.1 Sentences

To this point, we’ve only dealt with simple declarative sentences. This section
expands our coverage to include the other sentence types first introduced in Ch. 12:
imperatives, yes-no-questions, and wh-questions. Let’s start by considering the
following examples:

(18.10) Flight 487 serves lunch.

(18.11) Serve lunch.

(18.12) Does Flight 207 serve lunch?

(18.13) Which flights serve lunch?

The meaning representations of these examples all contain propositions con-
cerning the serving of lunch on flights. However, they differ with respect to the
role that these propositions are intended to serve in the settings in which they are
uttered. More specifically, the first example is intended to convey factual informa-
tion to a listener, the second is a request for an action, and the last two are requests
for information. To capture these differences, we will introduce a set of operators
that can be applied to FOL sentences in the same way that belief operators were
used in Ch. 17. Specifically, the operators DCL, IMP, YNQ, and WHQ will be ap-
plied to the FOL representations of declaratives, imperatives, yes-no-questions, and
wh-questions, respectively.

Producing meaning representations that make appropriate use of these opera-
tors requires the right set of semantic attachments for each of the possible sentence
types. For declarative sentences, we can simply alter the basic sentence rule we
have been using as follows:

S → NP VP {DCL(NP.sem(VP.sem))}
The normal interpretation for a representation headed by the DCL operator would
be as a factual statement to be added to the current knowledge-base.
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Imperative sentences begin with a verb phrase and lack an overt subject. Be-
cause of the missing subject, the meaning representation for the main verb phrase
will consist of a λ -expression with an unbound λ -variable representing this miss-
ing subject. To deal with this, we can simply supply a subject to the λ -expression
by applying a final λ -reduction to a dummy constant. The IMP operator can then
be applied to this representation as in the following semantic attachment:

S → VP {IMP(VP.sem(DummyYou))}
Applying this rule to example (18.11), results in the following representation:

IMP(∃eServing(e)∧Server(e,DummyYou)∧Served(e,Lunch)

As will be discussed in Ch. 23, imperatives can be viewed as a kind of speech act.
As discussed in Ch. 12, yes-no-questions consist of a sentence-initial auxil-

iary verb, followed by a subject noun phrase and then a verb phrase. The following
semantic attachment simply ignores the auxiliary, and with the exception of the
YNQ operator, constructs the same representation that would be created for the
corresponding declarative sentence:

S → Aux NP VP {YNQ(VP.sem(NP.sem))}
The use of this rule with for example (18.12) produces the following repre-

sentation:

YNQ(∃eServing(e)∧Server(e,Flt207)∧Served(e,Lunch))

Yes-no-questions should be thought as asking whether the propositional part
of its meaning is true or false given the knowledge currently contained in the
knowledge-base. Adopting the kind of semantics described in Ch. 17, yes-no-
questions can be answered by determining if the proposition is in the knowledge-
base, or can be inferred from it.

Unlike yes-no-questions, wh-subject-questions ask for specific information
about the subject of the sentence rather than the sentence as a whole. The following
attachment produces a representation that consists of the operator WHQ, the vari-
able corresponding to the subject of the sentence, and the body of the proposition:

S → WhWord NP VP {WHQ(NP.sem.var,VP.sem(NP.sem))}
The following representation is the result of applying this rule to example

(18.13):

WHQ(x,∃e,x Isa(e,Serving)∧Server(e,x)
∧Served(e,Lunch)∧ Isa(x,Flight))

Such questions can be answered by returning a set of assignments for the sub-
ject variable that make the resulting proposition true with respect to the current
knowledge-base.

Finally, consider the following wh-non-subject-question:
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(18.14) How can I go from Minneapolis to Long Beach?

In examples like this, the question is not about the subject of the sentence but rather
some other argument, or some aspect of the proposition as a whole. In this case,
the representation needs to provide an indication as to what the question is about.
The following attachment provides this information by providing the semantics of
the auxiliary as an argument to the WHQ operator:

S → WhWord Aux NP VP {WHQ( WhWord.sem VP.sem(NP.sem))}
The following representation would result from an application of this rule to

example (18.14):

WHQ(How,∃e Isa(e,Going)∧Goer(e,User)
∧Origin(e,Minn)∧Destination(e,LongBeach))

As we’ll see in Ch. 23, correctly answering this kind of question involves a fair
amount of domain specific reasoning. For example, the correct way to answer
example (18.14) is to search for flights with the specified departure and arrival
cities. Note, however, that there is no mention of flights or flying in the actual
question. The question-answerer, therefore, has to apply knowledge specific to this
domain to the effect that questions about going places are really questions about
flights to those places.

Finally, we should make it clear that this particular attachment is only useful
for rather simple wh-questions without missing arguments or embedded clauses.
As discussed in Ch. 16, the presence of long-distance dependencies in these ques-
tions requires additional mechanisms to determine exactly what is being asked
about. Woods (1977) and Alshawi (1992) provide extensive discussions of gen-
eral mechanisms for handling wh-non-subject questions.

18.5.2 Noun Phrases

As we have already seen, the meaning representations for noun phrases can be ei-
ther normal FOL terms or complex-terms. The following sections detail the seman-
tic attachments needed to produce meaning representations for some of the most
frequent kinds of English noun phrases. Unfortunately, as we will see, the syntax
of English noun phrases provides surprisingly little insight into their meaning. It is
often the case that the best we can do is provide a rather vague intermediate level of
meaning representation that can serve as input to further interpretation processes.

Compound Nominals

Compound nominals, also known as noun-noun sequences, consist of simple se-
quences of nouns, as in the following examples:
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(18.15) Flight schedule

(18.16) Summer flight schedule

As noted in Ch. 12, the syntactic structure of this construction can be captured by
the regular expression Noun∗, or by the following context-free grammar rules:

Nominal → Noun

Nominal → Nominal Noun

In these constructions, the final noun in the sequence is the head of the phrase
and denotes an object that is semantically related in some unspecified way to the
other nouns that precede it in the sequence. In general, an extremely wide range
of common-sense relations can be denoted by this construction. Discerning the
exact nature of these relationships is well beyond the scope of the kind of super-
ficial semantic analysis presented in this chapter. The attachment in the following
rule builds up a vague representation that simply notes the existence of a semantic
relation between the head noun and the modifying nouns, by incrementally noting
such a relation between the head noun and each noun to its left:

Nominal → Noun Nominal
{λx Nominal.sem(x)∧NN(Noun.sem, x)}

The relation NN is used to specify that a relation holds between the modifying
elements of a compound nominal and the head Noun. In the examples given above,
this leads to the following meaning representations:

λxIsa(x,Schedule)∧NN(x,Flight)

λxIsa(x,Schedule)∧NN(x,Flight)∧NN(x,Summer)

Note that this representation correctly instantiates a term representing a Schedule,
while avoiding the creation of terms representing either a Flight or Summer.

Genitive Noun Phrases

Recall from Ch. 12 that genitive noun phrases make use of complex determiners
that consist of noun phrases with possessive markers, as in Atlanta’s airport and
Maharani’s menu. It is quite tempting to represent the relation between these words
as an abstract kind of possession. A little introspection, however, reveals that the
relation between a city and its airport has little in common with a restaurant and its
menu. Therefore, as with compound nominals, it’s best to simply state an abstract
semantic relation between the various constituents.

NP → ComplexDet Nominal
{< ∃xNominal.sem(x)∧GN(x,ComplexDet.sem) >}

ComplexDet → NP ’s {NP.sem}
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Applying these rules to Atlanta’s airport results in the following complex-
term:

< ∃xIsa(x,Airport)∧GN(x,Atlanta) >

Subsequent semantic interpretation would have to determine that the relation de-
noted by the relation GN is actually a location.

Adjective Phrases

English adjectives can be split into two major categories: pre-nominal and predica-
tive. These categories are exemplified by the following BERP examples:

(18.17) I don’t mind a cheap restaurant.

(18.18) This restaurant is cheap.

For the pre-nominal case, an obvious and often incorrect proposal for the
semantic attachment is illustrated in the following rules:

Nominal → Adj Nominal
{λx Nominal.sem(x)∧ Isa(x,Adj.sem)}

Adj → cheap {Cheap}
This solution modifies the semantics of the nominal by applying the predicate pro-
vided by the adjective to the variable representing the nominal. For our cheap
restaurant example, this yields the following not unreasonable representation:

λx Isa(x,Restaurant)∧ Isa(x,Cheap)

This is an example of what is known as intersective semantics since theINTERSECTIVE
SEMANTICS

meaning of the phrase can be thought of as the intersection of the category stipu-
lated by the nominal and the category stipulated by the adjective. In this case, this
amounts to the intersection of the category of cheap things with the category of
restaurants.

Unfortunately, this solution often does the wrong thing. For example, con-
sider the following meaning representations for the phrases small elephant, former
friend, and fake gun:

λx Isa(x,Elephant)∧ Isa(x,Small)

λx Isa(x,Friend)∧ Isa(x,Former)

λx Isa(x,Gun)∧ Isa(x,Fake)

Each of these representations is peculiar in some way. The first one states that this
particular elephant is a member of the general category of small things, which is
probably not true. The second example is strange in two ways: it asserts that the
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person in question is a friend, which is false, and it makes use of a fairly unreason-
able category of former things. Similarly, the third example asserts that the object
in question is a gun despite the fact that fake means it is not one.

As with compound nominals, there is no clever solution to these problems
within the bounds of our current compositional framework. Therefore, the best
approach is to simply note the status of a specific kind of modification relation and
assume that some further procedure with access to additional relevant knowledge
can replace this vague relation with an appropriate representation (Alshawi, 1992).

Nominal → Adj Nominal
{λx Nominal.sem(x)∧AM(x,Ad j.sem)}

Applying this rule to a cheap restaurant results in the following formula:

∃x Isa(x,Restaurant)∧AM(x,Cheap)

Note that even this watered-down proposal produces representations that are
logically incorrect for the fake and former examples. In both cases, it asserts that
the objects in question are in fact members of their stated categories. In general, the
solution to this problem has to be based on the specific semantics of the adjectives
and nouns in question. For example, the semantics of former has to involve some
form of temporal reasoning, while fake requires the ability to reason about the
nature of concepts and categories.

18.5.3 Verb Phrases

The general schema for computing the semantics of verb phrases relies on the
notion of function application. In most cases, the λ -expression attached to the verb
is simply applied to the semantic attachments of the verb’s arguments. There are,
however, a number of situations that force us to depart somewhat from this general
pattern.

Infinitive Verb Phrases

A fair number of English verbs take some form of verb phrase as one of their
arguments. This complicates the normal verb phrase semantic schema since these
argument verb phrases interact with the other arguments of the head verb in ways
that are not completely obvious.

Consider the following example:

(18.19) I told Harry to go to Maharani.

The meaning representation for this example should be something like the follow-
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S
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I told Harry to go to Maharani

Figure 18.5 Parse tree for I told Harry to go to Maharani.

ing:

∃e, f ,x Isa(e,Telling)∧ Isa( f ,Going)
∧Teller(e,Speaker)∧Tellee(e,Harry)∧ToldThing(e, f )
∧Goer( f ,Harry)∧Destination( f ,x)

There are two interesting things to note about this meaning representation:
the first is that it consists of two events, and the second is that one of the partici-
pants, Harry, plays a role in both of the two events. The difficulty in creating this
complex representation falls to the verb phrase dominating the verb tell which will
need something like the following as its semantic attachment:

λx,y λ z ∃e Isa(e,Telling)
∧Teller(e,z)∧Tellee(e,x)∧ToldThing(e,y)

Semantically, we can interpret this subcategorization frame for Tell as providing
three semantic roles: a person doing the telling, a recipient of the telling, and the
proposition being conveyed.

The difficult part of this example involves getting the meaning representation
for the main verb phrase correct. As shown in Figure 18.5, Harry plays the role
of both the Tellee of the Telling event and the Goer of the Going event. However,
Harry is not available when the Going event is created within the infinitive verb
phrase.

Although there are several possible solutions to this problem, it is usually
best to stick with a uniform approach to these problems. Therefore, we will start by
simply applying the semantics of the verb to the semantics of the other arguments
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of the verb as follows:

VP → Verb NP VPto {Verb.sem(NP.sem, VPto.sem)}
Since the to in the infinitive verb phrase construction does not contribute to its

meaning, we simply copy the meaning of the child verb phrase up to the infinitive
verb phrase. Recall, that we are relying on the unseen feature structures to ensure
that only the correct verb phrases can be used with this construction.

VPto → to VP {VP.sem}
In this solution, the verb’s semantic attachment has two tasks: incorporating

the NP.sem, the Goer, into the VPto.sem, and incorporating the Going event as the
ToldThing of the Telling. The following attachment performs both tasks:

Verb → tell
{λx,y

λ z
∃e,y.variable Isa(e,Telling)

∧Teller(e,z)∧Tellee(e,x)
∧ToldThing(e,y.variable)∧ y(x)

In this approach, the λ -variable x plays the role of the Tellee of the telling and
the argument to the semantics of the infinitive, which is now contained as a λ -
expression in the variable y. The expression y(x) represents a λ -reduction that
inserts Harry into the Going event as the Goer. The notation y.variable, is anal-
ogous to the notation used for complex-term variables, and gives us access to the
event variable representing the Going event within the infinitive’s meaning repre-
sentation.

Note that this approach plays fast and loose with the definition of λ -reduction,
in that it allows λ -expressions to be passed as arguments to other λ -expressions,
when technically only FOPC terms can serve that role. This technique is a conve-
nience similar to the use of complex-terms in that it allows us to temporarily treat
complex expressions as terms during the creation of meaning representations.

18.5.4 Prepositional Phrases

At a fairly abstract level, prepositional phrases serve two distinct functions: they
assert binary relations between their heads and the constituents to which they are
attached, and they signal arguments to constituents that have an argument structure.
These two functions argue for two distinct types of prepositional phrases that differ
based on their semantic attachments. We will consider three places in the grammar
where prepositional phrases serve these roles: modifiers of noun phrases, modifiers
of verb phrases, and arguments to verb phrases.
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Nominal Modifier Prepositional Phrases

Modifier prepositional phrases denote a binary relation between the concept be-
ing modified, which is external to the prepositional phrase, and the head of the
prepositional phrase. Consider the following example and its associated meaning
representation:

(18.20) A restaurant on Broadway.

∃x Isa(x,Restaurant)∧On(x,Pearl)

The relevant grammar rules that govern this example are the following:

NP → Det Nominal

Nominal → Nominal PP

PP → P NP

Proceeding in a bottom-up fashion, the semantic attachment for this kind
of relational preposition should provide a two-place predicate with its arguments
distributed over two λ -expressions, as in the following:

P → on {λyλx On(x,y)}
With this kind of arrangement, the first argument to the predicate is provided by the
head of prepositional phrase and the second is provided by the constituent that the
prepositional phrase is ultimately attached to. The following semantic attachment
provides the first part:

PP → P NP {P.sem(NP.sem)}
This λ -application results in a new λ -expression where the remaining argument is
the inner λ -variable.

This remaining argument can be incorporated using the following nominal
construction:

Nominal → Nominal PP {λ zNominal.sem(z)∧PP.sem(z)}

Verb Phrase Modifier Prepositional Phrases

The general approach to modifying verb phrases is similar to that of modifying
nominals. The differences lie in the details of the modification in the verb phrase
rule; the attachments for the preposition and prepositional phrase rules are un-
changed. Let’s consider the phrase ate dinner in a hurry which is governed by the
following verb phrase rule:

VP → VP PP
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The meaning representation of the verb phrase constituent in this construc-
tion, ate dinner, is a λ -expression where the λ -variable represents the as yet unseen
subject.

λx∃e Isa(e,Eating)∧Eater(e,x)∧Eaten(e,Dinner)

The representation of the prepositional phrase is also a λ -expression where
the λ -variable is the second argument in the PP semantics.

λx In(x,< ∃h Hurry(h) >)

The correct representation for the modified verb phrase should contain the
conjunction of these two representations with the Eating event variable filling
the first argument slot of the In expression. In addition, this modified represen-
tation must remain a λ -expression with the unbound Eater variable as the new
λ -variable. The following attachment expression fulfills all of these requirements:

VP → VP PP {λyVP.sem(y)∧PP.sem(VP.sem.variable)}
There are two aspects of this attachment that require some elaboration. The

first involves the application of the constituent verb phrases’ λ -expression to the
variable y. Binding the lower λ -expression’s variable to a new variable allows us
to lift the lower variable to the level of the newly created λ -expression. The result
of this technique is a new λ -expression with a variable that, in effect, plays the
same role as the original variable in the lower expression. In this case, this allows
a λ -expression to be modified during the analysis process before the argument to
the expression is actually available.

The second notable aspect of this attachment involves the VP.sem.variable
notation. This notation is used to access the event-variable representing the under-
lying meaning of the verb phrase, in this case, e. This is analogous to the notation
used to provide access to the various parts of complex-terms introduced earlier.

Applying this attachment to the current example yields the following repre-
sentation, which is suitable for combination with a subsequent subject noun phrase:

λy∃e Isa(e,Eating)∧Eater(e,y)∧Eaten(e,Dinner)
∧In(e,< ∃hHurry(h) >)

Verb Argument Prepositional Phrases

The prepositional phrases in this category serve to signal the role an argument plays
in some larger event structure. As such, the preposition itself does not actually
modify the meaning of the noun phrase. Consider the following example of role
signaling prepositional phrases:

(18.21) I need to go from Boston to Dallas.
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In examples like this, the arguments of go are expressed as prepositional phrases.
However, the meaning representations of these phrases should consist solely of the
unaltered representation of their head nouns. To handle this, argument preposi-
tional phrases are treated in the same way that non-branching grammatical rules
are; the semantic attachment of the noun phrase is copied unchanged to the seman-
tics of the larger phrase.

PP → P NP {NP.sem}
The verb phrase can then assign this meaning representation to the appropriate
event role. A more complete account of how these argument bearing prepositional
phrases map to underlying event roles will be presented in Ch. 19.

18.6 INTEGRATING SEMANTIC ANALYSIS INTO THE EARLEY PARSER

In Section 18.1, we suggested a simple pipeline architecture for a semantic an-
alyzer where the results of a complete syntactic parse are passed to a semantic
analyzer. The motivation for this notion stems from the fact that the compositional
approach requires the syntactic parse before it can proceed. It is, however, also
possible to perform semantic analysis in parallel with syntactic processing. This is
possible because in our compositional framework, the meaning representation for
a constituent can be created as soon as all of its constituent parts are present. This
section describes just such an approach to integrating semantic analysis into the
Earley parser from Ch. 13.

The integration of semantic analysis into an Earley parser is straightforward
and follows precisely the same lines as the integration of unification into the algo-
rithm given in Ch. 16. Three modifications are required to the original algorithm:

1. The rules of the grammar are given a new field to contain their semantic
attachments.

2. The states in the chart are given a new field to hold the meaning representation
of the constituent.

3. The ENQUEUE function is altered so that when a complete state is entered
into the chart its semantics are computed and stored in the state’s semantic
field.

Figure 18.6 shows ENQUEUE modified to create meaning representations.
When ENQUEUE is passed a complete state that can successfully unify its unifi-
cation constraints it calls APPLY-SEMANTICS to compute and store the meaning
representation for this state. Note the importance of performing feature-structure
unification prior to semantic analysis. This ensures that semantic analysis will be
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procedure ENQUEUE(state, chart-entry)
if INCOMPLETE?(state) then

if state is not already in chart-entry then
PUSH(state, chart-entry)

else if UNIFY-STATE(state) succeeds then
if APPLY-SEMANTICS(state) succeeds then

if state is not already in chart-entry then
PUSH(state, chart-entry)

procedure APPLY-SEMANTICS(state)
meaning-rep←APPLY(state.semantic-attachment, state)
if meaning-rep does not equal failure then

state.meaning-rep←meaning-rep

Figure 18.6 The ENQUEUE function modified to handle semantics. If the state
is complete and unification succeeds then ENQUEUE calls APPLY-SEMANTICS to
compute and store the meaning representation of completed states.

performed only on valid trees and that features needed for semantic analysis will
be present.

The primary advantage of this integrated approach over the pipeline approach
lies in the fact that APPLY-SEMANTICS can fail in a manner similar to the way that
unification can fail. If a semantic ill-formedness is found in the meaning repre-
sentation being created, the corresponding state can be blocked from entering the
chart. In this way, semantic considerations can be brought to bear during syntactic
processing. Ch. 19 describes in some detail the various ways that this notion of
ill-formedness can be realized.

Unfortunately, this also illustrates one of the primary disadvantages of in-
tegrating semantics directly into the parser—considerable effort may be spent on
the semantic analysis of orphan constituents that do not in the end contribute to a
successful parse. The question of whether the gains made by bringing semantics
to bear early in the process outweigh the costs involved in performing extraneous
semantic processing can only be answered on a case-by-case basis.
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18.7 IDIOMS AND COMPOSITIONALITY

Ce corps qui s’appelait et qui s’appelle encore le saint empire ro-
main n’était en aucune manière ni saint, ni romain, ni empire.

This body, which called itself and still calls itself the Holy Roman
Empire, was neither Holy, nor Roman, nor an Empire.

Voltaire2, 1756

As innocuous as it seems, the principle of compositionality runs into trouble fairly
quickly when real language is examined. There are many cases where the mean-
ing of a constituent is not based on the meaning of its parts, at least not in the
straightforward compositional sense. Consider the following WSJ examples:

(18.22) Coupons are just the tip of the iceberg.

(18.23) The SEC’s allegations are only the tip of the iceberg.

(18.24) Coronary bypass surgery, hip replacement and intensive-care units are
but the tip of the iceberg.

The phrase the tip of the iceberg in each of these examples clearly doesn’t have
much to do with tips or icebergs. Instead, it roughly means something like the be-
ginning. The most straightforward way to handle idiomatic constructions like these
is to introduce new grammar rules specifically designed to handle them. These
idiomatic rules mix lexical items with grammatical constituents, and introduce se-
mantic content that is not derived from any of its parts. Consider the following rule
as an example of this approach:

NP → the tip o f the iceberg
{Beginning}

The lower case items on the right-hand side of this rule are intended to rep-
resent precisely words in the input. Although, the constant Beginning should not
be taken too seriously as a meaning representation for this idiom, it does illustrate
the idea that the meaning of this idiom is not based on the meaning of any of its
parts. Note that an Earley-style analyzer with this rule will now produce two parses
when this phrase is encountered: one representing the idiom and one representing
the compositional meaning.

As with the rest of the grammar, it may take a few tries to get these rules
right. Consider the following iceberg examples from the WSJ corpus:

(18.25) And that’s but the tip of Mrs. Ford’s iceberg.

2 Essai sur les moeurs et les esprit des nations. Translation by Y. Sills, as quoted in Sills and Merton
(1991).
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(18.26) These comments describe only the tip of a 1,000-page iceberg.

(18.27) The 10 employees represent the merest tip of the iceberg.

The rule given above is clearly not general enough to handle these cases. These ex-
amples indicate that there is a vestigial syntactic structure to this idiom that permits
some variation in the determiners used, and also permits some adjectival modifica-
tion of both the iceberg and the tip. A more promising rule would be something
like the following:

NP → TipNP o f IcebergNP
{Beginning}

Here the categories TipNP and IcebergNP can be given an internal nominal-
like structure that permits some adjectival modification and some variation in the
determiners, while still restricting the heads of these noun phrases to the lexical
items tip and iceberg. Note that this syntactic solution ignores the thorny issue that
the modifiers mere and 1000-page seem to indicate that both the tip and iceberg
may in fact play some compositional role in the meaning of the idiom. We will
return to this topic in Ch. 19, when we take up the issue of metaphor.

To summarize, handling idioms requires at least the following changes to the
general compositional framework:

• Allow the mixing of lexical items with traditional grammatical constituents.

• Allow the creation of additional idiom-specific constituents needed to handle
the correct range of productivity of the idiom.

• Permit semantic attachments that introduce logical terms and predicates that
are not related to any of the constituents of the rule.

This discussion is obviously only the tip of an enormous iceberg. Idioms
are far more frequent and far more productive than is generally recognized and
pose serious difficulties for many applications, including, as we will see in Ch. 24,
machine translation.

18.8 SUMMARY

This chapter explores the notion of syntax-driven semantic analysis. Among the
highlights of this chapter are the following topics:

• Semantic analysis is the process whereby meaning representations are cre-
ated and assigned to linguistic inputs.

• Semantic analyzers that make use of static knowledge from the lexicon and
grammar can create context-independent literal, or conventional, meanings.
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• The Principle of Compositionality states that the meaning of a sentence can
be composed from the meanings of its parts.

• In Syntax-driven semantic analysis, the parts are the syntactic constituents
of an input.

• Compositional creation of FOL formulas is possible with a few notational
extensions including λ -expressions and complex-terms.

• Compositional creation of FOL formulas is also possible using the mecha-
nisms provided by feature structures and unification.

• Natural language quantifiers introduce a kind of ambiguity that is difficult
to handle compositionally. Complex-terms can be used to compactly encode
this ambiguity.

• Idiomatic language defies the principle of compositionality but can easily be
handled by adapting the techniques used to design grammar rules and their
semantic attachments.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

As noted earlier, the principle of compositionality is traditionally attributed to
Frege; Janssen (1997) discusses this attribution. Using the categorial grammar
framework described in Ch. 14, Montague (1973) demonstrated that a composi-
tional approach could be systematically applied to an interesting fragment of nat-
ural language. The rule-to-rule hypothesis was first articulated by Bach (1976).
On the computational side of things, Woods’s LUNAR system (Woods, 1977) was
based on a pipelined syntax-first compositional analysis. Schubert and Pelletier
(1982) developed an incremental rule-to-rule system based on Gazdar’s GPSG ap-
proach (Gazdar, 1981, 1982; Gazdar et al., 1985). Main and Benson (1983) ex-
tended Montague’s approach to the domain of question-answering.

In one of the all-too-frequent cases of parallel development, researchers in
programming languages developed essentially identical compositional techniques
to aid in the design of compilers. Specifically, Knuth (1968) introduced the notion
of attribute grammars that associate semantic structures with syntactic structures in
a one-to-one correspondence. As a consequence, the style of semantic attachments
used in this chapter will be familiar to users of the YACC-style (Johnson and Lesk,
1978) compiler tools.

Semantic Grammars are due to Burton (Brown and Burton, 1975). Similar
notions developed around the same time included Pragmatic Grammars (Woods,
1977) and Performance Grammars (Robinson, 1975). All centered around the no-
tion of reshaping syntactic grammars to serve the needs of semantic processing. It
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is safe to say that most modern systems developed for use in limited domains make
use of some form of semantic grammar.

Most of the techniques used in the fragment of English presented in Section
18.5 are adapted from SRI’s Core Language Engine (Alshawi, 1992). Additional
bits and pieces were adapted from Woods (1977), Schubert and Pelletier (1982),
and Gazdar et al. (1985). Of necessity, a large number of important topics were
not covered in this chapter. See Alshawi (1992) for the standard gap-threading
approach to semantic interpretation in the presence of long-distance dependencies.
ter Meulen (1995) presents an modern treatment of tense, aspect, and the repre-
sentation of temporal information. Extensive coverage of approaches to quantifier
scoping can be found in Hobbs and Shieber (1987) and Alshawi (1992). van Lehn
(1978) presents a set of human preferences for quantifier scoping. Over the years,
a considerable amount of effort has been directed toward the interpretation of com-
pound nominals. Linguistic research on this topic can be found in Lees (1970),
Downing (1977), Levi (1978), and Ryder (1994), more computational approaches
are described in Gershman (1977), Finin (1980), McDonald (1982), Pierre (1984),
Arens et al. (1987), Wu (1992), Vanderwende (1994), and Lauer (1995).

There is a long and extensive literature on idioms. Fillmore et al. (1988) de-
scribe a general grammatical framework called Construction Grammar that places
idioms at the center of its underlying theory. Makkai (1972) presents an exten-
sive linguistic analysis of many English idioms. Hundreds of idiom dictionaries
for second-language learners are also available. On the computational side, Becker
(1975) was among the first to suggest the use of phrasal rules in parsers. Wilensky
and Arens (1980) were among the first to successfully make use of this notion in
their PHRAN system. Zernik (1987) demonstrated a system that could learn such
phrasal idioms in context. A collection of papers on computational approaches to
idioms appeared in (Fass et al., 1992).

Finally, we have skipped an entire branch of semantic analysis in which ex-
pectations driven from deep meaning representations drive the analysis process.
Such systems avoid the direct representation and use of syntax, rarely making use
of anything resembling a parse tree. Some of the earliest and most successful ef-
forts along these lines were developed by Simmons (1973, 1978, 1983) and (Wilks,
1975a, 1975b). A series of similar approaches were developed by Roger Schank
and his students (Riesbeck, 1975; Birnbaum and Selfridge, 1981; Riesbeck, 1986).
In these approaches, the semantic analysis process is guided by detailed proce-
dures associated with individual lexical items. The CIRCUS information extraction
system (Lehnert et al., 1991) traces its roots to these systems.
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EXERCISES

18.1 The attachment given on page 23 for handling noun phrases with complex
determiners is not general enough to handle most possessive noun phrases. Specif-
ically, it doesn’t work for phrases like the following:

a. My sister’s flight

b. My fiance’s mother’s flight

Create a new set of semantic attachments to handle cases like these.

18.2 Develop a set of grammar rules and semantic attachments to handle predi-
cate adjectives such as the one following:

a. Flight 308 from New York is expensive.

b. Murphy’s restaurant is cheap.

18.3 None of the attachments given in this chapter provide temporal information.
Augment a small number of the most basic rules to add temporal information along
the lines sketched in Ch. 17. Use your rules to create meaning representations for
the following examples:

a. Flight 299 departed at 9 o’clock.

b. Flight 208 will arrive at 3 o’clock.

c. Flight 1405 will arrive late.

18.4 As noted in Ch. 17, the present tense in English can be used to refer to either
the present or the future. However, it can also be used to express habitual behavior,
as in the following:

Flight 208 leaves at 3 o’clock.

This could be a simple statement about today’s Flight 208, or alternatively
it might state that this flight leaves at 3 o’clock every day. Create a FOPC mean-
ing representation along with appropriate semantic attachments for this habitual
sense.

18.5 Implement an Earley-style semantic analyzer based on the discussion on
page 30.

18.6 It has been claimed that it is not necessary to explicitly list the semantic
attachment for most grammar rules. Instead, the semantic attachment for a rule
should be inferable from the semantic types of the rule’s constituents. For example,
if a rule has two constituents, where one is a single argument λ -expression and the
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other is a constant, then the semantic attachment should obviously apply the λ -
expression to the constant. Given the attachments presented in this chapter, does
this type-driven semantics seem like a reasonable idea?

18.7 Add a simple type-driven semantics mechanism to the Earley analyzer you
implemented for Exercise 18.5.

18.8 Using a phrasal search on your favorite Web search engine, collect a small
corpus of the tip of the iceberg examples. Be certain that you search for an ap-
propriate range of examples (i.e., don’t just search for “the tip of the iceberg”.)
Analyze these examples and come up with a set of grammar rules that correctly
accounts for them.

18.9 Collect a similar corpus of examples for the idiom miss the boat. Analyze
these examples and come up with a set of grammar rules that correctly accounts
for them.

18.10 There are now a fair number of Web-based natural language question an-
swering services that purport to provide answers to questions on a wide range of
topics (see the book’s Web page for pointers to current services). Develop a cor-
pus of questions for some general domain of interest and use it to evaluate one or
more of these services. Report your results. What difficulties did you encounter in
applying the standard evaluation techniques to this task?

18.11 Collect a small corpus of weather reports from your local newspaper or
the Web. Based on an analysis of this corpus, create a set of frames sufficient to
capture the semantic content of these reports.

18.12 Implement and evaluate a small information extraction system for the weather
report corpus you collected for the last exercise.



DRAFT

38 Chapter 18. Computational Semantics

Alshawi, H. (Ed.). (1992). The Core Language Engine.
MIT Press.

Arens, Y., Granacki, J., and Parker, A. (1987). Phrasal
analysis of long noun sequences. In ACL-87, Stanford,
CA, pp. 59–64. ACL.

Bach, E. (1976). An extension of classical transforma-
tional grammar. In Problems of Linguistic Metatheory
(Proceedings of the 1976 Conference). Michigan State
University.

Becker (1975). The phrasal lexicon. In Schank, R. and
Nash-Webber, B. L. (Eds.), Theoretical Issues in Natural
Language Processing. Cambridge, MA.

Birnbaum, L. and Selfridge, M. (1981). Conceptual anal-
ysis of natural language. In Schank, R. C. and Riesbeck,
C. K. (Eds.), Inside Computer Understanding: Five Pro-
grams plus Miniatures, pp. 318–353. Lawrence Erlbaum.

Brown, J. S. and Burton, R. R. (1975). Multiple represen-
tations of knowledge for tutorial reasoning. In Bobrow,
D. G. and Collins, A. (Eds.), Representation and Under-
standing, pp. 311–350. Academic Press.

Downing, P. (1977). On the creation and use of English
compound nouns. Language, 53(4), 810–842.

Fass, D., Martin, J. H., and Hinkelman, E. A. (Eds.).
(1992). Computational Intelligence: Special Issue on
Non-Literal Language, Vol. 8. Blackwell, Cambridge,
MA.

Fillmore, C. J., Kay, P., and O’Connor, M. C. (1988). Reg-
ularity and idiomaticity in grammatical constructions:
The case of Let Alone. Language, 64(3), 510–538.

Finin, T. (1980). The semantic interpretation of nominal
compounds. In AAAI-80, Stanford, CA, pp. 310–312.

Gazdar, G. (1981). Unbounded dependencies and coordi-
nate structure. Linguistic Inquiry, 12(2), 155–184.

Gazdar, G. (1982). Phrase structure grammar. In Jacob-
son, P. and Pullum, G. K. (Eds.), The Nature of Syntactic
Representation, pp. 131–186. Reidel, Dordrecht.

Gazdar, G., Klein, E., Pullum, G. K., and Sag, I. A. (1985).
Generalized Phrase Structure Grammar. Basil Black-
well, Oxford.

Gershman, A. V. (1977). Conceptual analysis of noun
groups in English. In IJCAI-77, Cambridge, MA, pp.
132–138.

Hobbs, J. R. and Shieber, S. M. (1987). An algorithm for
generating quantifier scopings. Computational Linguis-
tics, 13(1), 47–55.

Janssen, T. M. V. (1997). Compositionality. In van Ben-
them, J. and ter Meulen, A. (Eds.), Handbook of Logic
and Language, chap. 7, pp. 417–473. North-Holland,
Amsterdam.

Johnson, S. C. and Lesk, M. E. (1978). Language develop-
ment tools. Bell System Technical Journal, 57(6), 2155–
2175.

Knuth, D. E. (1968). Semantics of context-free languages.
Mathematical Systems Theory, 2(2), 127–145.

Lauer, M. (1995). Corpus statistics meet the noun com-
pound. In ACL-95, Cambridge, MA, pp. 47–54.

Lees, R. (1970). Problems in the grammatical analysis of
English nominal compounds. In Bierwitsch, M. and Hei-
dolph, K. E. (Eds.), Progress in Linguistics, pp. 174–187.
Mouton, The Hague.

Lehnert, W. G., Cardie, C., Fisher, D., Riloff, E., and
Williams, R. (1991). Description of the CIRCUS system
as used for MUC-3. In Sundheim, B. (Ed.), Proceed-
ings of the Third Message Understanding Conference,
pp. 223–233. Morgan Kaufmann.

Levi, J. (1978). The Syntax and Semantics of Complex
Nominals. Academic Press.

Main, M. G. and Benson, D. B. (1983). Denotational
semantics for natural language question-answering pro-
grams. American Journal of Computational Linguistics,
9(1), 11–21.

Makkai, A. (1972). Idiom Structure in English. Mouton,
The Hague.

McDonald, D. B. (1982). Understanding Noun Com-
pounds. Ph.D. thesis, Carnegie Mellon University, Pitts-
burgh, PA. CMU Technical Report CS-82-102.

Montague, R. (1973). The proper treatment of quantifica-
tion in ordinary English. In Thomason, R. (Ed.), Formal
Philosophy: Selected Papers of Richard Montague, pp.
247–270. Yale University Press, New Haven, CT.

Pierre, I. (1984). Another look at nominal compounds. In
COLING-84, Stanford, CA, pp. 509–516.

Riesbeck, C. K. (1975). Conceptual analysis. In Schank,
R. C. (Ed.), Conceptual Information Processing, pp. 83–
156. American Elsevier, New York.

Riesbeck, C. K. (1986). From conceptual analyzer to direct
memory access parsing: An overview. In Advances in
Cognitive Science 1, pp. 236–258. Ellis Horwood, Chich-
ester.



DRAFT

Section 18.8. Summary 39

Robinson, J. J. (1975). Performance grammars. In Reddy,
D. R. (Ed.), Speech Recognition: Invited Paper Pre-
sented at the 1974 IEEE Symposium, pp. 401–427. Aca-
demic Press.

Ryder, M. E. (1994). Ordered Chaos: The Interpretation
of English Noun-Noun Compounds. University of Cali-
fornia Press, Berkeley.

Schubert, L. K. and Pelletier, F. J. (1982). From English to
logic: Context-free computation of ‘conventional’ logi-
cal translation. American Journal of Computational Lin-
guistics, 8(1), 27–44.

Sills, D. L. and Merton, R. K. (Eds.). (1991). Social Sci-
ence Quotations. MacMillan, New York.

Simmons, R. F. (1973). Semantic networks: Their com-
putation and use for understanding English sentences. In
Schank, R. C. and Colby, K. M. (Eds.), Computer Mod-
els of Thought and Language, pp. 61–113. W.H. Freeman
and Co., San Francisco.

Simmons, R. F. (1978). Rule-based computations on En-
glish. In Waterman, D. A. and Hayes-Roth, F. (Eds.),
Pattern-Directed Inference Systems. Academic Press.

Simmons, R. F. (1983). Computations from the English.
Prentice Hall.

ter Meulen, A. (1995). Representing Time in Natural Lan-
guage. MIT Press.

van Lehn, K. (1978). Determining the scope of English
quantifiers. Master’s thesis, MIT, Cambridge, MA. MIT
Technical Report AI-TR-483.

Vanderwende, L. (1994). Algorithm for the automatic in-
terpretation of noun sequences. In COLING-94, Kyoto,
pp. 782–788.

Wilensky, R. and Arens, Y. (1980). PHRAN: A
knowledge-based natural language understander. In
ACL-80, Philadelphia, PA, pp. 117–121. ACL.

Wilks, Y. (1975a). An intelligent analyzer and under-
stander of English. Communications of the ACM, 18(5),
264–274.

Wilks, Y. (1975b). A preferential, pattern-seeking, seman-
tics for natural language inference. Artificial Intelligence,
6(1), 53–74.

Woods, W. A. (1977). Lunar rocks in natural English: Ex-
plorations in natural language question answering. In
Zampolli, A. (Ed.), Linguistic Structures Processing, pp.
521–569. North Holland, Amsterdam.

Wu, D. (1992). Automatic Inference: A Probabilistic Basis
for Natural Language Interpretation. Ph.D. thesis, Uni-
versity of California, Berkeley, Berkeley, CA. UCB/CSD
92-692.

Zernik, U. (1987). Strategies in Language Acquisition:
Learning Phrases from Examples in Context. Ph.D. the-
sis, University of California, Los Angeles, Computer
Science Department, Los Angeles, CA.



DRAFT

Speech and Language Processing: An introduction to natural language processing,
computational linguistics, and speech recognition. Daniel Jurafsky & James H. Martin.
Copyright c© 2007, All rights reserved. Draft of July 16, 2007. Do not cite without
permission.

19 LEXICAL SEMANTICS

“When I use a word”, Humpty Dumpty said in rather a scornful
tone, “it means just what I choose it to mean – neither more nor
less.”

Lewis Carroll,Alice in Wonderland

How many legs does a dog have if you call its tail a leg?
Four.
Calling a tail a leg doesn’t make it one.

Attributed to Abraham Lincoln

The previous two chapters focused on the representation of meaning representations for
entire sentences. In those discussions, we made a simplifying assumption by represent-
ing word meaningsas unanalyzed symbols likeEAT or JOHN or RED. But representing
the meaning of a word by capitalizing it is a pretty unsatisfactory model. In this chapter
we introduce a richer model of the semantics of words, drawing on the linguistic study
of word meaning, a field calledlexical semantics.LEXICAL SEMANTICS

Before we try to defineword meaningin the next section, we first need to be clear
on what we mean byword, since we have used the wordword in many different ways
in this book.

We can use the wordlexemeto mean a pairing of a particular form (orthographicLEXEME

or phonological) with its meaning, and alexicon is a finite list of lexemes. For the pur-LEXICON

poses of lexical semantics, particularly for dictionariesand thesauruses, we represent a
lexeme by alemma. A lemma or citation form is the grammatical form that is usedLEMMA

CITATION FORM to represent a lexeme. This is often the base form; thuscarpet is the lemma forcar-
pets. The lemma or citation form forsing, sang, sungis sing. In many languages the
infinitive form is used as the lemma for the verb; thus in Spanishdormir ‘to sleep’ is
the lemma for verb forms likeduermes‘you sleep’. The specific formssungor carpets
or singor duermesare calledwordforms.WORDFORMS
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The process of mapping from a wordform to a lemma is calledlemmatization.LEMMATIZATION

Lemmatization is not always deterministic, since it may depend on the context. For
example, the wordformfoundcan map to the lemmafind (meaning ‘to locate’) or the
lemmafound(‘to create an institution’), as illustrated in the following WSJ examples:

(19.1) He has looked at 14 baseball and football stadiums andfound that only one – private
Dodger Stadium – brought more money into a city than it took out.

(19.2) Culturally speaking, this city has increasingly displayedits determination tofound the
sort of institutions that attract the esteem of Eastern urbanites.

In addition, lemmas are part-of-speech specific; thus the wordform tableshas two pos-
sible lemmas, the nountableand the verbtable.

One way to do lemmatization is via the morphological parsingalgorithms of Ch. 3.
Recall that morphological parsing takes a surface form likecatsand producescat +PL.
But a lemma is not necessarily the same as the stem from the morphological parse. For
example, the morphological parse of the wordcelebrationsmight produce the stem
celebratewith the affixes-ion and-s, while the lemma forcelebrationsis the longer
form celebration. In general lemmas may be larger than morphological stems (e.g.,
New Yorkor throw up). The intuition is that we want to have a different lemma when-
ever we need to have a completely different dictionary entrywith its own meaning
representation; we expect to havecelebrationsandcelebrationshare an entry, since the
difference in their meanings is mainly just grammatical, but not necessarily to share
one withcelebrate.

In the remainder of this chapter, when we refer to the meaning(or meanings) of a
‘word’, we will generally be referring to a lemma rather thana wordform.

Now that we have defined the locus of word meaning, we will proceed to different
ways to represent this meaning. In the next section we introduce the idea ofword
senseas the part of a lexeme that represents word meaning. In following sections we
then describe ways of defining and representing these senses, as well as introducing the
lexical semantic aspects of the events defined in Ch. 17.

19.1 WORD SENSES

The meaning of a lemma can vary enormously given the context.Consider these two
uses of the lemmabank, meaning something like ‘financial institution’ and ‘sloping
mound’, respectively:

(19.3) Instead, abankcan hold the investments in a custodial account in the client’s name.
(19.4) But as agriculture burgeons on the eastbank, the river will shrink even more.

We represent some of this contextual variation by saying that the lemmabankhas
two senses. A sense(or word sense) is a discrete representation of one aspect of theSENSE

WORD SENSE meaning of a word. Loosely following lexicographic tradition, we will represent each
sense by placing a superscript on the orthographic form of the lemma as inbank1 and
bank2. 1

1 Confusingly, the word “lemma” is itself very ambiguous; it is also sometimes used to mean these separate
senses, rather than the citation form of the word. You shouldbe prepared to see both uses in the literature.
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The senses of a word might not have any particular relation between them; it may
be almost coincidental that they share an orthographic form. For example, thefinancial
institutionandsloping moundsenses of bank seem relatively unrelated. In such cases
we say that the two senses arehomonyms, and the relation between the senses is oneHOMONYMS

of homonymy. Thusbank1 (‘financial institution’) andbank2 (‘sloping mound’) areHOMONYMY

homonyms.
Sometimes, however, there is some semantic connection between the senses of a

word. Consider the following WSJ ’bank’ example:

(19.5) While somebanksfurnish sperm only to married women, others are much less
restrictive.

Although this is clearly not a use of the ‘sloping mound’ meaning of bank, it just as
clearly is not a reference to a promotional giveaway at a financial institution. Rather,
bankhas a whole range of uses related to repositories for variousbiological entities, as
in blood bank, egg bank, andsperm bank. So we could call this ‘biological repository’
sensebank3. Now this new sensebank3 has some sort of relation tobank1; both
bank1 andbank3 are repositories for entities that can be deposited and taken out; in
bank1 the entity is money, where inbank3 the entity is biological.

When two senses are related semantically, we call the relationship between them
polysemy rather than homonymy. In many cases of polysemy the semanticrelationPOLYSEMY

between the senses is systematic and structured. For example consider yet another
sense ofbank, exemplified in the following sentence:

(19.6) The bank is on the corner of Nassau and Witherspoon.

This sense, which we can callbank4, means something like ‘the building belonging
to a financial institution’. It turns out that these two kindsof senses (an organization,
and the building associated with an organization ) occur together for many other words
as well (school, university, hospital, etc). Thus there is a systematic relationship be-
tween senses that we might represent as

BUILDING ↔ ORGANIZATION

This particular subtype of polysemy relation is often called metonymy. MetonymyMETONYMY

is the use of one aspect of a concept or entity to refer to otheraspects of the entity, or to
the entity itself. Thus we are performing metonymy when we use the phrasethe White
Houseto refer to the administration whose office is in the White House.

Other common examples of metonymy include the relation between the following
pairings of senses:

• Author (Jane Austen wrote Emma) ↔ Works of Author (I really love Jane Austen)
• Animal (The chicken was domesticated in Asia) ↔ Meat (The chicken was overcooked)
• Tree (Plums have beautiful blossoms) ↔ Fruit (I ate a preserved plum yesterday)

While it can be useful to distinguish polysemy from homonymy, there is no hard
threshold for ‘how related’ two senses have to be to be considered polysemous. Thus
the difference is really one of degree. This fact can make it very difficult to decide
how many senses a word has, i.e., whether to make separate senses for closely related
usages. There are various criteria for deciding that the differing uses of a word should
be represented as distinct discrete senses. We might consider two senses discrete if
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they have independent truth conditions, different syntactic behavior, independent sense
relations, or exhibit antagonistic meanings.

Consider the following uses of the verbservefrom the WSJ corpus:

(19.7) They rarelyservered meat, preferring to prepare seafood, poultry or game birds.

(19.8) He servedas U.S. ambassador to Norway in 1976 and 1977.

(19.9) He might haveservedhis time, come out and led an upstanding life.

The serveof serving red meatand that ofserving timeclearly have different truth
conditions and presuppositions; theserveof serve as ambassadorhas the distinct sub-
categorization structureserve as NP. These heuristic suggests that these are probably
three distinct senses ofserve. One practical technique for determining if two senses are
distinct is to conjoin two uses of a word in a single sentence;this kind of conjunction
of antagonistic readings is calledzeugma. Consider the following ATIS examples:ZEUGMA

(19.10) Which of those flights serve breakfast?

(19.11) Does Midwest Express serve Philadelphia?

(19.12) ?Does Midwest Express serve breakfast and Philadelphia?

We use (?) to mark example those that are semantically ill-formed. The oddness of the
invented third example (a case of zeugma) indicates there isno sensible way to make
a single sense ofservework for both breakfast and Philadelphia. We can use this as
evidence thatservehas two different senses in this case.

Dictionaries tend to use many fine-grained senses so as to capture subtle meaning
differences, a reasonable approach given that traditionalrole of dictionaries in aiding
word learners. For computational purposes, we often don’t need these fine distinctions
and so we may want to group or cluster the senses; we have already done this for some
of the examples in this chapter.

We generally reserve the wordhomonym for two senses which share both a pro-
nunciation and an orthography. A special case of multiple senses that causes prob-
lems especially for speech recognition and spelling correction ishomophones. Homo-
phonesare senses that are linked to lemmas with the same pronunciation but differentHOMOPHONES

spellings, such aswood/would or to/two/too. A related problem for speech synthe-
sis arehomographs(Ch. 8). Homographsare distinct senses linked to lemmas withHOMOGRAPHS

the same orthographic form but different pronunciations, such as these homographs of
bass:

(19.13) The expert angler from Dora, Mo., was fly-casting forbassrather than the traditional
trout.

(19.14) The curtain rises to the sound of angry dogs baying and ominousbasschords
sounding.

How can we define the meaning of a word sense? Can we just look ina dictionary?
Consider the following fragments from the definitions ofright, left, red, andbloodfrom
theAmerican Heritage Dictionary(Morris, 1985).
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right adj. located nearer the right hand esp. being on the right when
facing the same direction as the observer.

left adj. located nearer to this side of the body than the right.
red n. the color of blood or a ruby.

blood n. the red liquid that circulates in the heart, arteries and veins of
animals.

Note the amount of circularity in these definitions. The definition of right makes
two direct references to itself, while the entry forleft contains an implicit self-reference
in the phrasethis side of the body, which presumably means theleftside. The entries for
redandbloodavoid this kind of direct self-reference by instead referencing each other
in their definitions. Such circularity is, of course, inherent in all dictionary definitions;
these examples are just extreme cases. For humans, such entries are still useful since
the user of the dictionary has sufficient grasp of these otherterms to make the entry in
question sensible.

For computational purposes, one approach to defining a senseis to make use of
a similar approach to these dictionary definitions; defininga sense via its relationship
with other senses. For example, the above definitions make itclear thatright andleft
are similar kinds of lemmas that stand in some kind of alternation, or opposition, to one
another. Similarly, we can glean thatred is a color, it can be applied to bothbloodand
rubies, and thatblood is a liquid. Sense relationsof this sort are embodied in on-line
databases likeWordNet. Given a sufficiently large database of such relations, many
applications are quite capable of performing sophisticated semantic tasks (even if they
do notreally know their right from their left).

A second computational approach to meaning representationis to create a small
finite set of semantic primitives, atomic units of meaning, and then create each sense
definition out of these primitives. This approach is especially common when defining
aspects of the meaning ofeventssuch assemantic roles.

We will explore both of these approaches to meaning in this chapter. In the next
section we introduce various relations between senses, followed by a discussion of
WordNet, a sense relation resource. We then introduce a number of meaning represen-
tation approaches based on semantic primitives such as semantic roles.

19.2 RELATIONS BETWEEN SENSES

This section explores some of the relations that hold among word senses, focusing on a
few that have received significant computational investigation: synonymy, antonymy,
andhypernymy, as well as a brief mention of other relations likemeronymy.

19.2.1 Synonymy and Antonymy

When the meaning of two senses of two different words (lemmas) are identical or
nearly identical we say the two senses aresynonyms. Synonyms include such pairs as:SYNONYM

couch/sofa vomit/throw up filbert/hazelnut car/automobile

A more formal definition of synonymy (between words rather than senses) is that
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two words are synonymous if they are substitutable one for the other in any sentence
without changing the truth conditions of the sentence. We often say in this case that
the two words have the samepropositional meaning.PROPOSITIONAL

MEANING

While substitutions between some pairs of words likecar/automobileor water/H2O
are truth-preserving, the words are still not identical in meaning. Indeed, probably no
two words are absolutely identical in meaning, and if we define synonymy as identical
meanings and connotations in all contexts, there are probably no absolute synonyms.
Many other facets of meaning that distinguish these words are important besides propo-
sitional meaning. For exampleH2O is used in scientific contexts, and would be inap-
propriate in a hiking guide; this difference in genre is partof the meaning of the word.
In practice the wordsynonymis therefore commonly used to describe a relationship of
approximate or rough synonymy.

Instead of talking about twowordsbeing synonyms, in this chapter we will define
synonymy (and other relations like hyponymy and meronymy) as a relation between
senses rather than between words. We can see the usefulness of this by considering the
wordsbig andlarge. These may seem to be synonyms in the following ATIS sentences,
in the sense that we could swapbig and large in either sentence and retain the same
meaning:

(19.15) How big is that plane?

(19.16) Would I be flying on a large or small plane?

But note the following WSJ sentence where we cannot substitute large for big:

(19.17) Miss Nelson, for instance, became a kind of big sister to Mrs.Van Tassel’s son,
Benjamin.

(19.18) ?Miss Nelson, for instance, became a kind of large sister to Mrs. Van Tassel’s son,
Benjamin.

That is because the wordbig has a sense that means being older, or grown up, while
large lacks this sense. Thus it will be convenient to say that some senses ofbig and
largeare (nearly) synonymous while other ones are not.

Synonyms are words with identical or similar meanings.Antonyms, by contrast,ANTONYM

are words with opposite meaning such as the following:

long/short big/little fast/slow cold/hot dark/light
rise/fall up/down in/out

It is difficult to give a formal definition of antonymy. Two senses can be antonyms
if they define a binary opposition, or are at opposite ends of some scale. This is the case
for long/short, fast/slow, or big/little, which are at opposite ends of thelengthor size
scale. Another groups of antonyms isreversives, which describe some sort of change
or movement in opposite directions, such asrise/fall or up/down.

From one perspective, antonyms have very different meanings, since they are op-
posite. From another perspective, they have very similar meanings, since they share
almost all aspects of their meaning except their position ona scale, or their direction.
Thus automatically distinguishing synonyms from antonymscan be difficult.
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19.2.2 Hyponymy

One sense is ahyponym of another sense if the first sense is more specific, denotingHYPONYM

a subclass of the other. For example,car is a hyponym ofvehicle; dog is a hyponym
of animal, andmangois a hyponym offruit. Conversely, we say thatvehicle is a
hypernym of car, andanimal is a hypernym ofdog. It is unfortunate that the twoHYPERNYM

words (hypernym and hyponym) are very similar and hence easily confused; for this
reason the wordsuperordinate is often used instead ofhypernym.SUPERORDINATE

superordinatevehicle fruit furniture mammal
hyponym car mango chair dog

We can define hypernymy more formally by saying that the classdenoted by the
superordinate extensionally includes the class denoted bythe hyponym. Thus the class
of animals includes as members all dogs, and the class of moving actions includes
all walking actions. Hypernymy can also be defined in terms ofentailment. Under
this definition, a senseA is a hyponym of a senseB if everything that isA is alsoB
and hence being anA entails being aB, or ∀x A(x) ⇒ B(x). Hyponymy is usually
a transitive relation; if A is a hyponym of B and B is a hyponym of C, then A is a
hyponym of C.

The concept of hyponymy is closely related to a number of other notions that play
central roles in computer science, biology, and anthropology and computer science.
The termontologyusually refers to a set of distinct objects resulting from ananalysis ofONTOLOGY

a domain, ormicroworld . A taxonomy is a particular arrangement of the elements ofTAXONOMY

an ontology into a tree-like class inclusion structure. Normally, there are a set of well-
formedness constraints on taxonomies that go beyond their component class inclusion
relations. For example, the lexemeshound, mutt, andpuppyare all hyponyms ofdog,
as aregolden retrieverandpoodle, but it would be odd to construct a taxonomy from
all those pairs since the concepts motivating the relationsis different in each case.
Instead, we normally use the wordtaxonomy to talk about the hypernymy relation
betweenpoodleanddog; by this definitiontaxonomy is a subtype of hypernymy.

19.2.3 Semantic Fields

So far we’ve seen the relations of synonymy, antonymy, hypernomy, and hyponymy.
Another very common relation ismeronymy, thepart-whole relation. Aleg is part ofMERONYMY

PARTWHOLE a chair; a wheelis part of acar. We say thatwheelis ameronym of car, andcar is a
MERONYM holoynm of wheel.
HOLOYNM But there is a more general way to think about sense relationsand word mean-

ing. Where the relations we’ve defined so far have been binaryrelations between two
senses, asemantic field is an attempt capture a more integrated, or holistic, relation-SEMANTIC FIELD

ship among entire sets of words from a single domain. Consider the following set of
words extracted from the ATIS corpus:

reservation, flight, travel, buy, price, cost, fare, rates,meal, plane

We could assert individual lexical relations of hyponymy, synonymy, and so on
between many of the words in this list. The resulting set of relations does not, however,
add up to a complete account of how these words are related. They are clearly all
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defined with respect to a coherent chunk of common sense background information
concerning air travel. Background knowledge of this kind has been studied under a
variety of frameworks and is known variously as aframe (Fillmore, 1985),model
(Johnson-Laird, 1983), orscript (Schank and Albelson, 1977), and plays a central role
in a number of computational frameworks.

We will discuss in Sec. 19.4.5 theFrameNetproject (Baker et al., 1998), which is
an attempt to provide a robust computational resource for this kind of frame knowledge.
In the FrameNet representation, each of the words in the frame is defined with respect
to the frame, and shares aspects of meaning with other frame words.

19.3 WORDNET: A DATABASE OF LEXICAL RELATIONS

The most commonly used resource for English sense relationsis theWordNet lexicalWORDNET

database (Fellbaum, 1998). WordNet consists of three separate databases, one each
for nouns and verbs, and a third for adjectives and adverbs; closed class words are not
included in WordNet. Each database consists of a set of lemmas, each one annotated
with a set of senses. The WordNet 3.0 release has 117,097 nouns, 11,488 verbs, 22,141
adjectives, and 4,601 adverbs. The average noun has 1.23 senses, and the average verb
has 2.16 senses. WordNet can be accessed via the web or downloaded and accessed
locally.

Parts of a typical lemma entry for the noun and adjectivebassare shown in Fig. 19.1.
Note that there are 8 senses for the noun and 1 for the adjective, each of which has a
gloss(a dictionary-style definition), a list of synonyms for the sense (called asynset),GLOSS

and sometimes also usage examples (as shown for the adjective sense). Unlike dic-
tionaries, WordNet doesn’t represent pronunciation, so doesn’t distinguish the pro-
nunciation [b ae s] inbass4, bass5, andbass8 from the other senses which have the
pronunciation [b ey s].

The set of near-synonyms for a WordNet sense is called asynset(for synonym set);SYNSET

synsets are an important primitive in WordNet. The entry forbassincludes synsets like
bass1, deep6, or bass6, bass voice1, basso2. We can think of a synset as representing
a conceptof the type we discussed in Ch. 17. Thus instead of representing concepts
using logical terms, WordNet represents them as a lists of the word-senses that can be
used to express the concept. Here’s another synset example:

{chump, fish, fool, gull, mark, patsy, fall guy,
sucker, schlemiel, shlemiel, soft touch, mug}

The gloss of this synset describes it asa person who is gullible and easy to take ad-
vantage of. Each of the lexical entries included in the synset can, therefore, be used
to express this concept. Synsets like this one actually constitute the senses associated
with WordNet entries, and hence it is synsets, not wordforms, lemmas or individual
senses, that participate in most of the lexical sense relations in WordNet.

Let’s turn now to these these lexical sense relations, some of which are illustrated
in Figures 19.2 and 19.3. For example the hyponymy relationsin WordNet correspond
directly to the notion of immediate hyponymy discussed on page 7. Each synset is
related to its immediately more general and more specific synsets via direct hypernym
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The noun “bass” has 8 senses in WordNet.
1. bass1 - (the lowest part of the musical range)
2. bass2, bass part1 - (the lowest part in polyphonic music)
3. bass3, basso1 - (an adult male singer with the lowest voice)
4. sea bass1, bass4 - (the lean flesh of a saltwater fish of the family Serranidae)
5. freshwater bass1, bass5 - (any of various North American freshwater fish with

lean flesh (especially of the genus Micropterus))
6. bass6, bass voice1, basso2 - (the lowest adult male singing voice)
7. bass7 - (the member with the lowest range of a family of musical instruments)
8. bass8 - (nontechnical name for any of numerous edible marine and

freshwater spiny-finned fishes)

The adjective “bass” has 1 sense in WordNet.
1. bass1, deep6 - (having or denoting a low vocal or instrumental range)

”a deep voice”; ”a bass voice is lower than a baritone voice”;
”a bass clarinet”

Figure 19.1 A portion of the WordNet 3.0 entry for the nounbass.

Relation Also called Definition Example
Hypernym SuperordinateFrom concepts to superordinates breakfast1 → meal1

Hyponym Subordinate From concepts to subtypes meal1 → lunch1

Member Meronym Has-Member From groups to their members faculty2 → professor1

Has-Instance From concepts to instances of the conceptcomposer1 → Bach1

Instance From instances to their concepts Austen1 → author1

Member Holonym Member-Of From members to their groups copilot1 → crew1

Part Meronym Has-Part From wholes to parts table2 → leg3

Part Holonym Part-Of From parts to wholes course7 → meal1

Antonym Opposites leader1 → follower1

Figure 19.2 Noun relations in WordNet.

Relation Definition Example
Hypernym From events to superordinate events fly9 → travel5

Troponym From a verb (event) to a specific manner elaboration of that verb walk1 → stroll1

Entails From verbs (events) to the verbs (events) they entail snore1 → sleep1

Antonym Opposites increase1 ⇐⇒ decrease1

Figure 19.3 Verb relations in WordNet.

and hyponym relations. These relations can be followed to produce longer chains of
more general or more specific synsets. Figure 19.4 shows hypernym chains forbass3

andbass7.
In this depiction of hyponymy, successively more general synsets are shown on

successive indented lines. The first chain starts from the concept of a human bass
singer. Its immediate superordinate is a synset corresponding to the generic concept
of a singer. Following this chain leads eventually to concepts such asentertainerand
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Sense 3
bass, basso --
(an adult male singer with the lowest voice)
=> singer, vocalist, vocalizer, vocaliser

=> musician, instrumentalist, player
=> performer, performing artist

=> entertainer
=> person, individual, someone...

=> organism, being
=> living thing, animate thing,

=> whole, unit
=> object, physical object

=> physical entity
=> entity

=> causal agent, cause, causal agency
=> physical entity

=> entity

Sense 7
bass --
(the member with the lowest range of a family of
musical instruments)
=> musical instrument, instrument

=> device
=> instrumentality, instrumentation

=> artifact, artefact
=> whole, unit

=> object, physical object
=> physical entity

=> entity

Figure 19.4 Hyponymy chains for two separate senses of the lemmabass. Note that
the chains are completely distinct, only converging at the very abstract levelwhole, unit.

person. The second chain, which starts from musical instrument, has a completely
different chain leading eventually to such concepts as musical instrument, device and
physical object. Both paths do eventually join at the very abstract synsetwhole, unit,
and then proceed together toentity which is the top (root) of the noun hierarchy (in
WordNet this root is generally called theunique beginner).UNIQUE BEGINNER

19.4 EVENT PARTICIPANTS: SEMANTIC ROLES AND SELECTIONAL

RESTRICTIONS

An important aspect of lexical meaning has to do with the semantics of events. When
we discussed events in Ch. 17, we introduced the importance of predicate-argument
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structure for representing an event, and in particular the use of Davidsonian reification
of events which let us represent each participant distinct from the event itself. We turn
in this section to representing the meaning of these eventparticipants. We introduce
two kinds of semantic constraints on the arguments of event predicates:semantic roles
andselectional restrictions, starting with a particular model of semantic roles called
thematic roles.

19.4.1 Thematic Roles

Consider how we represented the meaning of arguments in Ch. 17 for sentences like
these:

(19.19) Sasha broke the window.

(19.20) Pat opened the door.

A neo-Davidsonian event representation of these two sentences would be the fol-
lowing:

∃e,x,y Isa(e,Breaking)∧Breaker(e,Sasha)
∧BrokenThing(e,y)∧ Isa(y,Window)

∃e,x,y Isa(e,Opening)∧Opener(e,Pat)
∧OpenedThing(e,y)∧ Isa(y,Door)

In this representation, the roles of the subjects of the verbs breakand openare
BreakerandOpenerrespectively. Thesedeep rolesare specific to each possible kindDEEP ROLES

of event;Breakingevents haveBreakers, Openingevents haveOpeners, Eatingevents
haveEaters, and so on.

If we are going to be able to answer questions, perform inferences, or do any further
kinds of natural language understanding of these events, we’ll need to know a little
more about the semantics of these arguments.BreakersandOpenershave something
in common. They are both volitional actors, often animate, and they have direct causal
responsibility for their events.

Thematic roles are one attempt to capture this semantic commonality betweenTHEMATIC ROLE

BreakersandEaters. We say that the subjects of both these verbs areagents. ThusAGENTS

AGENT is the thematic role which represents an abstract idea such as volitional causa-
tion. Similarly, the direct objects of both these verbs, theBrokenThingandOpenedThing,
are both prototypically inanimate objects which are affected in some way by the action.
The thematic role for these participants istheme.THEME

Thematic roles are one of the oldest linguistic models, proposed first by the Indian
grammarian Panini sometime between the 7th and 4th centuries BCE. Their modern
formulation is due to Fillmore (1968) and Gruber (1965). Although there is no univer-
sally agreed-upon set of thematic roles, Figures 19.5 and 19.6 present a list of some
thematic roles which have been used in various computational papers, together with
rough definitions and examples.
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Thematic Role Definition
AGENT The volitional causer of an event
EXPERIENCER The experiencer of an event
FORCE The non-volitional causer of the event
THEME The participant most directly affected by an event
RESULT The end product of an event
CONTENT The proposition or content of a propositional event
INSTRUMENT An instrument used in an event
BENEFICIARY The beneficiary of an event
SOURCE The origin of the object of a transfer event
GOAL The destination of an object of a transfer event

Figure 19.5 Some commonly-used thematic roles with their definitions.

Thematic Role Example
AGENT The waiterspilled the soup.
EXPERIENCER Johnhas a headache.
FORCE The windblows debris from the mall into our yards.
THEME Only after Benjamin Franklin brokethe ice...
RESULT The French government has built aregulation-size baseball di-

amond...
CONTENT Mona asked“You met Mary Ann at a supermarket”?
INSTRUMENT He turned to poaching catfish, stunning themwith a shocking

device...
BENEFICIARY Whenever Ann Callahan makes hotel reservationsfor her boss...
SOURCE I flew in from Boston.
GOAL I droveto Portland.

Figure 19.6 Some prototypical examples of various thematic roles.

19.4.2 Diathesis Alternations

The main reason computational systems use thematic roles, and semantic roles in gen-
eral, is to act as a shallow semantic language that can let us make simple inferences
that aren’t possible from the pure surface string of words, or even the parse tree. For
example, if a document says thatCompany A acquired Company B, we’d like to know
that this answers the queryWas Company B acquired?despite the fact that the two
sentences have very different surface syntax. Similarly, this shallow semantics might
act as a useful intermediate language in machine translation.

Thus thematic roles are used in helping us generalize over different surface real-
izations of predicate arguments. For example while theAGENT is often realized as the
subject of the sentence, in other cases theTHEME can be the subject. Consider these
possible realizations of the thematic arguments of the verbbreak:

(19.21) John
AGENT

broke the window.
THEME
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(19.22) John
AGENT

broke the window
THEME

with a rock.
INSTRUMENT

(19.23) The rock
INSTRUMENT

broke the door.
THEME

(19.24) The window
THEME

broke.

(19.25) The window
THEME

was broken by John.
AGENT

The examples above suggest thatbreakhas (at least) the possible argumentsAGENT,
THEME, andINSTRUMENT. The set of thematic role arguments taken by a verb is of-
ten called thethematic grid, θ -grid, or case frame. We can also notice that thereTHEMATIC GRID

CASE FRAME are (among others) the following possibilities for the realization of these arguments of
break:

• AGENT:Subject,THEME:Object
• AGENT:Subject,THEME:Object ,INSTRUMENT:PPwith
• INSTRUMENT:Subject,THEME:Object
• THEME:Subject

It turns out that many verbs allow their thematic roles to be realized in various
syntactic positions. For example, verbs likegive can realize theTHEME and GOAL

arguments in two different ways:

(19.26) a. Doris
AGENT

gave the book
THEME

to Cary.
GOAL

b. Doris
AGENT

gave Cary
GOAL

the book.
THEME

These multiple argument structure realizations (the fact thatbreakcan takeAGENT,
INSTRUMENT, or THEME as subject, andgive can realize itsTHEME and GOAL in
either order) are calledverb alternations or diathesis alternations. The alternationVERB ALTERNATIONS

DIATHESIS
ALTERNATIONS we showed abovegive, thedative alternation, seems to occur with particular semantic

DATIVE ALTERNATION classes of verbs, including “verbs of future having” (advance, allocate, offer, owe),
“send verbs” (forward, hand, mail), “verbs of throwing” (kick, pass, throw), and so
on. Levin (1993) is a reference book which lists for a large set of English verbs the
semantic classes they belong to and the various alternations that they participate in.
These lists of verb classes have been incorporated into the online resource VerbNet
(Kipper et al., 2000).

19.4.3 Problems with Thematic Roles

Representing meaning at the thematic role level seems like it should be useful in dealing
with complications like diathesis alternations. But despite this potential benefit, it has
proved very difficult to come up with a standard set of roles, and equally difficult to
produce a formal definition of roles likeAGENT, THEME, or INSTRUMENT.

For example, researchers attempting to define role sets often find they need to frag-
ment a role likeAGENT or THEME into many specific roles. Levin and Rappaport Ho-
vav (2005) summarizes a number of such cases, such as the factthere seem to be at least
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two kinds ofINSTRUMENTS, intermediaryinstruments that can appear as subjects and
enablinginstruments that cannot:

(19.27)(19.28) The cook opened the jar with the new gadget.
(19.29) The new gadget opened the jar.

(19.30)(19.31) Shelly ate the sliced banana with a fork.
(19.32) *The fork ate the sliced banana.

In addition to the fragmentation problem, there are cases where we’d like to reason
about and generalize across semantic roles, but the finite discrete lists of roles don’t let
us do this.

Finally, it has proved very difficult to formally define the semantic roles. Consider
the AGENT role; most cases ofAGENTS are animate, volitional, sentient, causal, but
any individual noun phrase might not exhibit all of these properties.

These problems have led most research to alternative modelsof semantic roles. One
such model is based on defininggeneralized semantic rolesthat abstract over the spe-GENERALIZED

SEMANTIC ROLES

cific thematic roles. For examplePROTO-AGENT andPROTO-PATIENT are generalizedPROTOAGENT

PROTOPATIENT roles that express roughly agent-like and roughly patient-like meanings. These roles
are defined, not by necessary and sufficient conditions, but rather by a set of heuristic
features that accompany more agent-like or more patient-like meanings. Thus the more
an argument displays agent-like properties (intentionality, volitionality, causality, etc)
the greater likelihood the argument can be labeled aPROTO-AGENT. The more patient-
like properties (undergoing change of state, causally affected by another participant,
stationary relative to other participants, etc), the greater likelihood the argument can be
labeled aPROTO-PATIENT.

In addition to using proto-roles, many computational models avoid the problems
with thematic roles by defining semantic roles that are specific to a particular verb, or
specific to a particular set of verbs or nouns.

In the next two sections we will describe two commonly used lexical resources
which make use of some of these alternative versions of semantic roles. PropBank
uses both proto-roles and verb-specific semantic roles.FrameNetuses frame-specific
semantic roles.

19.4.4 The Proposition Bank

TheProposition Bank, generally referred to asPropBank, is a resource of sentencesPROPBANK

annotated with semantic roles. The English PropBank labelsall the sentences in the
Penn TreeBank; there is also a Chinese PropBank which labelssentences in the Penn
Chinese TreeBank. Because of the difficulty of defining a universal set of thematic
roles, the semantic roles in PropBank are defined with respect to an individual verb
sense. Each sense of each verb thus has a specific set of roles,which are given only
numbers rather than names:Arg0, Arg1 Arg2 , and so on. In general,Arg0 is used
to represent thePROTO-AGENT, andArg1 the PROTO-PATIENT; the semantics of the
other roles are specific to each verb sense. Thus theArg2 of one verb is likely to have
nothing in common with theArg2 of another verb.

Here are some slightly simplified PropBank entries for one sense each of the verbs
agreeandfall; the definitions for each role (“Other entity agreeing”, “amount fallen”)
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are informal glosses intended to be read by humans, rather than formal definitions of
the role.

(19.33) Framesetagree.01
Arg0: Agreer
Arg1: Proposition
Arg2: Other entity agreeing
Ex1: [Arg0 The group]agreed[Arg1 it wouldn’t make an offer unless it had

Georgia Gulf’s consent].
Ex2: [ArgM-Tmp Usually] [Arg0 John]agrees[Arg2 with Mary] [Arg1 on ev-

erything].

(19.34) fall.01 “move downward”
Arg1: Logical subject, patient, thing falling
Arg2: Extent, amount fallen
Arg3: start point
Arg4: end point, end state of arg1
ArgM-LOC: medium
Ex1: [Arg1 Sales]fell [Arg4 to $251.2 million] [Arg3 from $278.7 million].
Ex1: [Arg1 The average junk bond]fell [Arg2 by 4.2%] [ArgM-TMP in Octo-

ber].

Note that there is no Arg0 role forfall, because the normal subject offall is a
PROTO-PATIENT.

The PropBank semantic roles can be useful in recovering shallow semantic infor-
mation about verbal arguments. Consider the verbincrease:

(19.35) increase.01“go up incrementally”
Arg0: causer of increase
Arg1: thing increasing
Arg2: amount increased by, EXT, or MNR
Arg3: start point
Arg4: end point

A PropBank semantic role labeling would allow us to infer thecommonality in the
event structures of the following three examples, showing that in each caseBig Fruit
Co. is theAGENT, andthe price of bananasis theTHEME, despite the differing surface
forms.

(19.36) [Arg0 Big Fruit Co. ] increased [Arg1 the price of bananas].
(19.37) [Arg1 The price of bananas] was increased again [Arg0 by Big Fruit Co. ]
(19.38) [Arg1 The price of bananas] increased [Arg2 5%].

19.4.5 FrameNet

While making inferences about the semantic commonalities across different sentences
with increaseis useful, it would be even more useful if we could make such inferences
in many more situations, across different verbs, and also between verbs and nouns.

For example, we’d like to extract the similarity between these three sentences:

(19.39) [Arg1 The price of bananas] increased [Arg2 5%].
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(19.40) [Arg1 The price of bananas] rose [Arg2 5%].

(19.41) There has been a [Arg2 5%] rise [Arg1 in the price of bananas].

Note that the second example uses the different verbrise, and the third example
uses the noun rather than the verbrise. We’d like a system to recognize thatthe price
of bananasis what went up, and that5% is the amount it went up, no matter whether
the5%appears as the object of the verbincreasedor as a nominal modifier of the noun
rise.

TheFrameNetproject is another semantic role labeling project that attempts to ad-FRAMENET

dress just these kinds of problems (Baker et al., 1998; Lowe et al., 1997; Ruppenhofer
et al., 2006). Where roles in the PropBank project are specific to an individual verb,
roles in the FrameNet project are specific to aframe. A frame is a script-like struc-FRAME

ture, which instantiates a set of frame-specific semantic roles calledframe elements.FRAME ELEMENTS

Each word evokes a frame and profiles some aspect of the frame and its elements. For
example, thechangeposition on a scaleframe is defined as follows:

This frame consists of words that indicate the change of an Item’s position
on a scale (the Attribute) from a starting point (Initialvalue) to an end
point (Finalvalue).

Some of the semantic roles (frame elements) in the frame, separated intocore roles
andnon-core roles, are defined as follows (definitions are taken from the FrameNet
labelers guide (Ruppenhofer et al., 2006)).

Core Roles
ATTRIBUTE The ATTRIBUTE is a scalar property that the ITEM possesses.
DIFFERENCE The distance by which an ITEM changes its position on the

scale.
FINAL STATE A description that presents the ITEM’s state after the change in

the ATTRIBUTE’s value as an independent predication.
FINAL VALUE The position on the scale where the Item ends up.
INITIAL STATE A description that presents the ITEM’s state before the change

in the ATTRIBUTE’s value as an independent predication.
INITIAL VALUE The initial position on the scale from which the ITEM moves

away.
ITEM The entity that has a position on the scale.
VALUE RANGE A portion of the scale, typically identified by its end points,

along which the values of the ATTRIBUTE fluctuate.
Some Non-Core Roles

DURATION The length of time over which the change takes place.
SPEED The rate of change of the VALUE.
GROUP The GROUP in which an ITEM changes the value of an AT-

TRIBUTE in a specified way.

Here are some example sentences:

(19.42) [ ITEM Oil] rose[ATTRIBUTE in price] in price [DIFFERENCEby 2%].

(19.43) [ ITEM It] has increased[FINAL STATE to having them 1 day a month].

(19.44) [ ITEM Microsoft shares]fell [FINAL VALUE to 7 5/8].
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(19.45) [ ITEM Colon cancer incidence]fell [DIFFERENCEby 50%] [GROUP among men].

(19.46) a steadyincrease [ INITIAL VALUE from 9.5] [FINAL VALUE to 14.3] [ITEM in
dividends]

(19.47) a [DIFFERENCE5%] [ITEM dividend]increase...

Note from these example sentences that the frame includes target words likerise,
fall, andincrease. In fact, the complete frame consists of the following words:

VERBS: dwindle move soar escalation shift
advance edge mushroom swell explosion tumble
climb explode plummet swing fall
decline fall reach triple fluctuationADVERBS:
decrease fluctuate rise tumble gain increasingly
diminish gain rocket growth
dip grow shift NOUNS: hike
double increase skyrocket decline increase
drop jump slide decrease rise

FrameNet also codes relationships between frames and frameelements. Frames can
inherit from each other, and generalizations among frame elements in different frames
can be captured by inheritance as well. Other relations between frames like causa-
tion are also represented. Thus there is aCausechangeof position on a scaleframe
which is linked to theChangeof position on a scaleframe by thecauserelation, but
adds an AGENT role and is used for causative examples such as the following:

(19.48) [AGENT They] raised[ ITEM the price of their soda] [DIFFERENCEby 2%].

Together, these two frames would allow an understanding system to extract the
common event semantics of all the verbal and nominal causative and non-causative
usages.

Ch. 20 will discuss automatic methods for extracting various kinds of semantic
roles; indeed one main goal of PropBank and FrameNet is to provide training data for
such semantic role labeling algorithms.

19.4.6 Selectional Restrictions

Semantic roles gave us a way to express some of the semantics of an argument in its
relation to the predicate. In this section we turn to anotherway to express semantic
constraints on arguments. Aselectional restriction is a kind of semantic type con-
straint that a verb imposes on the kind of concepts that are allowed to fill its argument
roles. Consider the two meanings associated with the following example:

(19.49) I want to eat someplace that’s close toICSI.

There are two possible parses and semantic interpretationsfor this sentence. In the
sensible interpretationeat is intransitive and the phrasesomeplace that’s close toICSI

is an adjunct that gives the location of the eating event. In the nonsensicalspeaker-as-
Godzilla interpretation,eat is transitive and the phrasesomeplace that’s close toICSI

is the direct object and theTHEME of the eating, like the NPMalaysian foodin the
following sentences:

(19.50) I want to eat Malaysian food.
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How do we know thatsomeplace that’s close toICSI isn’t the direct object in this
sentence? One useful cue is the semantic fact that theTHEME of EATING events tends
to be something that isedible. This restriction placed by the verbeaton the filler of
its THEME argument, is called aselectional restriction. A selectional restriction is aSELECTIONAL

RESTRICTION

constraint on the semantic type of some argument.
Selectional restrictions are associated with senses, not entire lexemes. We can see

this in the following examples of the lexemeserve:

(19.51) Well, there was the time they served green-lipped mussels from New
Zealand.

(19.52) Which airlines serve Denver?

Example (19.51) illustrates the cooking sense ofserve, which ordinarily restricts its
THEME to be some kind foodstuff. Example (19.52) illustrates theprovides a com-
mercial service tosense ofserve, which constrains itsTHEME to be some type of ap-
propriate location. We will see in Ch. 20 that the fact that selectional restrictions are
associated with senses can be used as a cue to help in word sense disambiguation.

Selectional restrictions vary widely in their specificity.Note in the following ex-
amples that the verbimagineimpose strict requirements on itsAGENT role (restricting
it to humans and other animate entities) but places very few semantic requirements on
its THEME role. A verb likediagonalize, on the other hand, places a very specific con-
straint on the filler of itsTHEME role: it has to be a matrix, while the arguments of the
adjectivesodorlessare restricted to concepts that could possess an odor.

(19.53) In rehearsal, I often ask the musicians to imagine a tennis game.
(19.54) I cannot even imagine what this lady does all day. Radon is a naturally occurring

odorless gas that can’t be detected by human senses.

(19.55) To diagonalize a matrix is to find its eigenvalues.

These examples illustrate that the set of concepts we need torepresent selectional
restrictions (being a matrix, being able to possess an oder,etc) is quite open-ended.
This distinguishes selectional restrictions from other features for representing lexical
knowledge, like parts-of-speech, which are quite limited in number.

Representing Selectional Restrictions

One way to capture the semantics of selectional restrictions is to use and extend the
event representation of Ch. 17. Recall that the neo-Davidsonian representation of an
event consists of a single variable that stands for the event, a predicate denoting the
kind of event, and variables and relations for the event roles. Ignoring the issue of
the λ -structures, and using thematic roles rather than deep event roles, the semantic
contribution of a verb likeeatmight look like the following:

∃e,x,y Eating(e)∧Agent(e,x)∧Theme(e,y)

With this representation, all we know abouty, the filler of theTHEME role, is that it
is associated with anEatingevent via theThemerelation. To stipulate the selectional
restriction thaty must be something edible, we simply add a new term to that effect:

∃e,x,y Eating(e)∧Agent(e,x)∧Theme(e,y)∧ Isa(y,EdibleThing)
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Sense 1
hamburger, beefburger --
(a fried cake of minced beef served on a bun)
=> sandwich

=> snack food
=> dish

=> nutriment, nourishment, nutrition...
=> food, nutrient

=> substance
=> matter

=> physical entity
=> entity

Figure 19.7 Evidence from WordNet that hamburgers are edible.

When a phrase likeate a hamburgeris encountered, a semantic analyzer can form the
following kind of representation:

∃e,x,y Eating(e)∧Eater(e,x)∧Theme(e,y)∧ Isa(y,EdibleThing)
∧Isa(y,Hamburger)

This representation is perfectly reasonable since the membership ofy in the category
Hamburgeris consistent with its membership in the categoryEdibleThing, assuming a
reasonable set of facts in the knowledge base. Correspondingly, the representation for
a phrase such asate a takeoffwould be ill-formed because membership in an event-
like category such asTakeoffwould be inconsistent with membership in the category
EdibleThing.

While this approach adequately captures the semantics of selectional restrictions,
there are two practical problems with its direct use. First,using FOPC to perform
the simple task of enforcing selectional restrictions is overkill. There are far simpler
formalisms that can do the job with far less computational cost. The second problem
is that this approach presupposes a large logical knowledge-base of facts about the
concepts that make up selectional restrictions. Unfortunately, although such common
sense knowledge-bases are being developed, none currentlyhave the kind of scope
necessary to the task.

A more practical approach is to state selectional restrictions in terms of WordNet
synsets, rather than logical concepts. Each predicate simply specifies a WordNet synset
as the selectional restriction on each of its arguments. A meaning representation is
well-formed if the role filler word is a hyponym (subordinate) of this synset.

For ourate a hamburgerexample, for example, we could set the selectional restric-
tion on theTHEME role of the verbeat to the synset{food, nutrient}, glossed asany
substance that can be metabolized by an animal to give energyand build tissue: Luck-
ily, the chain of hypernyms forhamburgershown in Fig. 19.7 reveals that hamburgers
are indeed food. Again, the filler of a role need not match the restriction synset exactly,
it just needs to have the synset as one of its superordinates.

We can apply this approach to theTHEME roles of the verbsimagine, lift anddi-
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agonalize, discussed earlier. Let us restrictimagine’s THEME to the synset{entity},
lift ’s THEME to {physical entity} anddiagonalizeto {matrix}. This arrangement cor-
rectly permitsimagine a hamburgerand lift a hamburger, while also correctly ruling
outdiagonalize a hamburger.

Of course WordNet is unlikely to have the exactly relevant synsets to specify selec-
tional restrictions for all possible words of English; other taxonomies may also be used.
In addition, it is possible to learn selectional restrictions automatically from corpora.

We will return to selectional restrictions in Ch. 20 where weintroduce the extension
to selectional preferences, where a predicate can place probabilistic preferences rather
than strict deterministic constraints on its arguments.

19.5 PRIMITIVE DECOMPOSITION

Back at the beginning of the chapter, we said that one way of defining a word is to
decompose its meaning into a set of primitive semantics elements or features. We
saw one aspect of this method in our discussion of finite listsof thematic roles (agent,
patient, instrument, etc). We turn now to a brief discussionof how this kind of model,
calledprimitive decomposition, or componential analysis, could be applied to the
meanings of all words. Wierzbicka (1992, 1996) shows that this approach dates back
at least to continental philosophers like Descartes and Leibniz.

Consider trying to define words likehen, rooster, orchick. These words have some-
thing in common (they all describe chickens) and something different (their age and
sex). This can be represented by usingsemantic features, symbols which representSEMANTIC

FEATURES

some sort of primitive meaning:

hen +female, +chicken, +adult
rooster -female, +chicken, +adult
chick +chicken, -adult

A number of studies of decompositional semantics, especially in the computational
literature, have focused on the meaning of verbs. Consider these examples for the verb
kill :

(19.56) Jim killed his philodendron.

(19.57) Jim did something to cause his philodendron to become not alive.

There is a truth-conditional (‘propositional semantics’)perspective from which these
two sentences have the same meaning. Assuming this equivalence, we could represent
the meaning ofkill as:

(19.58) KILL (x,y)⇔ CAUSE(x, BECOME(NOT(ALIVE (y))))

thus using semantic primitives likedo, cause, become not, andalive.
Indeed, one such set of potential semantic primitives has been used to account for

some of the verbal alternations discussed in Sec. 19.4.2 (Lakoff, 1965; Dowty, 1979).
Consider the following examples.

(19.59) John opened the door.⇒ (CAUSE(John(BECOME(OPEN(door)))))
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(19.60) The door opened.⇒ (BECOME(OPEN(door)))

(19.61) The door is open.⇒ (OPEN(door))

The decompositional approach asserts that a single state-like predicate associated with
openunderlies all of these examples. The differences among the meanings of these ex-
amples arises from the combination of this single predicatewith the primitivesCAUSE

andBECOME.
While this approach to primitive decomposition can explainthe similarity between

states and actions, or causative and non-causative predicates, it still relies on having a
very large number of predicates likeopen. More radical approaches choose to break
down these predicates as well. One such approach to verbal predicate decomposition
is Conceptual Dependency(CD), a set of ten primitive predicates, shown in Fig. 19.8.CONCEPTUAL

DEPENDENCY

Primitive Definition
ATRANS The abstract transfer of possession or control from one entity to

another.
PTRANS The physical transfer of an object from one location to another
MTRANS The transfer of mental concepts between entities or within an

entity.
MBUILD The creation of new information within an entity.
PROPEL The application of physical force to move an object.
MOVE The integral movement of a body part by an animal.
INGEST The taking in of a substance by an animal.
EXPEL The expulsion of something from an animal.
SPEAK The action of producing a sound.
ATTEND The action of focusing a sense organ.

Figure 19.8 A set of conceptual dependency primitives.

Below is an example sentence along with itsCD representation. The verbbrought
is translated into the two primitivesATRANS andPTRANS to indicate the fact that the
waiter both physically conveyed the check to Mary and passedcontrol of it to her. Note
thatCD also associates a fixed set of thematic roles with each primitive to represent the
various participants in the action.

(19.62) The waiter brought Mary the check.

∃x,y Atrans(x)∧Actor(x,Waiter)∧Ob ject(x,Check)∧To(x,Mary)
∧Ptrans(y)∧Actor(y,Waiter)∧Ob ject(y,Check)∧To(y,Mary)

There are also sets of semantic primitives that cover more than just simple nouns
and verbs. The following list comes from Wierzbicka (1996):
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substantives: I , YOU, SOMEONE, SOMETHING, PEOPLE

mental predicates: THINK , KNOW, WANT, FEEL, SEE, HEAR

speech: SAY

determiners and quantifiers:THIS, THE SAME, OTHER, ONE, TWO,
MANY (MUCH), ALL , SOME, MORE

actions and events: DO, HAPPEN

evaluators: GOOD, BAD

descriptors: BIG, SMALL

time: WHEN, BEFORE, AFTER

space: WHERE, UNDER, ABOVE,
partonomy and taxonomy: PART (OF), KIND (OF)
movement, existence, life: MOVE, THERE IS, LIVE

metapredicates: NOT, CAN, VERY

interclausal linkers: IF, BECAUSE, LIKE

space: FAR, NEAR, SIDE, INSIDE, HERE

time: A LONG TIME , A SHORT TIME, NOW

imagination and possibility:IF... WOULD, CAN, MAYBE

Because of the difficulty of coming up with a set of primitivesthat can represent
all possible kinds of meanings, most current computationallinguistic work does not
use semantic primitives. Instead, most computational worktends to use the lexical
relations of Sec. 19.2 to define words.

19.6 ADVANCED CONCEPTS: METAPHOR

We use ametaphor when we refer to and reason about a concept or domain us-METAPHOR

ing words and phrases whose meanings come from a completely different domain.
Metaphor is similar tometonymy, which we introduced as the use of one aspect of
a concept or entity to refer to other aspects of the entity. InSec. 19.1 we introduced
metonymies like the following,

(19.63) Author (Jane Austen wrote Emma) ↔ Works of Author (I really love Jane Austen).

in which two senses of a polysemous word are systematically related. In metaphor, by
contrast, there is a systematic relation between two completely different domains of
meaning.

Metaphor is pervasive. Consider the following WSJ sentence:

(19.64) That doesn’t scare Digital, which has grown to be the world’ssecond-largest
computer maker by poaching customers of IBM’s mid-range machines.

The verbscaremeans ‘to cause fear in’, or ‘to cause to lose courage’. For this
sentence to make sense, it has to be the case that corporations can experience emotions
like fear or courage as people do. Of course they don’t, but wecertainly speak of them
and reason about them as if they do. We can therefore say that this use ofscareis based
on a metaphor that allows us to view a corporation as a person,which we will refer to
theCORPORATION AS PERSONmetaphor.
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This metaphor is neither novel nor specific to this use ofscare. Instead, it is a
fairly conventional way to think about companies and motivates the use ofresuscitate,
hemorrhageandmind in the following WSJ examples:

(19.65) Fuqua Industries Inc. said Triton Group Ltd., a company it helped
resuscitate, has begun acquiring Fuqua shares.

(19.66) And Ford washemorrhaging; its losses would hit $1.54 billion in 1980.

(19.67) But if it changed itsmind, however, it would do so for investment reasons,
the filing said.

Each of these examples reflects an elaborated use of the basicCORPORATION AS

PERSONmetaphor. The first two examples extend it to use the notion ofhealth to
express a corporation’s financial status, while the third example attributes a mind to a
corporation to capture the notion of corporate strategy.

Metaphorical constructs such asCORPORATION AS PERSONare known ascon-
ventional metaphors. Lakoff and Johnson (1980) argue that many if not most of theCONVENTIONAL

METAPHORS

metaphorical expressions that we encounter every day are motivated by a relatively
small number of these simple conventional schemas.

19.7 SUMMARY

This chapter has covered a wide range of issues concerning the meanings associated
with lexical items. The following are among the highlights:

• Lexical semanticsis the study of the meaning of words, and the systematic
meaning-related connections between words.

• A word senseis the locus of word meaning; definitions and meaning relations
are defined at the level of the word sense rather than wordforms as a whole.

• Homonymy is the relation between unrelated senses that share a form, while
polysemyis the relation between related senses that share a form.

• Synonymyholds between different words with the same meaning.

• Hyponymy relations hold between words that are in a class-inclusion relation-
ship.

• Semantic fieldsare used to capture semantic connections among groups of lex-
emes drawn from a single domain.

• WordNet is a large database of lexical relations for English words.

• Semantic rolesabstract away from the specifics of deep semantic roles by gen-
eralizing over similar roles across classes of verbs.

• Thematic roles are a model of semantic roles based on a single finite list of
roles. Other semantic role models include per-verb semantic roles lists and
proto-agent/proto-patient both of which are implemented inPropBank, and
per-frame role lists, implemented inFrameNet.

• Semanticselectional restrictionsallow words (particularly predicates) to post
constraints on the semantic properties of their argument words.
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• Primitive decomposition is another way to represent the meaning of word, in
terms of finite sets of sub-lexical primitives.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Cruse (2004) is a useful introductory linguistic text on lexical semantics. Levin and
Rappaport Hovav (2005) is a research survey covering argument realization and se-
mantic roles. Lyons (1977) is another classic reference. Collections describing com-
putational work on lexical semantics can be found in Pustejovsky and Bergler (1992),
Saint-Dizier and Viegas (1995) and Klavans (1995).

The most comprehensive collection of work concerning WordNet can be found in
Fellbaum (1998). There have been many efforts to use existing dictionaries as lexical
resources. One of the earliest was Amsler’s (1980, 1981) useof the Merriam Webster
dictionary. The machine readable version of Longman’s Dictionary of Contemporary
English has also been used (Boguraev and Briscoe, 1989). SeePustejovsky (1995),
Pustejovsky and Boguraev (1996), Martin (1986) and Copestake and Briscoe (1995),
inter alia, for computational approaches to the representation of polysemy. Puste-
jovsky’s theory of theGenerative Lexicon, and in particular his theory of thequaliaGENERATIVE

LEXICON

structure of words, is another way of accounting for the dynamic systematic polysemyQUALIA STRUCTURE

of words in context.
As we mentioned earlier, thematic roles are one of the oldestlinguistic models,

proposed first by the Indian grammarian Panini sometimes between the 7th and 4th
centuries BCE. Their modern formulation is due to Fillmore (1968) and Gruber (1965).
Fillmore’s work had a large and immediate impact on work in natural language pro-
cessing, as much early work in language understanding used some version of Fillmore’s
case roles (e.g., Simmons (1973, 1978, 1983)).

Work on selectional restrictions as a way of characterizingsemantic well-formedness
began with Katz and Fodor (1963). McCawley (1968) was the first to point out that se-
lectional restrictions could not be restricted to a finite list of semantic features, but had
to be drawn from a larger base of unrestricted world knowledge.

Lehrer (1974) is a classic text on semantic fields. More recent papers addressing
this topic can be found in Lehrer and Kittay (1992). Baker et al. (1998) describe ongo-
ing work on the FrameNet project.

The use of semantic primitives to define word meaning dates back to Leibniz; in
linguistics, the focus on componential analysis in semantics was due to ? (?). See Nida
(1975) for a comprehensive overview of work on componentialanalysis. Wierzbicka
(1996) has long been a major advocate of the use of primitivesin linguistic semantics;
Wilks (1975) has made similar arguments for the computational use of primitives in
machine translation and natural language understanding. Another prominent effort
has been Jackendoff’s Conceptual Semantics work (1983, 1990), which has also been
applied in machine translation (Dorr, 1993, 1992).

Computational approaches to the interpretation of metaphor include convention-
based and reasoning-based approaches. Convention-based approaches encode specific
knowledge about a relatively small core set of conventionalmetaphors. These represen-
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tations are then used during understanding to replace one meaning with an appropriate
metaphorical one (Norvig, 1987; Martin, 1990; Hayes and Bayer, 1991; Veale and
Keane, 1992; Jones and McCoy, 1992). Reasoning-based approaches eschew repre-
senting metaphoric conventions, instead modeling figurative language processing via
general reasoning ability, such as analogical reasoning, rather than as a specifically
language-related phenomenon. (Russell, 1976; Carbonell,1982; Gentner, 1983; Fass,
1988, 1991, 1997).

An influential collection of papers on metaphor can be found in Ortony (1993).
Lakoff and Johnson (1980) is the classic work on conceptual metaphor and metonymy.
Russell (1976) presents one of the earliest computational approaches to metaphor. Ad-
ditional early work can be found in DeJong and Waltz (1983), Wilks (1978) and Hobbs
(1979). More recent computational efforts to analyze metaphor can be found in Fass
(1988, 1991, 1997), Martin (1990), Veale and Keane (1992), Iverson and Helmreich
(1992), and Chandler (1991). Martin (1996) presents a survey of computational ap-
proaches to metaphor and other types of figurative language.

STILL NEEDS SOME UPDATES.

EXERCISES

19.1 Collect three definitions of ordinary non-technical English words from a dictio-
nary of your choice that you feel are flawed in some way. Explain the nature of the
flaw and how it might be remedied.

19.2 Give a detailed account of similarities and differences among the following set
of lexemes:imitation, synthetic, artificial, fake, andsimulated.

19.3 Examine the entries for these lexemes in WordNet (or some dictionary of your
choice). How well does it reflect your analysis?

19.4 The WordNet entry for the nounbat lists 6 distinct senses. Cluster these senses
using the definitions of homonymy and polysemy given in this chapter. For any senses
that are polysemous, give an argument as to how the senses arerelated.

19.5 Assign the various verb arguments in the following WSJ examples to their ap-
propriate thematic roles using the set of roles shown in Figure 19.6.

a. The intense heat buckled the highway about three feet.
b. He melted her reserve with a husky-voiced paean to her eyes.
c. But Mingo, a major Union Pacific shipping center in the 1890s, has melted away

to little more than the grain elevator now.

19.6 Using WordNet, describe appropriate selectional restrictions on the verbsdrink,
kiss, andwrite.

19.7 Collect a small corpus of examples of the verbsdrink, kiss, andwrite, and ana-
lyze how well your selectional restrictions worked.

19.8 Consider the following examples from (McCawley, 1968):
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My neighbor is a father of three.

?My buxom neighbor is a father of three.

What does the ill-formedness of the second example imply about how constituents
satisfy, or violate, selectional restrictions?

19.9 Find some articles about business, sports, or politics fromyour daily newspaper.
Identify as many uses of conventional metaphors as you can inthese articles. How
many of the words used to express these metaphors have entries in either WordNet or
your favorite dictionary that directly reflect the metaphor.

19.10 Consider the following example:

The stock exchange wouldn’t talk publicly, but a spokesman said a news confer-
ence is set for today to introduce a new technology product.

Assuming that stock exchanges are not the kinds of things that can literally talk, give a
sensible account for this phrase in terms of a metaphor or metonymy.

19.11 Choose an English verb that occurs in both FrameNet and PropBank. Com-
pare and contrast the FrameNet and PropBank representations of the arguments of the
verb.
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20
COMPUTATIONAL
LEXICAL SEMANTICS

To get a single right meaning is better than a ship-load of pearls,
To resolve a single doubt is like the bottom falling off the bucket.

Yuen Mei (1785) (translation by Arthur Waley)

The asphalt that Los Angeles is famous for occurs mainly on its freeways. But in the
middle of the city is another patch of asphalt, the La Brea tarpits, and this asphalt pre-
serves millions of fossil bones from the last of the Ice Ages of the Pleistocene Epoch.
One of these fossils is theSmilodon, or sabre-toothed tiger, instantly recognizable by
its long canines. Five million years ago or so, a completely different sabre-tooth tiger
calledThylacosmiluslived in Argentina and other parts of South America. Thylacos-
milus was a marsupial where Smilodon was a placental mammal,but had the same
long upper canines and, like Smilodon, had a protective boneflange on the lower jaw.
The similarity of these two mammals is one of many example of parallel or convergent
evolution, in which particular contexts or environments lead to the evolution of very
similar structures in different species (Gould, 1980).

The role of context is also important in the similarity of a less biological kind of
organism: the word. Suppose we wanted to decide if two words have similar mean-
ings. Not surprisingly, words with similar meanings often occur in similar contexts,
whether in terms of corpora (having similar neighboring words or syntactic structures
in sentences) or in terms of dictionaries and thesauruses (having similar definitions, or
being nearby in the thesaurus hierarchy). Thus similarity of context turns out to be an
important way to detect semantic similarity. Semantic similarity turns out to play an
important roles in a diverse set of applications including information retrieval, question
answering, summarization and generation, text classification, automatic essay grading
and the detection of plagiarism.

In this chapter we introduce a series of topics related to computing with word mean-
ings, orcomputational lexical semantics. Roughly in parallel with the sequence of
topics in Ch. 19, we’ll introduce computational tasks associated with word senses, re-
lations among words, and the thematic structure of predicate-bearing words. We’ll see
the role of important role of context and similarity of sensein each of these.

We begin withword sense disambiguation, the task of examining word tokens in
context and determining which sense of each word is being used. WSD is a task with
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a long history in computational linguistics, and as we will see, is a non-trivial under-
taking given the somewhat elusive nature of many word senses. Nevertheless, there
are robust algorithms that can achieve high levels of accuracy given certain reasonable
assumptions. Many of these algorithms rely on contextual similarity to help choose the
proper sense.

This will lead us natural to a consideration of the computation of word similarity
and other relations between words, including thehypernym, hyponym, andmeronym
WordNet relations introduced in Ch. 19. We’ll introduce methods based purely on
corpus similarity, and others based on structured resources such as WordNet.

Finally, we describe algorithms forsemantic role labeling, also known ascase role
or thematic role assignment. These algorithms generally use features extracted from
syntactic parses to assign semantic roles such asAGENT, THEME andINSTRUMENT to
the phrases in a sentence with respect to particular predicates.

20.1 WORD SENSE DISAMBIGUATION : OVERVIEW

Our discussion of compositional semantic analyzers in Ch. 18 pretty much ignored
the issue of lexical ambiguity. It should be clear by now thatthis is an unreasonable
approach. Without some means of selecting correct senses for the words in an input,
the enormous amount of homonymy and polysemy in the lexicon would quickly over-
whelm any approach in an avalanche of competing interpretations.

The task of selecting the correct sense for a word is calledword sense disambigua-
tion, or WSD. Disambiguating word senses has the potential to improve many naturalWORD SENSE

DISAMBIGUATION

WSD language processing tasks. As we’ll see in Ch. 25,machine translation is one area
where word sense ambiguities can cause severe problems; others includequestion-
answering, information retrieval , and text classification. The way that WSD is
exploited in these and other applications varies widely based on the particular needs
of the application. The discussion presented here ignores these application-specific
differences and focuses on the implementation and evaluation of WSD systems as a
stand-alone task.

In their most basic form, WSD algorithms take as input a word in context along
with a fixed inventory of potential word senses, and return the correct word sense for
that use. Both the nature of the input and the inventory of senses depends on the task.
For machine translation from English to Spanish, the sense tag inventory for an En-
glish word might be the set of different Spanish translations. If speech synthesis is our
task, the inventory might be restricted to homographs with differing pronunciations
such asbassandbow. If our task is automatic indexing of medical articles, the sense
tag inventory might be the set of MeSH (Medical Subject Headings) thesaurus entries.
When we are evaluating WSD in isolation, we can use the set of senses from a dictio-
nary/thesaurus resource like WordNet or LDOCE. Fig. 20.1 shows an example for the
wordbass, which can refer to a musical instrument or a kind of fish.1

1 The WordNet database includes 8 senses; we have arbitrarilyselected two for this example; we have
also arbitrarily selected one of the many possible Spanish names for fishes which could be used to translate
Englishsea-bass.
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WordNet Spanish Roget
Sense Translation Category Target Word in Context

bass4 lubina FISH/INSECT . . . fish as Pacific salmon and stripedbassand. . .
bass4 lubina FISH/INSECT . . . produce filets of smokedbassor sturgeon. . .
bass7 bajo MUSIC . . . exciting jazzbassplayer since Ray Brown. . .
bass7 bajo MUSIC . . . playbassbecause he doesn’t have to solo. . .

Figure 20.1 Possible definitions for the inventory of sense tags forbass.

It is useful to distinguish two variants of the generic WSD task. In the lexical
sampletask, a small pre-selected set of target words is chosen, along with an inventoryLEXICAL SAMPLE

of senses for each word from some lexicon. Since the set of words and the set of
senses is small,supervised machine learningapproaches are often used to handle
lexical sample tasks. For each word, a number of corpus instances (context sentences)
can be selected and hand-labeled with the correct sense of the target word in each.
Classifier systems can then be trained using these labeled examples. Unlabeled target
words in context can then be labeled using such a trained classifier. Early work in
word sense disambiguation focused solely on lexical sampletasks of this sort, building
word-specific algorithms for disambiguating single words like line, interest, or plant.

In contrast, in theall-words task systems are given entire texts and a lexicon withALLWORDS

an inventory of senses for each entry, and are required to disambiguate every content
word in the text. The all-words task is very similar to part-of-speech tagging, except
with a much larger set of tags, since each lemma has its own set. A consequence of this
larger set of tags is a serious data sparseness problem; there is unlikely to be adequate
training data for every word in the test set. Moreover, giventhe number of polysemous
words in reasonably-sized lexicons, approaches based on training one classifier per
term are unlikely to be practical.

In the following sections we explore the application of various machine learning
paradigms to word sense disambiguation. We begin with supervised learning, followed
by a section on how systems are standardly evaluated. We thenturn to a variety of
methods for dealing with the lack of sufficient day for fully-supervised training, in-
cluding dictionary-based approaches and bootstrapping techniques.

Finally, after we have introduced the necessary notions of distributional word sim-
ilarity in Sec. 20.7, we return in Sec. 20.10 to the problem ofunsupervised approaches
to sense disambiguation.

20.2 SUPERVISEDWORD SENSE DISAMBIGUATION

If we have data which has been hand-labeled with correct wordsenses, we can use
a supervised learningapproach to the problem of sense disambiguation. extracting
features from the text that are helpful in predicting particular senses, and then training
a classifier to assign the correct sense given these features. The output of training is
thus a classifier system capable of assigning sense labels tounlabeled words in context.

For lexical sampletasks, there are various labeled corpora for individual words,
consisting of context sentences labeled with the correct sense for the target word. These
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include theline-hard-servecorpus containing 4,000 sense-tagged examples ofline as
a noun,hard as an adjective andserveas a verb (Leacock et al., 1993) , and theinter-
estcorpus with 2,369 sense-tagged examples ofinterestas a noun (Bruce and Wiebe,
1994). TheSENSEVAL project has also produced a number of such sense-labeled lexi-
cal sample corpora (SENSEVAL-1 with 34 words from theHECTOR lexicon and corpus
(Kilgarriff and Rosenzweig, 2000; Atkins, 1993),SENSEVAL-2 and -3 with 73 and 57
target words, respectively (Palmer et al., 2001; Kilgarriff, 2001)).

For trainingall-word disambiguation tasks we use asemantic concordance, aSEMANTIC
CONCORDANCE

corpus in which each open-class word in each sentence is labeled with its word sense
from a specific dictionary or thesaurus. One commonly used corpus is SemCor, a subset
of the Brown Corpus consisting of over 234,000 words which were manually tagged
with WordNet senses (Miller et al., 1993; Landes et al., 1998). In addition, sense-
tagged corpora have been built for theSENSEVAL all-word tasks. TheSENSEVAL-3
English all-words test data consisted of 2081 tagged content word tokens, from 5,000
total running words of English from the WSJ and Brown corpora(Palmer et al., 2001).

20.2.1 Extracting Feature Vectors for Supervised Learning

The first step in supervised training is to extract a useful set of features that are predic-
tive of word senses. As Ide and Véronis (1998b) point out, the insight that underlies
all modern algorithms for word sense disambiguation was first articulated by Weaver
(1955) in the context of machine translation:

If one examines the words in a book, one at a time as through an opaque mask
with a hole in it one word wide, then it is obviously impossible to determine, one
at a time, the meaning of the words. [. . . ] But if one lengthensthe slit in the
opaque mask, until one can see not only the central word in question but also say
N words on either side, then if N is large enough one can unambiguously decide
the meaning of the central word. [. . . ] The practical question is : “What minimum
value of N will, at least in a tolerable fraction of cases, lead to the correct choice
of meaning for the central word?”

To extract useful features from such a window, a minimal amount of processing is
first performed on the sentence containing the window. This processing varies from
approach to approach but typically includes part-of-speech tagging, lemmatization or
stemming, and in some cases syntactic parsing to reveal information such as head
words and dependency relations. Context features relevantto the target word can then
be extracted from this enriched input. Afeature vectorconsisting of numeric or nom-FEATURE VECTOR

inal values is used to encode this linguistic information asan input to most machine
learning algorithms.

Two classes of features are generally extracted from these neighboring contexts:
collocational features and bag-of-words features. Acollocation is a word or phrase inCOLLOCATION

a position-specific relationship to a target word (i.e., exactly one word to the right, or
exactly 4 words to the left, and so on). Thuscollocational featuresencode informationCOLLOCATIONAL

FEATURES

aboutspecificpositions located to the left or right of the target word. Typical features
extracted for these context words include the word itself, the root form of the word,
and the word’s part-of-speech. Such features are effectiveat encoding local lexical and
grammatical information that can often accurately isolatea given sense.
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As an example of this type of feature-encoding, consider thesituation where we
need to disambiguate the wordbassin the following WSJ sentence:

(20.1) An electric guitar andbassplayer stand off to one side, not really part of the scene,
just as a sort of nod to gringo expectations perhaps.

A collocational feature-vector, extracted from a window oftwo words to the right and
left of the target word, made up of the words themselves and their respective parts-of-
speech, i.e.,

[wi−2,POSi−2,wi−1,POSi−1,wi+1,POSi+1,wi+2,POSi+2](20.2)

would yield the following vector:

[guitar, NN, and, CC, player, NN, stand, VB]

The second type of feature consists ofbag-of-wordsinformation about neighboring
words. Abag-of-wordsmeans an unordered set of words, ignoring their exact position.BAGOFWORDS

The simplest bag-of-words approach represents the contextof a target word by a vector
of features, each binary feature indicating whether a vocabulary wordw does or doesn’t
occur in the context. This vocabulary is typically preselected as some useful subset of
words in a training corpus. In most WSD applications, the context region surrounding
the target word is generally a small symmetric fixed size window with the target word
at the center. Bag-of-word features are effective at capturing the general topic of the
discourse in which the target word has occurred. This, in turn, tends to identify senses
of a word that are specific to certain domains. We generally don’t use stop-words
as features, and may also limit the bag-of-words to only consider a small number of
frequently used content words.

For example a bag-of-words vector consisting of the 12 most frequent content
words from a collection ofbasssentences drawn from the WSJ corpus would have
the following ordered word feature set:

[fishing, big, sound, player, fly, rod, pound, double, runs, playing, guitar, band]

Using these word features with a window size of 10, example (20.1) would be
represented by the following binary vector:

[0,0,0,1,0,0,0,0,0,0,1,0]

We’ll revisit the bag-of-words technique in Ch. 23 where we’ll see that it forms the
basis for thevector space modelof search in modern search engines.

Most approaches to sense disambiguation use both collocational and bag-of-words
features, either by joining them into one long vector, or by building a distinct classifier
for each feature type, and combining them in some manner.

20.2.2 Naive Bayes and Decision List Classifiers

Given training data together with the extracted features, any supervised machine learn-
ing paradigm can be used to train a sense classifier. We will restrict our discussion
here to the naive Bayes and decision list approaches, since they have been the focus of
considerable work in word sense disambiguation and have notyet been introduced in
previous chapters.
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Thenaive Bayes classifierapproach to WSD is based on the premise that choosingNAIVE BAYES
CLASSIFIER

the best sense ˆs out of the set of possible sensesS for a feature vector~f amounts to
choosing the most probable sense given that vector. In otherwords:

ŝ= argmax
s∈S

P(s|~f )(20.3)

As is almost always the case, it would be difficult to collect reasonable statistics for this
equation directly. To see this, consider that a simple binary bag of words vector defined
over a vocabulary of 20 words would have 220 possible feature vectors. It’s unlikely
that any corpus we have access to will provide coverage to adequately train this kind
of feature vector. To get around this problem we first reformulate our problem in the
usual Bayesian manner as follows:

ŝ= argmax
s∈S

P(~f |s)P(s)

P(~f )
(20.4)

Even this equation isn’t helpful enough, since the data available that associates spe-
cific vectors~f with each senses is also too sparse. However, what is available in greater
abundance in a tagged training set is information about individual feature-value pairs
in the context of specific senses. Therefore, we can make the independence assumption
that gives this method its name, and that has served us well inpart-of-speech tagging,
speech recognition, and probabilistic parsing —naively assume that the features are
independent of one another. Making this assumption that thefeatures areconditionally
independent given the word senseyields the following approximation forP(~f |s):

P(~f |s)≈
n

∏
j=1

P( f j |s)(20.5)

In other words, we can estimate the probability of an entire vector given a sense by the
product of the probabilities of its individual features given that sense. SinceP(~f ) is the
same for all possible senses, it does not effect the final ranking of senses, leaving us
with the following formulation of anaive Bayes classifier for WSD:

ŝ= argmax
s∈S

P(s)
n

∏
j=1

P( f j |s)(20.6)

Given this equation,training a naive Bayes classifier consists of estimating each
of these probabilities. (20.6) first requires an estimate for the prior probability of each
senseP(s). We get the maximum likelihood estimate of this probabilityfrom the sense-
tagged training corpus by counting the number of times the sensesi occurs and dividing
by the total count of the target wordwj (i.e. the sum of the instances of each sense of
the word). That is:

P(si) =
count(si ,wj )

count(wj)
(20.7)

We also need to know each of the individual feature probabilities P( f j |s). The
maximum likelihood estimate for these would be:

P( f j |s) =
count( f j ,s)

count(s)
(20.8)
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Thus, if a collocational feature such as [wi−2 = guitar] occurred 3 times for sense
bass1, and sense bass1 itself occurred 60 times in training, the MLE estimate isP( f j |s)=
0.05. Binary bag-of-word features are treated in a similar manner; we simply count the
number of times a given vocabulary item is present with each of the possible senses
and divide by the count for each sense.

With the necessary estimates in place, we can assign senses to words in context by
applying Equation (20.6). More specifically, we take the target word in context, extract
the specified features, computeP(s)∏n

j=1P( f j |s) for each sense, and return the sense
associated with the highest score. Note that in practice, the probabilities produced for
even the highest scoring senses will be dangerously low due to the various multipli-
cations involved; mapping everything to log-space and instead performing additions is
the usual solution.

The use of a simple maximum likelihood estimator means that in testing, when a
target word cooccurs with a word that it did not cooccur with in training, all of its
senses will receive a probability of zero. Smoothing is therefore essential to the whole
enterprise. Naive Bayes approaches to sense disambiguation generally use the simple
Laplace (add-one or add-k) smoothing discussed in Ch. 4.

One problem with naive Bayes and some other classifiers is that it’s hard for hu-
mans to examine their workings and understand their decisions. Decision lists and
decision trees are somewhat more transparent approaches that lend themselves to in-
spection. Decision list classifiersare equivalent to simple case statements in mostDECISION LIST

CLASSIFIERS

programming languages. In a decision list classifier, a sequence of tests is applied to
each target word feature vector. Each test is indicative of aparticular sense. If a test
succeeds, then the sense associated with that test is returned. If the test fails, then the
next test in the sequence is applied. This continues until the end of the list, where a
default test simply returns the majority sense.

Figure 20.2 shows a portion of a decision list for the task of discriminating the fish
sense ofbassfrom the music sense. The first test says that if the wordfish occurs
anywhere within the input context thenbass1 is the correct answer. If it doesn’t then
each of the subsequent tests is consulted in turn until one returns true; as with case
statements a default test that returns true is included at the end of the list.

Learning a decision list classifier consists of generating and ordering individual
tests based on the characteristics of the training data. There are a wide number of
methods that can be used to create such lists. In the approachused by Yarowsky (1994)
for binary homonym discrimination, each individual feature-value pair constitutes a
test. We can measure how much a feature indicates a particular sense by computing the
log-likelihood of the sense given the feature. The ratio between the log-likelihoods of
the two senses tells us how discriminative a feature is between senses:

∣

∣

∣

∣

Log

(

P(Sense1| fi)
P(Sense2| fi)

)

∣

∣

∣

∣

(20.9)

The decision list is then created from these tests by simply ordering the tests in the
list according to the log-likelihood ratio. Each test is checked in order and returns the
appropriate sense. This training method differs quite a bitfrom standard decision list
learning algorithms. For the details and theoretical motivation for these approaches see
Rivest (1987) or Russell and Norvig (1995).
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Rule Sense
fishwithin window ⇒ bass1

striped bass ⇒ bass1

guitar within window ⇒ bass2

bass player ⇒ bass2

pianowithin window ⇒ bass2

tenorwithin window ⇒ bass2

sea bass ⇒ bass1

play/V bass ⇒ bass2

river within window ⇒ bass1

violin within window ⇒ bass2

salmonwithin window ⇒ bass1

on bass ⇒ bass2

bass are ⇒ bass1

Figure 20.2 An abbreviated decision list for disambiguating the fish sense of bass from
the music sense. Adapted from Yarowsky (1997).

20.3 WSD EVALUATION , BASELINES, AND CEILINGS

Evaluating component technologies like WSD is always a complicated affair. In the
long term, we’re primarily interested in the extent to whichthey improve performance
in some end-to-end application such as information retrieval, question answering or
machine translation. Evaluating component NLP tasks embedded in end-to-end appli-
cations is calledextrinsic evaluation, task-basedevaluation,end-to-endevaluation,EXTRINSIC

EVALUATION

or in vivo evaluation. It is only with extrinsic evaluation that we cantell if a technologyIN VIVO

such as WSD is working in the sense of actually improving performance on some real
task.

Extrinsic evaluations are much more difficult and time-consuming to implement,
however, since they require integration into complete working systems. Furthermore,
an extrinsic evaluation may only tell us something about WSDin the context of the
application, and may not generalize to other applications.

For these reasons, WSD systems are typically developed and evaluated intrinsically.
In intrinsic or in vitro we treat a WSD component as if it were a stand-alone systemINTRINSIC

IN VITRO operating independently of any given application. In this style of evaluation, systems
are evaluated either using exact matchsense accuracy: the percentage of words that areSENSE ACCURACY

tagged identically with the hand-labeled sense tags in a test set; or with standard pre-
cision and recall measures if systems are permitted to pass on labeling some instances.
In general, we evaluate using held out data from the same sense-tagged corpora that we
used for training, such as the SemCor corpus discussed above, or the various corpora
produced by theSENSEVAL effort.

Many aspects of sense evaluation have been standardized by theSENSEVAL/SEMEVAL

efforts (Palmer et al., 2006; Kilgarriff and Palmer, 2000).This framework provides a
shared task with training and testing materials along with sense inventories for all-
words and lexical sample tasks in a variety of languages.
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Whichever WSD task we are performing, we ideally need two additional measures
to assess how well we’re doing: a baseline measure to tell usehow well we’re doing as
compared to relatively simple approaches, and a ceiling to tell us how close we are to
optimal performance.

The simplest baseline is to choose themost frequent sensefor each word (GaleMOST FREQUENT
SENSE

et al., 1992b) from the senses in a labeled corpus. For WordNet, this corresponds to
the take the first senseheuristic, since senses in WordNet are generally ordered fromTAKE THE FIRST

SENSE

most-frequent to least-frequent. WordNet sense frequencies come from the SemCor
sense-tagged corpus described above.

Unfortunately, many WordNet senses do not occur in SemCor; these unseen senses
are thus ordered arbitrarily after those that do. The four WordNet senses of the noun
plant, for example, are as follows:

Freq Synset Gloss
338 plant1, works, industrial plantbuildings for carrying on industrial labor

207 plant2, flora, plant life a living organism lacking the power of locomotion

2 plant3 something planted secretly for discovery by another

0 plant4 an actor situated in the audience whose acting is rehearsed but
seems spontaneous to the audience

The most frequent sense baseline can be quite accurate, and is therefore often used
as a default, to supply a word sense when a supervised algorithm has insufficient train-
ing data. A second commonly used baseline is theLesk algorithm, discussed in the
next section.

Human inter-annotator agreement is generally considered as a ceiling, or upper
bound, for sense disambiguation evaluations. Human agreement is measured by com-
paring the annotations of two human annotators on the same data given the same tag-
ging guidelines. The ceiling (inter-annotator agreement)for many all-words corpora
using WordNet-style sense inventories seems to range from about 75% to 80% (Palmer
et al., 2006). Agreement on more coarse grained, often binary, sense inventories is
closer to 90% (Gale et al., 1992b).

While using hand-labeled test sets is the best current method for evaluation, label-
ing large amounts of data is still quite expensive. For supervised approaches, we need
this data anyhow for training so the effort to label large amounts of data seems justified.
But for unsupervised algorithms like those we will discuss in Sec. 20.10, it would be
nice to have an evaluation method that avoided hand labeling. The use ofpseudowordsPSEUDOWORDS

is one such simplified evaluation method (Gale et al., 1992a;Schütze, 1992a). A pseu-
doword is an artificial word created by concatenating two randomly-chosen words to-
gether (e.g.,bananaanddoor to createbanana-door.) Each occurrence of the two
words in the test set is replaced by the new concatenation, creating a new ‘word’ which
is now ambiguous between the sensesbananaanddoor. The ‘correct sense’ is defined
by the original word, and so we can apply our disambiguation algorithm and compute
accuracy as usual. In general, pseudowords give an overly optimistic measure of perfor-
mance, since they are a bit easier to disambiguate than average ambiguous words. This
is because the different senses of real words tend to be similar, while pseudowords are
generally not semantically similar, acting like homonymous but not polysemous words
(Gaustad, 2001). Nakov and Hearst (2003) shows that it is possible to improve the
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accuracy of pseudoword evaluation by more carefully choosing the pseudowords.

20.4 WSD: DICTIONARY AND THESAURUSMETHODS

Supervised algorithms based on sense-labeled corpora are the best performing algo-
rithms for sense disambiguation. However, such labeled training data is expensive and
limited and supervised approaches fail on words not in the training data. Thus this sec-
tion and the next describe different ways to get indirect supervision from other sources.
In this section, we describe methods for using a dictionary or thesaurus as an indirect
kind of supervision; the next section describes bootstrapping approaches.

20.4.1 The Lesk Algorithm

By far the most well-studied dictionary-based algorithm for sense disambiguation is
theLesk algorithm, really a family of algorithms that choose the sense whose dictio-LESK ALGORITHM

nary gloss or definition shares the most words with the targetword’s neighborhood.
Fig. 20.3 shows the simplest version of the algorithm, oftencalled theSimplified LeskSIMPLIFIED LESK

algorithm (Kilgarriff and Rosenzweig, 2000).

function SIMPLIFIED LESK(word, sentence) returns best sense ofword

best-sense←most frequent sense forword
max-overlap←0
context←set of words insentence
for each sensein senses ofword do
signature←set of words in the gloss and examples ofsense
overlap←COMPUTEOVERLAP(signature,context)
if overlap> max-overlapthen

max-overlap←overlap
best-sense←sense

end
return (best-sense)

Figure 20.3 The Simplified Lesk Algorithm. The COMPUTEOVERLAP function returns
the number of words in common between two sets, ignoring function words or other words
on a stop list. The original Lesk algorithm defines thecontextin a more complex way. The
Corpus Leskalgorithm weights each overlapping wordw by its− logP(w), and includes
labeled training corpus data in thesignature.

As an example of the Lesk algorithm at work, consider disambiguating the word
bankin the following context:

(20.10) Thebank can guarantee deposits will eventually cover future tuition costs because it
invests in adjustable-rate mortgage securities.

given the following two WordNet senses:
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bank1 Gloss: a financial institution that accepts deposits and channels the money into
lending activities

Examples: “he cashed a check at the bank”, “that bank holds the mortgageon my
home”

bank2 Gloss: sloping land (especially the slope beside a body of water)
Examples: “they pulled the canoe up on the bank”, “he sat on the bank of the river

and watched the currents”

Sensebank1 has two (non-stop) words overlapping with the context in (20.10):
depositsandmortgage, while sense bank2 has zero, so sensebank1 is chosen.

There are many obvious extensions to Simplified Lesk. The original Lesk algorithm
(Lesk, 1986) is slightly more indirect. Instead of comparing a target word’s signature
with the context words, the target signature is compared with the signatures of each of
the context words. For example, consider Lesk’s example of selecting the appropriate
sense ofconein the phrasepine conegiven the following definitions forpineandcone.

pine 1 kinds of evergreen tree with needle-shaped leaves
2 waste away through sorrow or illness

cone 1 solid body which narrows to a point
2 something of this shape whether solid or hollow
3 fruit of certain evergreen trees

In this example, Lesk’s method would selectcone3 as the correct sense since two of the
words in its entry,evergreenandtree, overlap with words in the entry forpine, whereas
neither of the other entries have any overlap with words in the definition ofpine. In
general Simplified Lesk seems to work better than original Lesk.

The primary problem with either the original or simplified approaches, however, is
that the dictionary entries for the target words are short, and may not provide enough
chance of overlap with the context.2 One remedy is to expand the list of words used in
the classifier to include words related to, but not containedin their individual sense def-
initions. But the best solution, if any sense-tagged corpusdata like SemCor is available,
is to add all the words in the labeled corpus sentences for a word sense into the signa-
ture for that sense. This version of the algorithm, theCorpus Lesk algorithm is theCORPUS LESK

best-performing of all the Lesk variants (Kilgarriff and Rosenzweig, 2000; Vasilescu
et al., 2004) and is used as a baseline in theSENSEVAL competitions. Instead of just
counting up the overlapping words, theCorpus Lesk algorithm also applies a weight
to each overlapping word. The weight is theinverse document frequencyor IDF ,INVERSE DOCUMENT

FREQUENCY

IDF a standard information-retrieval measure to be introducedin Ch. 23. IDF measures
how many different ’documents’ (in this case glosses and examples) a word occurs in
(Ch. 23) and is thus a way of discounting function words. Since function words like
the, of, etc, occur in many documents, their IDF is very low, while the IDF of content
words is high. Corpus Lesk thus uses IDF instead of a stoplist.

Formally the IDF for a wordi can be defined as

idfi = log

(

Ndoc
ndi

)

(20.11)

2 Indeed, Lesk (1986) notes that the performance of his systemseems to roughly correlate with the length
of the dictionary entries.
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whereNdocis the total number of ‘documents’ (glosses and examples) and ndi is the
number of these documents containing wordi.

Finally, it is possible to combine the Lesk and supervised approaches, by adding
new Lesk-like bag-of-words features. For example, the glosses and example sentences
for the target sense in WordNet could be used to compute the supervised bag-of-words
features instead of (or in addition to) the words in the SemCor context sentence for the
sense (Yuret, 2004).

20.4.2 Selectional Restrictions and Selectional Preferences

One of the earliest knowledge-sources for sense disambiguation is the notion ofselec-
tional restrictions defined in Ch. 19. For example the verbeatmight have a restriction
that itsTHEME argument be[+FOOD] . In early systems, selectional restrictions were
used to rule out senses that violate the selectional restrictions of neighboring words
(Katz and Fodor, 1963; Hirst, 1987). Consider the followingpair of WSJ examples of
the worddish:

(20.12) “In our house, everybody has a career and none of them includes washingdishes,” he
says.

(20.13) In her tiny kitchen at home, Ms. Chen works efficiently, stir-frying several simple
dishes, including braised pig’s ears and chicken livers with greenpeppers.

These correspond to WordNetdish1 (a piece of dishware normally used as a con-
tainer for holding or serving food), with hypernyms likeartifact, anddish2 (a particular
item of prepared food) with hypernyms likefood.

The fact that we perceive no ambiguity in these examples can be attributed to the
selectional restrictions imposed bywashandstir-fry on theirTHEME semantic roles.
The restrictions imposed bywash(perhaps [+WASHABLE]) conflict with dish2. The
restrictions onstir-fry ([+EDIBLE]) conflict with dish1. In early systems, the predicate
strictly selected the correct sense of an ambiguous argument by eliminating the sense
that fails to match one of its selectional restrictions. Butsuch hard constraints have
a number of problems. The main problem is that selectional restriction violations of-
ten occur in well-formed sentences, either because they arenegated as in (20.14), or
because selectional restrictions are overstated as in (20.15):

(20.14) But it fell apart in 1931, perhaps because people realized you can’teatgold for lunch
if you’re hungry.

(20.15) In his two championship trials, Mr. Kulkarniateglass on an empty stomach,
accompanied only by water and tea.

As Hirst (1987) observes, examples like these often result in the elimination of all
senses, bringing semantic analysis to a halt. Modern modelsthus adopt the view of se-
lectional restrictions as preferences, rather than rigid requirements. Although there
have been many instantiations of this approach over the years (e.g., Wilks, 1975c,
1975b, 1978), we’ll discuss a member of the popular probabilistic or information-
theoretic family of approaches: Resnik’s (1997) model ofselectional association.

Resnik first defines theselectional preference strengthas the general amount of
SELECTIONAL
PREFERENCE

STRENGTH

information that a predicate tells us about the semantic class of its arguments. For
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example, the verbeat tells us a lot about the semantic class of its direct object, since
they tend to be edible. The verbbe, by contrast, tells us less about its direct objects.
The selectional preference strength can be defined by the difference in information
between two distributions: the distribution of expected semantic classesP(c) (how
likely is it that a direct object will fall into classc) and the distribution of expected
semantic classes for the particular verbP(c|v) (how likely is it that the direct object of
specific verbv will fall into semantic classc). The greater the difference between these
distributions, the more information the verb is giving us about possible objects. This
difference can be quantified by therelative entropy between these two distributions, orRELATIVE ENTROPY

Kullback-Leibler divergence (Kullback and Leibler, 1951). The Kullback-Leibler orKULLBACKLEIBLER
DIVERGENCE

KL divergenceD(P||Q) can be used to express the difference between two probability
distributionsP andQ, and will be discussed further when we discuss word similarity
in Equation (20.50).

D(P||Q) = ∑
x

P(x) log
P(x)
Q(x)

(20.16)

The selectional preferenceSR(v) uses the KL divergence to express how much in-
formation, in bits, the verbv expresses about the possible semantic class of its argu-
ment.

SR(v) = D(P(c|v)||P(c))

= ∑
c

P(c|v) log
P(c|v)
P(c)

(20.17)

Resnik then defines theselectional associationof a particular class and verb as theSELECTIONAL
ASSOCIATION

relative contribution of that class to the general selectional preference of the verb:

AR(v,c) =
1

SR(p)
P(c|v) log

P(c|v)
P(c)

(20.18)

The selectional association is thus a probabilistic measure of the strength of associ-
ation between a predicate and a class dominating the argument to the predicate. Resnik
estimates the probabilities for these associations by parsing a corpus, counting all the
times each predicate occurs with each argument word, and assuming that each word is
a partial observation of all the WordNet concepts containing the word. The following
table from Resnik (1996) shows some sample high and low selectional associations for
verbs and some WordNet semantic classes of their direct objects.

Direct Object Direct Object
Verb Semantic Class AssocSemantic Class Assoc
read WRITING 6.80 ACTIVITY -.20
write WRITING 7.26 COMMERCE 0
see ENTITY 5.79 METHOD -0.01

Resnik (1998) shows that these selectional associations can be used to perform a
limited form of word sense disambiguation. Roughly speaking the algorithm selects as
the correct sense for an argument the one that has the highestselectional association
between one of its ancestor hypernyms and the predicate.
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While we have presented only the Resnik model of selectionalpreferences, there
are other more recent models, using probabilistic methods and using other relations
than just direct object; see the end of the chapter for a briefsummary. In general,
selectional restriction approaches perform as well as other unsupervised approaches at
sense disambiguation, but not as well as Lesk or as supervised approaches.

20.5 MINIMALLY SUPERVISEDWSD: BOOTSTRAPPING

Both the supervised approach and the dictionary-based approach to WSD require large
hand-built resources; supervised training sets in one case, large dictionaries in the other.
We can instead usebootstrapping algorithms, often calledsemi-supervised learningBOOTSTRAPPING

or minimally supervised learning, which need only a very small hand-labeled training
set. The most widely emulated bootstrapping algorithm for WSD is theYarowsky
algorithm (Yarowsky, 1995).YAROWSKY

ALGORITHM

The goal of the Yarowsky algorithm is to learn a classifier fora target word (in a
lexical-sample task). The algorithm is given a small seed-set Λ0 of labeled instances
of each sense, and a much larger unlabeled corpusV0. The algorithm first trains an
initial decision-list classifier on the seed-setΛ0. It then uses this classifier to label
the unlabeled corpusV0. The algorithm then selects the examples inV0 that it is most
confident about, removes them, and adds them to the training set (call it nowΛ1). The
algorithm then trains a new decision list classifier (a new set of rules) onΛ1, and iterates
by applying the classifier to the now-smaller unlabeled setV1, extracting a new training
setΛ2 and so on. With each iteration of this process, the training corpus grows and the
untagged corpus shrinks. The process is repeated until somesufficiently low error-rate
on the training set is reached, or until no further examples from the untagged corpus
are above threshold.

The key to any bootstrapping approach lies in its ability to create a larger training
set from a small set of seeds. This requires an accurate initial set of seeds and a good
confidence metric for picking good new examples to add to the training set. The confi-
dence metric used by Yarowsky (1995) is the measure described earlier in Sec. 20.2.2,
the log-likelihood ratio of the decision-list rule that classified the example.

One way to generate the initial seeds is to hand-label a smallset of examples
(Hearst, 1991). Instead of hand-labeling, it is also possible to use a heuristic to auto-
matically select accurate seeds. Yarowsky (1995) used theOne Sense per CollocationONE SENSE PER

COLLOCATION

heuristic, which relies on the intuition that certain wordsor phrases strongly associated
with the target senses tend not to occur with the other sense.Yarowsky defines his seed
set by choosing a single collocation for each sense. As an illustration of this technique,
consider generating seed sentences for the fish and musical senses ofbass. Without too
much thought, we might come up withfishas a reasonable indicator ofbass1, andplay
as a reasonable indicator ofbass2. Figure 20.5 shows a partial result of such a search
for the strings “fish” and “play” in a corpus ofbassexamples drawn from the WSJ.

We can also suggest collocates automatically, for example extracting words from
machine readable dictionary entries, and selecting seeds using collocational statistics
such as those described in Sec. 20.7 (Yarowsky, 1995).
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Figure 20.4 The Yarowsky algorithm disambiguating ’plant’ at two stages; ’?’ indicates an unlabeled obser-
vation, A and B are observations labeled as SENSE-A or SENSE-B. ‘LIFE’ indicates observations occur with
collocate “life”. The initial stage (a) shows only seed sentencesΛ0 labeled by collocates (‘life’ and ’manu-
facturing’). An intermediate stage is shown in (b) where more collocates have been discovered (‘equipment’,
‘microscopic’, etc) and more instances inV0 have been moved intoΛ1, leaving a smaller unlabeled setV1. Figure
adapted from Yarowsky (1995).

We need more good teachers – right now, there are only a half a dozen who canplay the
freebasswith ease.

An electric guitar andbass player stand off to one side, not really part of the scene, just as
a sort of nod to gringo expectations perhaps.

When the New Jersey Jazz Society, in a fund-raiser for the American Jazz Hall of Fame,
honors this historic night next Saturday, Harry Goodman, Mr. Goodman’s brother and
bass player at the original concert, will be in the audience with otherfamily members.
The researchers said the worms spend part of their life cyclein suchfish as Pacific salmon
and stripedbassand Pacific rockfish or snapper.

And it all started whenfishermen decided the stripedbassin Lake Mead were too skinny.

Though still a far cry from the lake’s record 52-poundbassof a decade ago, “you could
fillet thesefish again, and that made people very, very happy,” Mr. Paulson says.

Figure 20.5 Samples ofbasssentences extracted from the WSJ using the simple corre-
latesplay andfish.

The original Yarowsky algorithm also makes use of a second heuristic, calledOne
Sense Per Discourse, based on the work of Gale et al. (1992c), who noticed that aONE SENSE PER

DISCOURSE

particular word appearing multiple times in a text or discourse often appeared with the
same sense. Yarowsky (1995), for example, showed in a corpusof 37,232 examples
that every time the wordbassoccurred more than once in a discourse, that it occurred
in only thefishor only themusiccoarse-grain sense throughout the discourse. The va-
lidity of this heuristic depends on the granularity of the sense inventory and is not valid
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in every discourse situation; it seems to be true mostly for coarse-grain senses, and
particularly for cases of homonymy rather than polysemy (Krovetz, 1998). Nonethe-
less, it has still been useful in a number of unsupervised andsemi-supervised sense
disambiguation situations.

20.6 WORD SIMILARITY : THESAURUSMETHODS

We turn now to the computation of various semantic relationsthat hold between words.
We saw in Ch. 19 that such relations include synonymy, antonymy, hyponymy, hyper-
nymy, and meronymy. Of these, the one that has been most computationally developed
and has the greatest number of applications is the idea of word synonymyandsimilar-
ity .

Synonymy is a binary relation between words; two words are either synonyms or
not. For most computational purposes we use instead a loosermetric ofword similar-
ity or semantic distance. Two words are more similar if they share more features ofWORD SIMILARITY

SEMANTIC DISTANCE meaning, or are near-synonyms. Two words are less similar, or have greater semantic
distance, if they have fewer common meaning elements. Although we have described
them as relations between words, synonymy, similarity, anddistance are actually rela-
tions between wordsenses. For example of the two senses ofbank, we might say that
the financial sense is similar to one of the senses offund while the riparian sense is
more similar to one of the senses ofslope. In the next few sections of this chapter, we
will need to compute these relations over both words and senses.

The ability to compute word similarity is a useful part of many language under-
standing applications. Ininformation retrieval or question answeringwe might want
to retrieve documents whose words have similar meanings to the query words. Insum-
marization, generation, and machine translation, we need to know whether two
words are similar to know if we can substitute one for the other in particular contexts.
In language modeling, we can use semantic similarity to cluster words for class-based
models. One interesting class of applications for word similarity is automatic grading
of student responses. For example algorithms forautomatic essay gradinguse word
similarity to determine if an essay is similar in meaning to acorrect answer. We can
also use word-similarity as part of an algorithm totakean exam, such as a multiple-
choice vocabulary test. Automatically taking exams is useful in test designs in order to
see how easy or hard a particular multiple-choice question or exam is.

There are two classes of algorithms for measuring word similarity. This section
focuses onthesaurus-basedalgorithms, in which we measure the distance between
two senses in an on-line thesaurus like WordNet or MeSH. The next section focuses on
distributional algorithms, in which we estimate word similarity by finding words that
have similar distributions in a corpus.

The thesaurus-based algorithms use the structure of the thesaurus to define word
similarity. In principle we could measure similarity usingany information available
in a thesaurus (meronymy, glosses, etc). In practice, however, thesaurus-based word
similarity algorithms generally use only the hypernym/hyponym (is-aor subsumption)
hierarchy. In WordNet, verbs and nouns are in separate hypernym hierarchies, so a
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thesaurus-based algorithm for WordNet can thus only compute noun-nounsimilarity, or
verb-verb similarity; we can’t compare nouns to verbs, or doanything with adjectives
or other parts of speech.

Resnik (1995) and Budanitsky and Hirst (2001) draw the important distinction be-
tweenword similarity andword relatedness. Two words are similar if they are near-WORD

RELATEDNESS

synonyms, or roughly substitutable in context. Word relatedness characterizes a larger
set of potential relationships between words; antonyms, for example, have high relat-
edness, but low similarity. The wordscar andgasolineare very related, but not similar,
while carandbicycleare similar. Word similarity is thus a subcase of word relatedness.
In general, the five algorithms we describe in this section donot attempt to distinguish
between similarity and semantic relatedness; for convenience we will call themsimi-
larity measures, although some would be more appropriately described as relatedness
measures; we return to this question in Sec. 20.8.

Figure 20.6 A fragment of the WordNet hypernym hierarchy, showing path lengths
from nickel to coin (1), dime(2), money(5), andRichter scale(7).

The oldest and simplest thesaurus-based algorithms are based on the intuition that
the shorter thepath between two words or senses in the graph defined by the thesaurus
hierarchy, the more similar they are. Thus a word/sense is very similar to its parents or
its siblings, and less similar to words that are far away in the network. This notion can
be operationalized by measuring the number of edges betweenthe two concept nodes
in the thesaurus graph. Fig. 20.6 shows an intuition; the conceptdimeis most similar to
nickelandcoin, less similar tomoney, and even less similar toRichter scale. Formally,
we specify path length as follows:

pathlen(c1,c2) = the number of edges in the shortest path in the thesaurus
graph between the sense nodesc1 andc2

Path-based similarity can be defined just as the path length,often with a log transform
(Leacock and Chodorow, 1998), resulting in the following common definition ofpath-
length based similarity:PATHLENGTH BASED

SIMILARITY

simpath(c1,c2) =− log pathlen(c1,c2)(20.19)
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For most applications, we don’t have sense-tagged data, andthus we need our algo-
rithm to give us the similarity between words rather than between senses or concepts.
For any of the thesaurus-based algorithms, following Resnik (1995), we can approxi-
mate the correct similarity (which would require sense disambiguation) by just using
the pair of senses for the two words that results in maximum sense similarity. Thus
based on sense similarity we can defineword similarity as follows:WORD SIMILARITY

wordsim(w1,w2) = max
c1∈senses(w1)
c2∈senses(w2)

sim(c1,c2)(20.20)

The basic path-length algorithm makes the implicit assumption that each link in the
network represents a uniform distance. In practice, this assumption is not appropriate.
Some links (for example those that are very deep in the WordNet hierarchy) often seem
to represent an intuitively narrow distance, while other links (e.g., higher up in the
WordNet hierarchy) represent an intuitively wider distance. For example, in Fig. 20.6,
the distance fromnickel to money(5) seems intuitively much shorter than the distance
from nickel to an abstract wordstandard; the link betweenmedium of exchangeand
standardseems wider than that between, say,coinandcoinage.

It is possible to refine path-based algorithms with normalizations based on depth in
the hierarchy (Wu and Palmer, 1994), but in general we’d likean approach which lets
us represent the distance associated with each edge independently.

A second class of thesaurus-based similarity algorithms attempts to offer just such
a fine-grained metric. Theseinformation content word similarity algorithms still relyINFORMATION

CONTENT

on the structure of the thesaurus, but also add probabilistic information derived from a
corpus.

Using similar notions to those we introduced earlier to define soft selectional re-
strictions, let’s first defineP(c), following Resnik (1995), as the probability that a
randomly selected word in a corpus is an instance of conceptc (i.e., a separate ran-
dom variable, ranging over words, associated with each concept). This implies that
P(root) = 1, since any word is subsumed by the root concept. Intuitively, the lower
a concept in the hierarchy, the lower its probability. We train these probabilities by
counting in a corpus; each word in the corpus counts as an occurrence of each con-
cept that contains it. For example, in Fig. 20.6 above, an occurrence of the worddime
would count toward the frequency ofcoin, currency, standard, etc. More formally,
Resnik computesP(c) as follows:

P(c) =
∑w∈words(c) count(w)

N
(20.21)

where words(c) is the set of words subsumed by conceptc, andN is the total number
of words in the corpus that are also present in the thesaurus.

Fig. 20.7, from Lin (1998b), shows a fragment of the WordNet concept hierarchy
augmented with the probabilitiesP(c).

We now need two additional definitions. First, following basic information theory,
we define the information content (IC) of a conceptc as:

IC(c) =− logP(c)(20.22)
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entity 0.395

inanimate-object0.167

natural-object0.0163

geological-formation0.00176

0.000113natural-elevation

0.0000189hill

shore 0.0000836

coast 0.0000216

Figure 20.7 A fragment of the WordNet hierarchy, showing the probability P(c) at-
tached to each content, adapted from a figure from Lin (1998b)

Second, we define thelowest common subsumeror LCS of two concepts:LOWEST COMMON
SUBSUMER

LCS LCS(c1,c2) = the lowest common subsumer, i.e., the lowest node in the
hierarchy that subsumes (is a hypernym of) bothc1 andc2

There are now a number of ways to use the information content of a node in a word
similarity metric. The simplest way was first proposed by Resnik (1995). We think
of the similarity between two words as related to their common information; the more
two words have in common, the more similar they are. Resnik proposes to estimate the
common amount of information by theinformation content of the lowest common
subsumer of the two nodes. More formally, theResnik similarity measure is:RESNIK SIMILARITY

simresnik(c1,c2) =− logP(LCS(c1,c2))(20.23)

Lin (1998b) extended the Resnik intuition by pointing out that a similarity metric
between objects A and B needs to do more than measure the amount of information
in common between A and B. For example, he pointed out that in addition, the more
differencesbetween A and B, the less similar they are. In summary:

• commonality: the more information A and B have in common, the more similar
they are.

• difference: the more differences between the information in A and B, theless
similar they are

Lin measures the commonality between A and B as the information content of the
proposition that states the commonality between A and B:

IC(Common(A,B))(20.24)

He measures the difference between A and B as

IC(description(A,B))− IC(common(A,B))(20.25)
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where description(A,B) describes A and B. Given a few additional assumptions about
similarity, Lin proves the following theorem:

Similarity Theorem: The similarity between A and B is measured by the ratio
between the amount of information needed to state the commonality of A and B
and the information needed to fully describe what A and B are:

simLin(A,B) =
logP(common(A,B))

logP(description(A,B))
(20.26)

Applying this idea to the thesaurus domain, Lin shows (in a slight modification of
Resnik’s assumption) that the information in common between two concepts is twice
the information in the lowest common subsumer LCS(c1,c2). Adding in the above
definitions of the information content of thesaurus concepts, the finalLin similarityLIN SIMILARITY

function is:

simLin(c1,c2) =
2× logP(LCS(c1,c2))

logP(c1)+ logP(c2)
(20.27)

For example, using simlin , Lin (1998b) shows that the similarity between the con-
cepts ofhill andcoastfrom Fig. 20.7 is:

simLin(hill ,coast) =
2× logP(geological-formation)

logP(hill)+ logP(coast))
= 0.59(20.28)

A very similar formula,Jiang-Conrath distance (Jiang and Conrath, 1997) (al-JIANGCONRATH
DISTANCE

though derived in a completely different way from Lin, and expressed as a distance
rather than similarity function) has been shown to work as well or better than all the
other thesaurus-based methods:

distJC(c1,c2) = 2× logP(LCS(c1,c2))− (logP(c1)+ logP(c2))(20.29)

distjc can be transformed into a similarity by taking the reciprocal.
Finally, we describe adictionary-based method, an extension of the Lesk algo-

rithm for word-sense disambiguation described in Sec. 20.4.1. We call this a dictio-
nary rather than a thesaurus method because it makes use of glosses, which are in
general a property of dictionaries rather than thesauri (although WordNet does have
glosses). Like the Lesk algorithm, the intuition of thisExtended Gloss Overlap, orEXTENDED GLOSS

OVERLAP

Extended Leskmeasure (Banerjee and Pedersen, 2003) is that two concepts/sensesEXTENDED LESK

in a thesaurus are similar if their glosses contain overlapping words. We’ll begin by
sketching an overlap function for two glosses. Consider these two concepts, with their
glosses:

• drawing paper:paper that isspecially prepared for use in drafting

• decal: the art of transferring designs fromspecially preparedpaper to a wood or
glass or metal surface.

For eachn-word phrase that occurs in both glosses, Extended Lesk addsin a score
of n2 (the relation is non-linear because of the Zipfian relationship between lengths of
phrases and their corpus frequencies; longer overlaps are rare so should be weighted
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more heavily). Here the overlapping phrases arepaperandspecially prepared, for a
total similarity score of 12 +22 = 5.

Given such an overlap function, when comparing two concepts(synsets), Extended
Lesk not only looks for overlap between their glosses, but also between the glosses of
the senses which are hypernyms, hyponyms, meronyms, and other relations of the two
concepts. For example if we just considered hyponyms, and defined gloss(hypo(A)) as
the concatenation of all the glosses of all the hyponym senses of A, the total relatedness
between two concepts A and B might be:

similarity(A,B) = overlap(gloss(A), gloss(B))

+overlap(gloss(hypo(A)), gloss(hypo(B)))

+overlap(gloss(A), gloss(hypo(B)))

+overlap(gloss(hypo(A)),gloss(B))

Let RELS be the set of possible WordNet relations whose glosses we compare;
assuming a basic overlap measure as sketched above, we can then define theExtended
Lesk overlap measure as:

simeLesk(c1,c2) = ∑
r,q∈RELS

overlap(gloss(r(c1)),gloss(q(c2)))(20.30)

simpath(c1,c2) = − log pathlen(c1,c2)

simResnik(c1,c2) = − logP(LCS(c1,c2))

simLin(c1,c2) =
2× logP(LCS(c1,c2))

logP(c1)+ logP(c2)

simjc(c1,c2) =
1

2× logP(LCS(c1,c2))− (logP(c1)+ logP(c2))

simeLesk(c1,c2) = ∑
r,q∈RELS

overlap(gloss(r(c1)),gloss(q(c2)))

Figure 20.8 Five thesaurus-based (and dictionary-based) similarity measures.

Fig. 20.8 summarizes the five similarity measures we have described in this section
The publicly availableWordnet::Similarity package implementing all these
and other thesaurus-based word similarity measures is described in Pedersen et al.
(2004).

Evaluating Thesaurus-based Similarity Which of these similarity measures is best?
Word similarity measures have been evaluated in two ways. One instrinic method is to
compute the correlation coefficient between word similarity scores from an algorithm
and word similarity ratings assigned by humans; such human ratings have been ob-
tained for 65 word pairs by Rubenstein and Goodenough (1965), and 30 word pairs by
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Miller and Charles (1991). Another more extrinsic evaluation method is to embed the
similarity measure in some end application like detection of malapropisms(real-word
spelling errors) (Budanitsky and Hirst, 2006; Hirst and Budanitsky, 2005), or other
NLP applications like word-sense disambiguation (Patwardhan et al., 2003; McCarthy
et al., 2004) and evaluate its impact on end-to-end performance. All of these evalu-
ations suggest that all the above measures perform relatively well, and that of these,
Jiang-Conrath similarity and Extended Lesk similarity aretwo of the best approaches,
depending on the application.

20.7 WORD SIMILARITY : DISTRIBUTIONAL METHODS

The previous section showed how to compute similarity between any two senses in a
thesaurus, and by extension between any two words in the thesaurus hierarchy. But of
course we don’t have such thesauri for every language. Even for languages where we
do have such resources, thesaurus-based methods have a number of limitations. The
obvious limitation is that thesauri often lack words, especially new or domain-specific
words. In addition, thesaurus-based methods only work if rich hyponymy knowledge
is present in the thesaurus. While we have this for nouns, hyponym information for
verbs tends to be much sparser, and doesn’t exist at all for adjectives and adverbs.
Finally, it is more difficult with thesaurus-based methods to compare words in different
hierarchies, such as nouns with verbs.

For these reasons, methods which can automatically extractsynonyms and other
word relations from corpora have been developed. In this section we introduce such
distributional methods, which can be applied directly to supply a word relatedness
measure for NLP tasks. Distributional methods can also be used forautomatic the-
saurus generationfor automatically populating or augmenting on-line thesauruses like
WordNet with new synonyms and, as we will see in Sec. 20.8, with other relations like
hyponymy and meronymy.

The intuition of distributional methods is that the meaningof a word is related to
the distribution of words around it; in the famous dictum of Firth (1957), “You shall
know a word by the company it keeps!”. Consider the followingexample, modified by
Lin (1998a) from (?):

(20.31) A bottle of tezg̈uino is on the table.
Everybody likestezg̈uino.
Tezg̈uinomakes you drunk.
We maketezg̈uinoout of corn.

The contexts in whichtezg̈uino occurs suggest that it might be some kind of fer-
mented alcoholic drink made from corn. The distributional method tries to capture this
intuition by representing features of the context oftezg̈uinothat might overlap with fea-
tures of similar words likebeer, liquor, tequila, and so on. For example such features
might beoccursbefore drunkor occursafter bottleor is thedirectobject of likes.

We can then represent a wordw as afeature vector just as we saw with the bag-FEATURE VECTOR

of-words features in Sec. 20.2. For example, suppose we had one binary featurefi
representing each of theN words in the lexiconvi . The feature meansw occursin the
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neighborhoodof wordvi, and hence takes the value 1 ifw andvi occur in some context
window, and 0 otherwise. We could represent the meaning of word w as the feature
vector

~w = ( f1, f2, f3, · · · , fN)

If w= tezg̈uino, v1=bottle, v2=drunk, andv3=matrix, the co-occurrence vector forw
from the corpus above would be:

~w = (1,1,0, · · ·)

Given two words represented by such sparse feature vectors,we can apply a vector
distance measure and say that the words are similar if the twovectors are close by
this measure. Fig. 20.9 shows an intuition about vector similarity for the four words
apricot, pineapple, digital, and information. Based on the meanings of these four
words, we would like a metric that showsapricot andpineappleto be similar,digital
and information, to be similar, and the other four pairings to produce low similarity.
For each word, Fig. 20.9 shows a short piece (8 dimensions) ofthe (binary) word co-
occurrence vectors, computed from words that occur within atwo-line context in the
Brown corpus. The reader should convince themselves that the vectors forapricot
and pineappleare indeed more similar than those of, say,apricot and information.
For pedagogical purposes we’ve shown the context words thatare particularly good
at discrimination. Note that since vocabularies are quite large (10,000-100,000 words)
and most words don’t occur near each other in any corpus, realvectors are quite sparse.

arts boil data function large sugar summarized water
apricot 0 1 0 0 1 1 0 1

pineapple 0 1 0 0 1 1 0 1
digital 0 0 1 1 1 0 1 0

information 0 0 1 1 1 0 1 0

Figure 20.9 Co-occurrence vectors for four words, computed from the Brown corpus,
showing only 8 of the (binary) dimensions (hand-picked for pedagogical purposes to show
discrimination). Note thatlarge occurs in all the contexts andarts occurs in none; a real
vector would be extremely sparse.

Now that we have some intuitions, let’s move on to examine thedetails of these
measures. Specifying a distributional similarity measurerequires that we specify three
parameters: (1) how the co-occurrence terms are defined (i.e. what counts as a neigh-
bor), (2) how these terms are weighted (binary? frequency? mutual information?) and
(3) what vector distance metric we use (cosine? Euclidean distance?). Let’s look at
each of these requirements in the next three subsections.

20.7.1 Defining a Word’s Co-occurrence Vectors

In our example feature vector, we used the featurew occurs in the neighborhoodof
word v j . That is, for a vocabulary sizeN, each wordw hadN features, specifying
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whether vocabulary elementv j occurred in the neighborhood. Neighborhoods range
from a small window of words (as few as one or two words on either side) to very
large windows of±500 words. In a minimal window, for example, we might have two
features for each wordv j in the vocabulary,word vk occursimmediatelybefore word
w andword vk occursimmediatelyafter wordw.

To keep these contexts efficient, we often ignore very frequent words which tend
not to be very discriminative, e.g., function words such asa, am, the, of, 1, 2, and so
on. These removed words are calledstopwordsor thestoplist.STOPWORDS

STOPLIST Even with the removal of the stopwords, when used on very large corpora these co-
occurrence vectors tend to be very large. Instead of using every word in the neighbor-
hood, Hindle (1990) suggested choosing words that occur in some sort ofgrammatical
relation or dependencyto the target words. Hindle suggested that nouns which bear
the same grammatical relation to the same verb might be similar. For example, the
wordstea, water, andbeerare all frequent direct objects of the verbdrink. The words
senate, congress, panel, andlegislatureall tend to be subjects of the verbsconsider,
vote, andapprove.

Hindle’s intuition follows from the early work of Harris (1968), who suggested
that:

The meaning of entities, and the meaning of grammatical relations among
them, is related to the restriction of combinations of theseentities relative
to other entities.

There have been a wide variety of realizations of Hindle’s idea since then. In general,
in these methods each sentence in a large corpus is parsed anda dependency parse is
extracted. We saw in Ch. 12 lists of grammatical relations produced by dependency
parsers, including noun-verb relations like subject, object, indirect object, and noun-
noun relations like genitive, ncomp, and so on. A sentence like the following would
result in the set of dependencies shown here:

(20.32) I discovered dried tangerines:

discover (subject I) I (subj-of discover)
tangerine (obj-of discover) tangerine (adj-mod dried)
dried (adj-mod-of tangerine)

Since each word can be in a variety of different dependency relations with other
words, we’ll need to augment the feature space. Each featureis now a pairing of a
word and a relation, so instead of a vector ofN features, we have a vector ofN×R
features, whereR is the number of possible relations. Fig. 20.10 shows a schematic
example of such a vector, taken from Lin (1998a), for the wordcell. As the value of
each attribute we have shown the frequency of the feature co-occurring withcell; the
next section will discuss the use of what values and weights to use for each attribute.

Since full parsing is very expensive, it is common to use a chunker or shallow parser
of the type defined in Sec.??, with the goal of extracting only a smaller set of relations
like subject, direct object, and prepositional object of a particular preposition (Curran,
2003).
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Figure 20.10 Co-occurrence vector for the wordcell, from Lin (1998a), showing gram-
matical function (dependency) features. Values for each attribute are frequency counts
from a 64-million word corpus, parsed by an early version of MINIPAR.

20.7.2 Measures of Association with Context

Now that we have a definition for the features or dimensions ofa word’s context vector,
we are ready to discuss the values that should be associated with those features. These
values are typically thought of asweights or measures ofassociationbetween eachASSOCIATION

target wordw and a given featuref . In the example in Fig. 20.9, our association
measure was a binary value for each feature, 1 if the relevantword had occurred in the
context, 0 if not. In the example in Fig. 20.10, we used a richer association measure,
the relative frequency with which the particular context feature had co-occurred with
the target word.

Frequency, or probability, is certainly a better measure ofassociation than just a
binary value; features that occur often with a target word are more likely to be good
indicators of the word’s meaning. Let’s define some terminology for implementing
a probabilistic measure of association. For a target wordw, each element of its co-
occurrence vector is a featuref , consisting of a relationr and a related wordw′; we
can sayf = (r,w′). For example, one of the features of the wordcell in Fig. 20.10 is
f = (r,w′) =(obj-of, attack). The probability of a featuref given a target wordw is
P( f |w), for which the maximum likelihood estimate is:

P( f |w) =
count( f ,w)

count(w)
(20.33)

Similarly, the maximum likelihood estimate for the joint probabilityP( f ,w) is:

P( f ,w) =
count( f ,w)

∑w′ count(w′))
(20.34)

P(w) andP( f ) are computed similarly.
Thus if we were to define simple probability as a measure of association it would

look as follows:
assocprob(w, f ) = P( f |w)(20.35)

It turns out, however, that simple probability doesn’t workas well as more sophis-
ticated association schemes for word similarity.
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Why isn’t frequency or probability a good measure of association between a word
and a context feature? Intuitively, if we want to know what kinds of contexts are
shared byapricotandpineapplebut not bydigital andinformation, we’re not going to
get good discrimination from words likethe, it, or they, which occur frequently with
all sorts of words, and aren’t informative about any particular word. We’d like context
words which are particularly informative about the target word. We, therefore, need
a weighting or measure of association which asks how much more often than chance
that the feature co-occurs with the target word. As Curran (2003) points out, such a
weighting is what we also want for finding goodcollocations, and so the measures ofCOLLOCATIONS

association used for weighting context words for semantic similarity are exactly the
same measure used for finding a word’s collocations.

One of the most important measures of association was first proposed by Church
and Hanks (1989, 1990) and is based on the notion ofmutual information . Themu-
tual information between two random variablesX andY isMUTUAL

INFORMATION

I(X,Y) = ∑
x

∑
y

P(x,y) log2
P(x,y)

P(x)P(y)
(20.36)

Thepointwise mutual information (Fano, 1961)3 is a measure of how often twoPOINTWISE MUTUAL
INFORMATION

eventsx andy occur, compared with what we would expect if they were independent:

I(x,y) = log2
P(x,y)

P(x)P(y)
(20.37)

We can apply this intuition to co-occurrence vectors, by defining the pointwise
mutual information association between a target wordw and a featuref as:

assocPMI(w, f ) = log2
P(w, f )

P(w)P( f )
(20.38)

The intuition of the PMI measure is that the numerator tells us how often we ob-
served the two words together (assuming we compute probability using MLE as above).
The denominator tells us how often we wouldexpectthe two words to co-occur assum-
ing they each occurred independently, so their probabilities could just be multiplied.
Thus the ratio gives us an estimate of how much more the targetand feature co-occur
than we expect by chance.

Since f is itself composed of two variablesr andw′, there is a slight variant on
this model, due to Lin (1998a), that breaks down the expectedvalue forP( f ) slightly
differently; we’ll call it theLin association measureassocLin, not to be confused withLIN ASSOCIATION

MEASURE

the WordNet measure simLin that we discussed in the previous section:

assocLin(w, f ) = log2
P(w, f )

P(w)P(r|w)P(w′|w)
(20.39)

For both assocPMI and assocLin, we generally only use the featuref for a word
w if the assoc value is positive, since negative PMI values (implying things are co-

3 Fano actually used the phrasemutual informationto refer to what we now callpointwise mutual infor-
mation, and the phraseexpectation of the mutual informationfor what we now callmutual information; the
termmutual informationis still often used to meanpointwise mutual information.
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Object Count PMI assoc Object Count PMI assoc

bunch beer 2 12.34 wine 2 9.34
tea 2 11.75 water 7 7.65
Pepsi 2 11.75 anything 3 5.15
champagne 4 11.75 much 3 5.15
liquid 2 10.53 it 3 1.25
beer 5 10.20 <SOME AMOUNT> 2 1.22

Figure 20.11 Objects of the verbdrink, sorted by PMI, from Hindle (1990).

occurringless oftenthan we would expect by chance) tend to be unreliable unless the
training corpora are enormous (Dagan et al., 1993; Lin, 1998a). In addition, when
we are using the assoc-weighted features to compare two target words, we only use
features that co-occur with both target words.

Fig. 20.11 from Hindle (1990) shows the difference between raw frequency counts
and PMI-style association, for some direct objects of the verb drink.

One of the most successful association measures for word similarity attempts to
capture the same intuition as mutual information, but uses thet-test statistic to measureTTEST

how much more frequent the association is than chance. This measure was proposed
for collocation-detection by Manning and Schütze (1999, Chapter 5) and then applied
to word similarity by Curran and Moens (2002), Curran (2003).

The t-test statistic computes the difference between observed and expected means,
normalized by the variance. The higher the value oft, the more likely we can reject the
null hypothesis that the observed and expected means are thesame.

t =
x̄− µ
√

s2

N

(20.40)

When applied to association between words, the null hypothesis is that the two
words are independent, and henceP( f ,w) = P( f )P(w) correctly models the relation-
ship between the two words. We want to know how different the actual MLE proba-
bility P( f ,w) is from this null hypothesis value, normalized by the variance. Note the
similarity to the comparison with the product model in the PMI measure above. The
variances2 can be approximated by the expected probabilityP( f )P(w) (see Manning
and Schütze (1999)). IgnoringN (since it is constant), the resulting t-test association
measure from Curran (2003) is thus:

assoct-test(w, f ) =
P(w, f )−P(w)P( f )

√

P( f )P(w)
(20.41)

See the history section for a summary of various other weighting factors that have
been tested on word similarity.

20.7.3 Defining similarity between two vectors

From the previous sections we can now compute a co-occurrence vector for a target
word, with each co-occurrence feature weighted by an association measure, giving us
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a distributional definition of the meaning of a target word.
To define similarity between two target wordsv and w, we need a measure for

taking two such vectors and giving a measure of vector similarity. Perhaps the simplest
two measures of vector distance are the Manhattan and Euclidean distance. Fig. 20.12
shows a graphical intuition for Euclidean and Manhattan distance between two two-
dimensional vectors~a and~b. TheManhattan distance, also known asLevenshteinMANHATTAN

DISTANCE

distanceor L1 norm , isLEVENSHTEIN
DISTANCE

L1 NORM

distancemanhattan(~x,~y) =
N

∑
i=1

|xi−yi|(20.42)

TheEuclidean distance, also called theL2 norm , was introduced in Ch. 9:L2 NORM

distanceeuclidean(~x,~y) =

√

N

∑
i=1

(xi−yi)2(20.43)

Figure 20.12 The Euclidean and Manhattan distance metrics for vectorsa = (a1,a2),
andb = (b1,b2), just to give the reader a grpahical intuition about the ideaof distance
between vectors; these particular metrics are generally not used for word similarity. See
Ch. 9 for more on distance metrics.

Although the Euclidean and Manhattan distance metrics provide a nice geometric
intuition for vector similarity and distance, these measures are rarely used for word
similarity. This is because both measures turn out to be verysensitive to extreme values.
Instead of these simple distance metrics, word similarity is based on closely related
metrics frominformation retrieval and frominformation theory . The information
retrieval methods seem to work better for word similarity, so we’ll define a number of
these in this section.

Let’s begin with the intuition for a similarity metric in Fig. 20.9, in which the
similarity between two binary vectors was just the number offeatures the two words
had in common. If we assume a feature vector is abinary vector, we can define suchBINARY VECTOR

a similarity metric as follows, using thedot product or inner product operator fromDOT PRODUCT

INNER PRODUCT linear algebra:

simdot-product(~v,~w) =~v·~w =
N

∑
i=1

vi×wi(20.44)
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In most cases, though, as we saw in the previous section, the values of our vector are
not binary. Let’s assume for the rest of this section that theentries in the co-occurrence
vector are theassociationvalues between the target words and each of the features. In
other words, let’s define the vector for a target word~w with N featuresf1.. fN as:

~w = (assoc(w, f1),assoc(w, f2),assoc(w, f3), . . . ,assoc(w, fN))(20.45)

Now we can apply simdot-productto vectors with values defined as associations, to
get the dot-product similarity between weighted values. This raw dot-product, however,
has a problem as a similarity metric: it favorslong vectors. Thevector length isVECTOR LENGTH

defined as:

|~v|=

√

N

∑
i=1

v2
i(20.46)

A vector can be longer because it has more non-zero values, orbecause each dimen-
sion has a higher value. Both of these facts will increase thedot product. It turns
out that both of these can occur as a by-product of word frequency. A vector from
a very frequent word will have more non-zero co-occurrence association values, and
will probably have higher values in each (even using association weights that control
somewhat for frequency). The raw dot product thus favors frequent words.

We need to modify the dot product to normalize for the vector length. The simplest
way is just to divide the dot product by the lengths of each of the two vectors. This
normalized dot product turns out to be the same as the cosine of the angle betweenNORMALIZED DOT

PRODUCT

the two vectors. Thecosineor normalized dot product similarity metric is thus:COSINE

simcosine(~v,~w) =
~v ·~w
|~v||~w|

=
∑N

i=1vi×wi
√

∑N
i=1v2

i

√

∑N
i=1w2

i

(20.47)

Because we have transformed the vectors to unit length, the cosine metric, unlike
Euclidean or Manhattan distance, is no longer sensitive to long vectors from high-
frequency words. The cosine value ranges from 1 for vectors pointing in the same
direction, through 0 for vectors which are orthogonal (share no common terms), to
-1 for vectors pointing in opposite directions, although inpractice values tend to be
positive.

Let’s discuss two more similarity measures derived from information retrieval. The
Jaccard (Jaccard, 1908, 1912) (also calledTanimoto or min/max (Dagan, 2000))JACCARD

TANIMOTO

MIN/MAX

measure was originally designed for binary vectors. It was extended by Grefenstette
(1994) to vectors of weighted associations as follows:

simJaccard(~v,~w) =
∑N

i=1min(vi ,wi)

∑N
i=1max(vi ,wi)

(20.48)

The numerator of the Grefenstette/Jaccard function uses the min function, essen-
tially computing the (weighted) number of overlapping features (since if either vector
has a zero association value for an attribute, the result will be zero). The denominator
can be viewed as a normalizing factor.

A very similar measure, theDice measure, was similarly extended from binaryDICE
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vectors to vectors of weighted associations; one extensionfrom Curran (2003) uses the
Jaccard numerator, but uses as the denominator normalization factor the total weighted
value of non-zero entries in the two vectors.

simDice(~v,~w) =
2×∑N

i=1min(vi ,wi)

∑N
i=1(vi +wi)

(20.49)

assocprob(w, f ) = P( f |w) (20.35)

assocPMI(w, f ) = log2
P(w, f )

P(w)P( f ) (20.38)

assocLin(w, f ) = log2
P(w, f )

P(w)P(r|w)P(w′|w) (20.39)

assoct-test(w, f ) =
P(w, f )−P(w)P( f )√

P( f )P(w)
(20.41)

simcosine(~v,~w) = ~v·~w
|~v||~w| =

∑N
i=1vi×wi√

∑N
i=1 v2

i

√
∑N

i=1w2
i

(20.47)

simJaccard(~v,~w) =
∑N

i=1min(vi ,wi)

∑N
i=1 max(vi ,wi)

(20.48)

simDice(~v,~w) =
2×∑N

i=1min(vi ,wi)

∑N
i=1(vi+wi)

(20.49)

simJS(~v||~w) = D(~v|~v+~w
2 )+D(~w|~v+~w

2 ) (20.52)

Figure 20.13 Defining word similarity: measures of association between atarget word
w and a featuref = (r,w′) to another wordw′, and measures of vector similarity between
word co-occurrence vectors~v and~w.

Finally, there is a family of information-theoretic distributational similarity mea-
sures, (Pereira et al., 1993; Dagan et al., 1994, 1999; Lee, 1999), also based on the
conditional probability association measureP( f |w). The intuition of these models is
that two vectors~v and~w are similar to the extent that their probability distributions
P( f |w) andP( f |v) are similar. The basis of comparing two probability distributions
P andQ is theKullback-Leibler divergence or KL divergence or relative entropyKL DIVERGENCE

(Kullback and Leibler, 1951) :

D(P||Q) = ∑
x

P(x) log
P(x)
Q(x)

(20.50)

Unfortunately, the KL-divergence is undefined whenQ(x) = 0 andP(x) 6= 0, which
is a problem since these word distribution vectors are generally quite sparse. One
alternative (Lee, 1999) is to use theJenson-Shannon divergence, which representsJENSONSHANNON

DIVERGENCE

the divergence of each distribution from the mean of the two,and doesn’t have this
problem with zeros:

JS(P||Q) = D(P|
P+Q

2
)+D(Q|

P+Q
2

)(20.51)
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Rephrased in terms of vectors~v and~w,

simJS(~v||~w) = D(~v|
~v+~w

2
)+D(~w|

~v+~w
2

)(20.52)

Fig. 20.13 summarizes the measures of association and of vector similarity that
we have designed. See the history section for a summary of other vector similarity
measures.

Finally, let’s look at some of the results of distributionalword similarity. The fol-
lowing are the ten most similar words to the different parts of speech ofhopeandbrief,
derived using the online dependency-based similarity tool(Lin, 2007); this tool defines
the co-occurrence vector using all minipar grammatical relations, uses the assocLin
measure of association, and a vector similarity metric fromLin (1998a).

• hope (N):optimism 0.141338, chance 0.136681, expectation 0.136559, prospect
0.125597, dream 0.119079, desire 0.117939, fear 0.116273,effort 0.111264,
confidence 0.109136, promise 0.108269
• hope (V): would like 0.157988, wish 0.139532, plan 0.139349, say 0.136786,

believe 0.135058, think 0.132673, agree 0.129985, wonder 0.129709, try 0.127047,
decide 0.125387,
• brief (N): legal brief 0.139177, affidavit 0.103401, filing 0.0982636,petition

0.0864875, document 0.0835244, argument 0.0831851, letter 0.0785654, rebut-
tal 0.077766, memo 0.0768226, article 0.0758248
• brief (A): lengthy 0.256242, hour-long 0.191421, short 0.173561, extended 0.163085,

frequent 0.162555, recent 0.15815, short-lived 0.154955,Prolonged 0.149289,
week-long 0.149128, occasional 0.146385

20.7.4 Evaluating Distributional Word Similarity

Distributional similarity can be evaluated in the same waysas thesaurus-based simi-
larity; we can compare intrinsically to human similarity scores, or we can evaluate it
extrinsically as part of end-to-end applications. Besidesword sense disambiguation
and malapropism detection, similarity measures have been used as a part of systems
for the grading of exams and essays(Landauer et al., 1997), or taking TOEFL multiple-
choice exams (Landauer and Dumais, 1997; Turney et al., 2003).

Distributional algorithms are also often evaluated in a third intrinsic way: by com-
parison with a gold-standard thesaurus. This comparison can be direct with a single
thesaurus (Grefenstette, 1994; Lin, 1998a) or by using precision and recall measure
against an ensemble of thesauri (Curran and Moens, 2002). Let Sbe the set of words
that are defined as similar in the thesaurus, by being in the same synset, or perhaps
sharing the same hypernym, or being in the hypernym-hyponymrelation. LetS′ be the
set of words that are classified as similar by some algorithm.We can define precision
and recall as:

precision=
|S∩S′|
|S′|

recall=
|S∩S′|
|S|

(20.53)

Curran (2003) evaluated a number of distributional algorithms using comparison
with thesauri and found that the Dice and Jaccard methods performed best as measures
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of vector similarity, while t-test performed best as a measure of association. Thus the
best metric weighted the associations with t-test, and thenused either Dice or Jaccard
to measure vector similarity.

20.8 HYPONYMY AND OTHER WORD RELATIONS

Similarity is only one kind of semantic relation between words. As we discussed in
Ch. 19, WordNet and MeSH both includehyponymy/hypernymy, as do many the-
sauruses for other languages, such as CiLin for Chinese (?).WordNet also includes
antonymy, meronymy, and other relations. Thus if we want to know if two senses are
related by one of these relations, and the senses occur in WordNet or MeSH, we can
just look them up. But since many words are not in these resources, it is important to
be able to learn new hypernym and meronym relations automatically.

Much work on automatic learning of word relations is based ona key insight first
articulated by Hearst (1992), that the presence of certain lexico-syntactic patterns can
indicate a particular semantic relationship between two nouns. Consider the following
sentence extracted by Hearst from the Groliers encyclopedia:

(20.54) Agar is a substance prepared from a mixture of red algae, suchas Gelidium, for
laboratory or industrial use.

Hearst points out that most human readers will not know whatGelidiumis, but that
they can readily infer that it is a kind of (ahyponym of) red algae, whatever that is.
She suggests that the followinglexico-syntactic pattern

NP0 such as NP1{,NP2 . . . ,(and|or)NPi}, i ≥ 1(20.55)

implies the following semantics

∀NPi , i ≥ 1,hyponym(NPi ,NP0)(20.56)

allowing us to infer
hyponym(Gelidium, red algae)(20.57)

NP{,NP}∗{,} (and|or) otherNPH . . . temples, treasuries, and other important civic buildings.
NPH such as{NP,}* (or|and)NP red algae such as Gelidium
suchNPH as{NP,}* (or|and)NP works by such authors as Herrick, Goldsmith, and Shakespeare
NPH {,} including{NP,}* (or|and)NP All common-law countries, including Canada and England
NPH {,} especially{NP,}* (or|and)NP . . . most European countries, especially France, England, and Spain

Figure 20.14 Hand-built lexico-syntactic patterns for finding hypernyms (Hearst, 1992, 1998)

Fig. 20.14 shows five patterns Hearst (1992, 1998) suggestedfor inferring the hy-
ponym relation; we’ve shownNPH as the parent/hyponym. There are a number of other
attempts to extract different WordNet relations using suchpatterns; see the history sec-
tion for more details.
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Of course, the coverage of such pattern-based methods is limited by the number and
accuracy of the available patterns. Unfortunately, once the obvious examples have been
found, the process of creating patterns by hand becomes a difficult and slow process.
Fortunately, we’ve already seen the solution to this kind ofproblem. We can find
new patterns usingbootstrapping methods that are common in information extraction
(Riloff, 1996; Brin, 1998), and are also key to the Yarowsky method described earlier
in Sec. 20.5.

The key insight for the use of bootstrapping in relational pattern discovery is that
with a large corpus we can expect that words involved in a relation to show up with
many different patterns that express that same relation. Therefore, in theory at least,
we need only start with a small number of precise patterns to acquire a set of seed
words involved in a given relation. These words can then be used to query a large
corpus for sentences containing both terms in some kind of dependency relation; new
patterns can then be extracted from these new sentences. Theprocess can be repeated
until the pattern set is large enough.

As an example of this process, consider the terms “red algae”and “Gelidium”
discovered earlier using Hearst’s simple pattern set. Among the results of a simple
Google search using these as query terms is the following example:

(20.58) One example of a red algae is Gelidium.

Removing the seed words from such a sentence and replacing them with simple
wildcards is the crudest kind of pattern generation. In thiscase, submitting the pattern
“One example of a * is *” to Google currently yields nearly 500,000 hits, including the
following example:

(20.59) One example of a boson is a photon.

We can also extract slightly more sophisticated patterns byparsing the extracted
sentences and putting wildcards into the parse tree.

The key to the success of bootstrapping approaches is to avoid thesemantic drift
that tends to occur as part of repeated applications of bootstrapping. The further we
get from the original set of seed words or patterns the more likely it is that we’ll come
across patterns with meanings quite different from what we set out to discover. We’ll
see methods for dealing with this drift when we discuss bootstrapping for information
extraction in Ch. 22.

An alternative to bootstrapping is to use large lexical resources like WordNet as a
source of training information, in which each WordNet hypernym/hyponym pair tells
us something about kinds of words are in this relation, and wetrain a classifier to help
find new words that exhibit this relation.

This hyponym learning algorithm of Snow et al. (2005), for example, relies on
WordNet to help learn large numbers of weak hyponym patterns, and then combine
them in a supervised classifier in 4 steps:

1. Collect all pairs of WordNet noun conceptsci , c j that are in the hypernym/hyponym
relation.

2. For each noun pair, collect all sentences (in a 6 million word corpus) in which
both nouns occur.
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3. Parse the sentences and automatically extract every possible Hearst-style lexico-
syntactic pattern from the parse tree

4. Use the large set of patterns as features in an logistic regression classifier

5. Given a pair of nouns in the test set, extract features and use the classifier to
determine if the noun pair is related by the hypernym/hyponym relation or not.

Four of the new patterns automatically learned by this algorithm include:

NPH like NP NPH called NP
NP is a NPH NP, a NPH (appositive):

Snow et al. (2005) then showed good hypernym detection performance by using
each of these patterns as a weak feature combined by a logistic regression classifier.

Another way to use WordNet to help address the hypernym problem is to model the
task as choosing the place to insert unknown words into an otherwise complete hierar-
chy. It is possible to do this without using lexico-syntactic patterns. For example, we
can use a similarity classifier (using distributional information, or morphological infor-
mation) to find the words in the hierarchy that are most similar to an unknown word,
using an approach like K-Nearest-Neighbors, and insert thenew word there (Tseng,
2003). Or we can treat the task of hypernym labeling as a labeling task like named-
entity tagging. Ciaramita and Johnson (2003) take this approach, using as tags 26
supersenses, from the 26 broad-category ‘lexicographer class’ labels from WordNetSUPERSENSES

(person, location, event, quantity, etc). They use features such as surrounding part-of-
speech tags, word bigram and trigram features, spelling andmorphological features,
and apply a multiclass perceptron classifier.

Finding meronyms seems to be harder than hyponyms; here are some examples
from Girju et al. (2003):

(20.60) The car’s mail messenger is busy at work in the<PART>mail car</PART> as the
<WHOLE>train</WHOLE>moves along.

(20.61) Through the open<PART>side door</PART> of the<WHOLE>car</WHOLE>, moving
scenery can be seen.

Meronyms are hard to find because the lexico-syntactic patterns that characterize
them are very ambiguous. For example the two most common patterns indicating
meronymy are the English genitive constructions [NP1 of NP2] and [NP1’s NP2], which
also express many other meanings such aspossession; see Girju et al. (2003, 2006) for
discussion and possible algorithms.

Learning individual relations between words is an important component of the gen-
eral task ofthesaurus induction. In thesaurus induction, we combine our estimatesTHESAURUS

INDUCTION

of word similarity with our hypernym or other relations to build an entire ontology or
thesaurus. For example the two-step thesaurus induction algorithm of Caraballo (1999,
2001) first applies a bottom-upclustering algorithm to group together semantically
similar words into an unlabeled word hierarchy. Recall fromSec. 20.10 that in ag-
glomerative clustering, we start by assigning each word itsown cluster. New clusters
are then formed in a bottom-up fashion by successively merging the two clusters that
are most similar; we can use any metric for semantic similarity, such as one of the
distributional metrics described in the previous section.In the second step, given the
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unlabeled hierarchy, the algorithm uses a pattern-based hyponym classifier to assign a
hypernym label to each cluster of words. See the history section for more recent work
on thesaurus induction.

20.9 SEMANTIC ROLE LABELING

The final task we’ll discuss in this chapter links word meanings with sentence mean-
ings. This is the task ofsemantic role labeling, sometimes calledthematic role label-SEMANTIC ROLE

LABELING

ing, case role assignmentor evenshallow semantic parsing. Semantic role labeling
is the task of automatically finding thesemantic rolesfor each predicate in a sentence.
More specifically, that means determining which constituents in a sentence are seman-
tic arguments for a given predicate, and then determining the appropriate role for each
of those arguments. Semantic role labeling has the potential to improve performance in
any language understanding task, although to date its primary applications have been
in question answering and information extraction.

Current approaches to semantic role labeling are based on supervised machine
learning and hence require access to adequate amounts of training and testing mate-
rials. Over the last few years, both the FrameNet and PropBank resources discussed
in Ch. 19 have played this role. That is, they have been used tospecify what counts
as a predicate, to define the set of roles used in the task and toprovide training and
test data. TheSENSEVAL-3 evaluation used Framenet, while the CONLL evaluations
in 2004 and 2005 were based on PropBank.

The following examples show the different representationsfrom the two efforts.
Recall that FrameNet (20.62) employs a large number of frame-specific frame elements
as roles, while PropBank (20.63) makes use of a smaller number of numbered argument
labels which can be interpreted as verb-specific labels.

(20.62)
[You] can’t [blame] [the program] [for being unable to identify a processor]
COGNIZER TARGET EVALUEE REASON

(20.63)
[The San Francisco Examiner] issued [a special edition] [around noon yesterday]
ARG0 TARGET ARG1 ARGM-TMP

A simplified semantic role labeling algorithm is sketched inFig. 20.15. Following
the very earliest work on semantic role analysis (Simmons, 1973), most work on se-
mantic role labeling begins by parsing the sentence. Publicly available broad-coverage
parsers (such as Collins (1996) or Charniak (1997)) are typically used to assign a parse
to the input string. Fig. 20.16 shows a parse of (20.63) above. The resulting parse
is then traversed to find all predicate-bearing words. For each of these predicates the
tree is again traversed to determine which role, if any, eachconstituent in the parse
plays with respect to that predicate. This judgment is made by first characterizing the
constituent as a set of features with respect to the predicate. A classifier trained on
an appropriate training set is then passed this feature set and makes the appropriate
assignment.

Let’s look in more detail at the simple set of features suggested by Gildea and Juraf-
sky (2000, 2002), which have been incorporated into most role-labeling systems. We’ll
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function SEMANTICROLELABEL(words) returns labeled tree

parse←PARSE(words)
for eachpredicatein parsedo

for each nodein parsedo
featurevector←EXTRACTFEATURES(node, predicate, parse)
CLASSIFYNODE(node, featurevector, parse)

Figure 20.15 A generic semantic role labeling algorithm. The CLASSIFYNODE com-
ponent can be a simple 1-of-N classifier which assigns a semantic role (or NONE for
non-role constituents). CLASSIFYNODE can be trained on labeled data such as FrameNet
or PropBank.

S

NP-SBJ= ARG0 VP

DT NNP NNP NNP

The San Francisco Examiner

VBD = TARGET NP= ARG1 PP-TMP= ARGM-TMP

issued DT JJ NN IN NP

a special edition around NN NP-TMP

noon yesterday

Figure 20.16 Parse tree for a PropBank sentence, showing the PropBank argument labels. The dotted line
shows thepath feature NP↑S↓VP↓VBD for ARG0, the NP-SBJ constituentthe San Francisco Examiner.

extract them for the firstNP in Fig. 20.16, theNP-SBJconstituentthe San Francisco
Examiner.

• The governingpredicate, in this case the verbissued. For PropBank, the pred-
icates are always verbs; FrameNet also has noun and adjective predicates. The
predicate is a crucial feature, since both PropBank and FrameNet labels are de-
fined only with respect to a particular predicate.
• Thephrase typeof the constituent, in this caseNP (or NP-SBJ). This is simply

the name of the parse node which dominates this constituent in the parse tree.
Some semantic roles tend to appear asNPs, others asSor PP, and so on.
• The head word of the constituent,Examiner. The head word of a constituent

can be computed using standard head rules, such as those given in Ch. 12 in
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Fig. ??. Certain head words (e.g. pronouns) place strong constraints on the
possible semantic roles they are likely to fill.

• Thehead word part-of-speechof the constituent,NNP.

• The path in the parse tree from the constituent to the predicate. Thispath is
marked by the dotted line in Fig. 20.16. Following (Gildea and Jurafsky, 2000),
we can use a simple linear representation of the path, NP↑S↓VP↓VBD. ↑ and↓
represent upward and downward movement in the tree respectively. The path is
very useful as a compact representation of many kinds of grammatical function
relationships between the constituent and the predicate.

• The voice of the clause in which the constituent appears, in this caseactive
(as contrasted withpassive). Passive sentences tend to have strongly different
linkings of semantic roles to surface form than active ones.

• The binarylinear position of the constituent with respect to the predicate, either
beforeor after.

• The sub-categorizationof the predicate. Recall from Ch. 12 that the subcat-
egorization of a verb is the set of expected arguments that appear in the verb
phrase. We can extract this information by using the phrase structure rule that
expands the immediate parent of the predicate; VP→ NP PP for the predicate in
Fig. 20.16.

Many other features are generally extracted by semantic role labeling systems, such
as named entity tags (it is useful to know if a constituent is aLOCATION or PERSON,
for example), or more complex versions of the path features (the upward or downward
halves, whether particular nodes occur in the path), the rightmost or leftmost words of
the constituent, and so on.

We now have a set of observations like the following example,each with a vector
of features; we have shown the features in the order described above (recall that most
observations will have the value NONE rather than e.g.,ARG0, since most constituents
in the parse tree will not bear a semantic role):

ARG0: [issued, NP, Examiner, NNP, NP↑S↓VP↓VBD, active, before, VP→ NP PP]

Just as we saw for word sense disambiguation, we can divide these observations
into a training and a test set, use the training examples in any supervised machine
learning algorithm, and build a classifier. SVM and Maximum Entropy classifiers have
yielded good results on this task on standard evaluations. Once trained, the classi-
fier can be used on unlabeled sentences to propose a role for each constituent in the
sentence. More precisely, an input sentence is parsed and a procedure similar to that
described earlier for training is employed.

Instead of training a single stage classifier, some role labeling algorithms do classi-
fication in multiple stages for efficiency:

• Pruning: to speed up execution, some constituents are eliminated from consid-
eration as possible roles, based on simple rules

• Identification: a binary classification of each node as anARG to be labeled or a
NONE.
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• Classification: a one-of-N classification of all the constituents that were labeled
asARG by the previous stage.

There are a number of complications that all semantic role labeling systems need to
deal with. Constituents in FrameNet and PropBank are required to be non-overlapping.
Thus if a system incorrectly labels two overlapping constituents as arguments, it needs
to decide which of the two is correct. Additionally, the semantic roles of constituents
are not independent; since PropBank does not allow multipleidentical arguments, la-
beling one constituent as anARG0 would greatly increase the probability of another
constituent being labeledARG1. Both these problems can be addressed by the two-
stage approaches based on lattice orN-best rescoring discussed in Ch. 9: having the
classifier assign multiple labels to each constituent, eachwith a probability, and using
a second global optimization pass to pick the best label sequence.

Instead of using parses as input, it is also possible to do semantic role labeling
directly from raw (or part-of-speech tagged) text by applying the chunking techniques
used for named entity extraction or partial parsing. Such techniques are particularly
useful in domains such as bioinformatics where it is unlikely that syntactic parsers
trained on typical newswire text will perform well.

Finally, semantic role labeling systems have been generally evaluated by requiring
that each argument label must be assigned to the exactly correct word sequence or
parse constituent. Precision, recall, and F-measure can then be computed. A simple
rule-based system can be used as a baseline, for example tagging the first NP before
the predicate asARG0 and the first NP after the predicate asARG1, and switching these
if the verb phrase is passive.

20.10 ADVANCED: UNSUPERVISEDSENSE DISAMBIGUATION

Let’s briefly return to the WSD task. It is expensive and difficult to build large cor-
pora in which each word is labeled for its word sense. For thisreason, unsupervised
approaches to sense disambiguation are an exciting and important research area.

In unsupervised approaches, we don’t use human-defined wordsenses. Instead, the
set of ‘senses’ of each word are created automatically from the instances of each word
in the training set. Let’s introduce a simplified version of the methods of Schütze’s
(Schütze, 1992b, 1998) on unsupervised sense disambiguation. In Schütze’s method,
we first represent each instance of a word in the training set by distributional con-
text feature-vectors that are a slight generalization of the feature vectors we defined in
Sec. 20.7. (It is for this reason that we turned to unsupervised sense disambiguation
only after introducing word similarity.)

As in Sec. 20.7 we will represent a wordw as a vector based on frequencies of its
neighboring words. For example for a given target word (type) w, we might select 1000
words that occur most frequently within 25 words of any instance ofw. These 1000
words become the dimension of the vector. Let’s definefi to mean the frequency with
which wordi occurs in the context of wordw. We define the word vector~w (for a given
token (observation) ofw) as:

~w = ( f1, f2, f3, · · · , f1000)
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So far this is just a version of the distributional context wesaw in Sec. 20.7. We
can also use a slightly more complex version of the distributional context. For example
Schuetze defines thecontext vector of a word w not as this first-order vector, but
instead by itssecond order co-occurrence. That is, the context vector for a wordw is
built by taking each wordx in the context ofw, for eachx computing its word vector~x,
and then taking the centroid (average) of the vectors~x.

Let’s see how we use these context vectors (whether first-order or second-order) in
unsupervised sense disambiguation of a wordw. In training, we’ll need only 3 steps:

1. For each tokenwi of wordw in a corpus, compute a context vector~c.

2. Use aclustering algorithm to cluster these word token context vectors~c into a
predefined number of groups or clusters. Each cluster definesa sense ofw.

3. Compute thevector centroid of each cluster. Each vector centroid~sj is asense
vector representing that sense ofw.

Since this is an unsupervised algorithm we won’t have names for each of these
‘senses’ ofw; we just refer to thejth sense ofw.

Now how do we disambiguate a particular tokent of w? Again we have three steps:

1. Compute a context vector~c for t as discussed above.

2. Retrieve all sense vectorssj for w.

3. Assignt to the sense represented by the sense vectorsj that is closest tot.

All we need is a clustering algorithm, and a distance metricsbetween vectors. For-
tunately, clustering is a well-studied problem with a wide number of standard algo-
rithms that can be applied to inputs structured as vectors ofnumerical values (Duda
and Hart, 1973). A frequently used technique in language applications is known as
agglomerative clustering. In this technique, each of theN training instances is ini-AGGLOMERATIVE

CLUSTERING

tially assigned to its own cluster. New clusters are then formed in a bottom-up fashion
by successively merging the two clusters that are most similar. This process continues
until either a specified number of clusters is reached, or some global goodness measure
among the clusters is achieved. In cases where the number of training instances makes
this method too expensive, random sampling can be used on theoriginal training set
(Cutting et al., 1992) to achieve similar results.

How can we evaluate unsupervised sense disambiguation approaches? As usual,
the best way is to do extrinsic or in vivo evaluation, in whichthe WSD algorithm is
embedded in some end-to-end system. Intrinsic evaluation can also be useful, though,
if we have some way to map the automatically derived sense classes into some hand-
labeled gold standard set, so that we can compare a hand-labeled test set with a set
labeled by our unsupervised classifier. One way of doing thismapping is to map each
sense cluster to a pre-defined sense by choosing the sense that (in some training set)
has the most word tokens overlapping with the cluster. Another is to consider all pairs
of words in the test set, testing for each whether both the system and the hand-labeling
put both members of the pair in the same cluster or not.
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

Word sense disambiguation traces its roots to some of the earliest applications of dig-
ital computers. We saw above Warren Weaver’s (1955) suggestion to disambiguate
a word by looking at a small window around it, in the context ofmachine transla-
tion. Other notions first proposed in this early period include the use of a thesaurus for
disambiguation (Masterman, 1957), supervised training ofBayesian models for disam-
biguation (Madhu and Lytel, 1965), and the use of clusteringin word sense analysis
(Sparck Jones, 1986).

An enormous amount of work on disambiguation has been conducted within the
context of early AI-oriented natural language processing systems. While most natural
language analysis systems of this type exhibited some form of lexical disambiguation
capability, a number of these efforts made word sense disambiguation a larger focus
of their work. Among the most influential efforts were the efforts of Quillian (1968)
and Simmons (1973) with semantic networks, the work of Wilkswith Preference Se-
manticsWilks (1975c, 1975b, 1975a), and the work of Small and Rieger(1982) and
Riesbeck (1975) on word-based understanding systems. Hirst’s ABSITY system (Hirst
and Charniak, 1982; Hirst, 1987, 1988), which used a technique based on semantic
networks called marker passing, represents the most advanced system of this type. As
with these largely symbolic approaches, most connectionist approaches to word sense
disambiguation have relied on small lexicons with hand-coded representations (Cot-
trell, 1985; Kawamoto, 1988).

Considerable work on sense disambiguation has been conducted in the areas of
Cognitive Science and psycholinguistics. Appropriately enough, it is generally de-
scribed using a different name: lexical ambiguity resolution. Small et al. (1988) present
a variety of papers from this perspective.

The earliest implementation of a robust empirical approachto sense disambigua-
tion is due to Kelly and Stone (1975) who directed a team that hand-crafted a set of
disambiguation rules for 1790 ambiguous English words. Lesk (1986) was the first to
use a machine readable dictionary for word sense disambiguation. Wilks et al. (1996)
describe extensive explorations of the use of machine readable dictionaries. The prob-
lem of dictionary senses being too fine-grained or lacking anappropriate organization
has been addressed with models of clustering word senses Dolan (1994), Peters et al.
(1998), Chen and Chang (1998), Mihalcea and Moldovan (2001), Agirre and de La-
calle (2003), Chklovski and Mihalcea (2003), Palmer et al. (2004), McCarthy (2006),
Navigli (2006), Snow et al. (2007); corpora with clustered word senses for training
clustering algorithms include Palmer et al. (2006) andOntoNotes(Hovy et al., 2006).ONTONOTES

Modern interest in supervised machine learning approachesto disambiguation be-
gan with Black (1988), who applied decision tree learning tothe task. The need for
large amounts of annotated text in these methods led to investigations into the use of
bootstrapping methods (Hearst, 1991; Yarowsky, 1995). Theproblem of how to weigh
and combine disparate sources of evidence is explored in Ng and Lee (1996), McRoy
(1992), and Stevenson and Wilks (2001).

Among the semi-supervised methods, more recent models of selectional prefer-
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ence include Li and Abe (1998), Ciaramita and Johnson (2000), McCarthy and Carroll
(2003), Light and Greiff (2002). Diab and Resnik (2002) givea semi-supervised al-
gorithm for sense disambiguation based on aligned parallelcorpora in two languages.
For example, the fact that the French wordcatastrophemight be translated as English
disasterin one instance andtragedyin another instance can be used to disambiguate
the senses of the two English words (i.e. to choose senses ofdisasterand tragedy
that are similar). Abney (2002, 2004) explores the mathematical foundations of the
Yarowsky algorithm and its relation to co-training. The most-frequent-sense heuristic
is an extremely powerful one, but requires large amounts of supervised training data.
McCarthy et al. (2004) propose an unsupervised way to automatically estimate the
most frequent sense, based on the thesaurus similarity metrics defined in Sec. 20.6.

The earliest attempt to use clustering in the study of word senses is due to Sparck Jones
(1986). Zernik (1991) successfully applied a standard information retrieval clustering
algorithm to the problem, and provided an evaluation based on improvements in re-
trieval performance. More extensive recent work on clustering can be found in Peder-
sen and Bruce (1997) and Schütze (1997, 1998).

A few algorithms have attempted to exploit the power of mutually disambiguating
all the words in a sentence, either by multiple passes (Kellyand Stone, 1975) to take
advantage of easily disambiguated words, or by parallel search (Cowie et al., 1992;
Veronis and Ide, 1990).

Recent work has focused on ways to use the web for training data for word sense
disambiguation, either unsupervised (Mihalcea and Moldovan, 1999) or by using vol-
unteers to label data (Chklovski and Mihalcea, 2002).

Resnik (2006) describes potential applications of WSD. Onerecent application has
been to improve machine translation Chan et al. (2007), Carpuat and Wu (2007).

Agirre and Edmonds (2006) is a comprehensive edited volume that summarizes the
state of the art in WSD. Ide and Veronis (1998a) provide a comprehensive review of
the history of word sense disambiguation up to 1998. Ng and Zelle (1997) provide a
more focused review from a machine learning perspective. Wilks et al. (1996) describe
dictionary and corpus experiments, along with detailed descriptions of very early work.

The models of distributional word similarity we discussed arose out of research
in linguistics and psychology of the 1950’s. The idea that meaning was related to
distribution of words in context was widespread in linguistic theory of the 1950’s; even
before the well-known Firth (1957) and Harris (1968) dictums discussed earlier, Joos
(1950) stated that

the linguist’s ‘meaning’ of a morpheme. . . is by definition the set of conditional
probabilities of its occurrence in context with all other morphemes’

The related idea that the meaning of a word could be modeled asa point in a Eu-
clidean space, and that the similarity of meaning between two words could be modeled
as the distance between these points, was proposed in psychology by Osgood et al.
(1957). The application of these ideas in a computational framework was first made
by Sparck Jones (1986), and became a core principle of information retrieval, from
whence it came into broader use in speech and language processing.

There are a wide variety of other weightings and methods for word similarity. The
largest class of methods not discussed in this chapter are the variants to and details of
the information-theoretic methods like Jensen-Shannon divergence, KL-divergence
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andα-skew divergence that we briefly introduced (Pereira et al.,1993; Dagan et al.,
1994, 1999; Lee, 1999, 2001); there are also other metrics from Hindle (1990) and Lin
(1998a). Alternative paradigms include theco-occurrence retrievalmodel (Weeds,
2003; Weeds and Weir, 2005). Manning and Schütze (1999, Chapter 5 and 8) give col-
location measures and other related similarity measures. Acommonly used weighting
is weighted mutual information (Fung and McKeown, 1997) in which the pointwiseWEIGHTED MUTUAL

INFORMATION

mutual information is weighted by the joint probability. Ininformation retrieval the
TF/IDF weight is widely used, as we will see in Ch. 23. See Dagan (2000), Mo-
hammad and Hirst (2005), Curran (2003) and Weeds (2003) for good summaries of
distributional similarity.

An alternative vector space model of semantic similarity,Latent Semantic In-
dexing (LSI) or Latent Semantic Analysis(LSA), usessingular value decomposi-LATENT SEMANTIC

INDEXING

LSA tion to reduce the dimensionality of the vector space with the intent of discovering
higher-order regularities (Deerwester et al., 1990). We have already discussed Schütze
(1992b), another semantic similarity model based on singular value decomposition.

There is a wide variety of recent literature on other lexicalrelations and thesaurus
induction. The use of distributional word similarity for thesaurus induction was ex-
plored systematically by Grefenstette (1994). A wide variety of distributional cluster-
ing algorithms have been applied to the task of discovering groupings of semantically
similar words, including hard clustering (Brown et al., 1992), soft clustering (Pereira
et al., 1993), as well as new algorithms likeClustering By Committee(CBC) (Lin and
Pantel, 2002). For particular relations, Lin et al. (2003) applied hand-crafted patterns
to find antonyms, with the goal of improving synonym-detection. The distributional
word similarity algorithms from Sec. 20.7 often incorrectly assign high similarity to
antonyms. Lin et al. (2003) showed that words appearing in the patternsfrom X to Yor
either X or Ytended to be antonyms. Girju et al. (2003, 2006) show improvements in
meronymextraction by learning generalizations about the semanticsuperclasses of the
two nouns. Chklovski and Pantel (2004) used hand-built patterns to extract fine-grained
relations between verbs such asstrength. Much recent work has focused on thesaurus
induction by combining different relation extractors. Pantel and Ravichandran (2004),
for example, extend Caraballo’s algorithm for combining similarity and hyponymy in-
formation, while Snow et al. (2006) integrate multiple relation extractors to compute
the most probable thesaurus structure. Recent work on similarity focuses on the use of
the Web, for example relying on Wikipedia Strube and Ponzetto (2006), Gabrilovich
and Markovitch (2007); this Web-based work is also closely related to unsupervised
information extraction; see Ch. 22 and references like Etzioni et al. (2005).

While not as old a field as word similarity or sense disambiguation, semantic role
labeling has a long history in computational linguistics. The earliest work on semantic
role labeling (Simmons, 1973) first parsed a sentence using an ATN parser. Each verb
then had a set of rules specifying how the parse should be mapped to semantic roles.
These rules mainly made reference to grammatical functions(subject, object, comple-
ment of specific prepositions), but also checked constituent-internal features such as
the animacy of head nouns.

Statistical work in the area revived in 2000 after the FrameNet and PropBank
project had created databases large enough and consistent enough to make training and
testing possible. Many popular features used for role labeling are defined in Gildea and
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Jurafsky (2002), Chen and Rambow (2003), Surdeanu et al. (2003), Xue and Palmer
(2004), Pradhan et al. (2003, 2005).

To avoid the need for huge labeled training sets, recent workhas focused on unsu-
pervised approaches for semantic role labeling (Swier and Stevenson, 2004).

The semantic labeling work described above focuses on labeling each sentence
token in a corpus with semantic roles. An alternative approach to semantic role labeling
focuses on lexicon learning, using unsupervised learning on a corpus to learn the kinds
of semantic classes a verb can belong to in terms of its possible semantic roles or
argument alternation patterns (Stevenson and Merlo, 1999;Schulte im Walde, 2000;
Merlo and Stevenson, 2001; Merlo et al., 2001; Grenager and Manning, 2006).

EXERCISES

20.1 Collect a small corpus of example sentences of varying lengths from any news-
paper or magazine. Using WordNet, or any standard dictionary, determine how many
senses there are for each of the open-class words in each sentence. How many distinct
combinations of senses are there for each sentence? How doesthis number seem to
vary with sentence length?

20.2 Using WordNet, or a standard reference dictionary, tag eachopen-class word in
your corpus with its correct tag. Was choosing the correct sense always a straightfor-
ward task. Report on any difficulties you encountered.

20.3 Using the same corpus, isolate the words taking part in all the verb-subject and
verb-object relations. How often does it appear to be the case that the words taking
part in these relations could be disambiguated using only information about the words
in the relation?

20.4 Between the wordseatandfindwhich would you expect to be more effective in
selectional restriction-based sense disambiguation? Why?

20.5 Using your favorite dictionary, simulate the Original Leskword overlap dis-
ambiguation algorithm described on page 11 on the phraseTime flies like an arrow.
Assume that the words are to be disambiguated one at a time, from left to right, and
that the results from earlier decisions are used later in theprocess.

20.6 Build an implementation of your solution to the previous exercise. Using Word-
Net, implement the Original Lesk word overlap disambiguation algorithm described on
page 11 on the phraseTime flies like an arrow.

20.7 Implement and experiment with a decision-list sense disambiguation system.
As a model, use the kinds of features shown in Figure 20.2. Useone of the publicly
available decision-list packages like WEKA (or see Russelland Norvig (1995) for more
details on implementing decision-list learning yourself). To facilitate evaluation of your
system, you should obtain one of the freely available sense-tagged corpora.

20.8 Evaluate two or three of the similarity methods from the publicly available
Wordnet::Similarity package (Pedersen et al., 2004). You might do this by
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hand-labeling some word pairs with similarity scores and seeing how well the algo-
rithms approximate your hand labels.

20.9 Implement a distributional word similarity algorithm thatcan take different mea-
sures of association and different measures of vector similarity. Now evaluate two mea-
sures of association and two measures of vector similarity from Fig. 20.13. Again, you
might do this by hand-labeling some word pairs with similarity scores and seeing how
well the algorithms approximate your hand labels.
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COMPUTATIONAL
DISCOURSE

Gracie: Oh yeah. . . and then Mr. and Mrs. Jones were having mat-
rimonial trouble, and my brother was hired to watch Mrs. Jones.
George: Well, I imagine she was a very attractive woman.
Gracie: She was, and my brother watched her day and night for six
months.
George: Well, what happened?
Gracie: She finally got a divorce.
George: Mrs. Jones?
Gracie: No, my brother’s wife.

George Burns and Gracie Allen inThe Salesgirl

Orson Welles’ movieCitizen Kanewas groundbreaking in many ways, perhaps
most notably in its structure. The story of the life of fictional media magnate Charles
Foster Kane, the movie does not proceed in chronological order through Kane’s life.
Instead, the film begins with Kane’s death, (famously murmuring “Rosebud”), and is
structured around flashbacks to his life inserted among scenes of a reporter investi-
gating his death. The novel idea that the structure of a moviedoes not have to linearly
follow the structure of the real timeline made apparent for 20th century cinematography
the infinite possibilities and impact of different kinds of coherent narrative structures.

But coherent structure is not just a fact about movies, or works of art. Up to this
point of the book, we have focused primarily on language phenomena that operate at
the word or sentence level. But just like movies, language does not normally consist of
isolated, unrelated sentences, but instead of collocated,structured,coherentgroups of
sentences. We refer to such a coherent structured group of sentences as adiscourse.DISCOURSE

The chapter you are now reading is an example of a discourse. It is in fact a dis-
course of a particular sort: amonologue. Monologues are characterized by aspeakerMONOLOGUE

(a term which will be used to include writers, as it is here), and a hearer (which,
analogously, includes readers). The communication flows inonly one direction in a
monologue, that is, from the speaker to the hearer.

After reading this chapter, you may have a conversation witha friend about it,
which would consist of a much freer interchange. Such a discourse is called adialogue,DIALOGUE

specifically ahuman-human dialogue. In this case, each participant periodically takes
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turns being a speaker and hearer. Unlike a typical monologue, dialogues generally con-
sist of many different types of communicative acts: asking questions, giving answers,
making corrections, and so forth.

You may also, for some purposes, such as booking an airline ortrain trip, have a
conversation with a computerconversational agent. This use ofhuman-computer
dialogue for human-computer interaction, or HCI has properties that distinguish itHCI

from normal human-human dialogue, in part due to the present-day limitations on the
ability of computer systems to participate in free, unconstrained conversation.

While many discourse processing problems are common to these three forms of
discourse, they differ in enough respects that different techniques have often been used
to process them. This chapter focuses on techniques commonly applied to the interpre-
tation of monologues; techniques for conversational agents and other dialogues will be
described in Ch. 24.

Language is rife with phenomena that operate at the discourse level. Consider the
discourse shown in example (21.1).

(21.1) The Tin Woodman went to the Emerald City to see the Wizard of Ozand ask for a
heart. After he asked for it, the Woodman waited for the Wizard’s response.

What do pronouns such ashe and it denote? No doubt the reader had little trouble
figuring out thathe denotes the Tin Woodman and not the Wizard of Oz, and thatit
denotes the heart and not the Emerald City. Furthermore, it is clear to the reader that
the Wizardis the same entity asthe Wizard of Oz, andthe Woodmanis the same asthe
Tin Woodman.

But doing this disambiguation automatically is a difficult task. This goal of decid-
ing what pronouns and other noun phrases refer to is calledcoreference resolution.
Coreference resolution is important forinformation extraction , summarization, and
for conversational agents. In fact, it turns out that just about any conceivable language
processing application requires methods for determining the denotations of pronouns
and related expressions.

There are other important discourse structures beside the relationships between pro-
nouns and other nouns. Consider the task ofsummarizing the following news passage:

(21.2) First Union Corp is continuing to wrestle with severe problems. According to industry
insiders at Paine Webber, their president, John R. Georgius, is planning to announce
his retirement tomorrow.

We might want to extract a summary like the following:

(21.3) First Union President John R. Georgius is planning to announce his retirement
tomorrow.

In order to build such a summary, we need to know that the second sentence is the
more important of the two, and that the first sentence is subordinate to it, just giving
background information. Relationships of this sort between sentences in a discourse
are calledcoherence relations, and determining the coherence structures between dis-
course sentences is an important discourse task.

Sincecoherenceis also a property of a good text, automatically detecting coher-
ence relations is also useful for tasks that measure text quality, like automatic essay
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grading. In automatic essay grading, short student essays are assigned a grade by mea-
suring the internal coherence of the essay as well as comparing its content to source
material and hand-labeled high-quality essays. Coherenceis also used to evaluate the
output quality of natural language generation systems.

Discourse structure and coreference are related in deep ways. Notice that in order
to perform the summary above, a system must correctly identify First Union Corpas
the denotation oftheir (as opposed toPaine Webber, for instance). Similarly, it turns
out that determining the discourse structure can help in determining coreference.

Coherence

Let’s conclude this introduction by discussing what it means for a text to becoherent.
Assume that you have collected an arbitrary set of well-formed and independently in-
terpretable utterances, for instance, by randomly selecting one sentence from each of
the previous chapters of this book. Do you have a discourse? Almost certainly not. The
reason is that these utterances, when juxtaposed, will not exhibit coherence. Consider,COHERENCE

for example, the difference between passages (21.4) and (21.5).

(21.4) John hid Bill’s car keys. He was drunk.

(21.5) ?? John hid Bill’s car keys. He likes spinach.

While most people find passage (21.4) to be rather unremarkable, they find passage
(21.5) to be odd. Why is this so? Like passage (21.4), the sentences that make up
passage (21.5) are well formed and readily interpretable. Something instead seems to
be wrong with the fact that the sentences are juxtaposed. Thehearer might ask, for
instance, what hiding someone’s car keys has to do with liking spinach. By asking this,
the hearer is questioning the coherence of the passage.

Alternatively, the hearer might try to construct an explanation that makes it co-
herent, for instance, by conjecturing that perhaps someoneoffered John spinach in
exchange for hiding Bill’s car keys. In fact, if we consider acontext in which we had
known this already, the passage now sounds a lot better! Why is this? This conjecture
allows the hearer to identify John’s liking spinach as the cause of his hiding Bill’s car
keys, which would explain how the two sentences are connected. The very fact that
hearers try to identify such connections is indicative of the need to establish coherence
as part of discourse comprehension.

In passage (21.4), or in our new model of passage (21.5), the second sentence offers
the reader anEXPLANATION or CAUSE for the first sentence. These examples show
that a coherent discourse must have meaningful connectionsbetween its utterances,
connections likeEXPLANATION that are often calledcoherence relationsand will beCOHERENCE

RELATIONS

introduced in Sec. 21.2.
Let’s introduce a second aspect of coherence by consideringthe following two texts

from Grosz et al. (1995a):

(21.6) a. John went to his favorite music store to buy a piano.
b. He had frequented the store for many years.
c. He was excited that he could finally buy a piano.
d. He arrived just as the store was closing for the day.
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(21.7) a. John went to his favorite music store to buy a piano.

b. It was a store John had frequented for many years.

c. He was excited that he could finally buy a piano.

d. It was closing just as John arrived.

While these two texts differ only in how the two entities (John and the store) are
realized in the sentences, the discourse in (21.6) is intuitively more coherent than the
one in (21.7). As Grosz et al. (1995a) point out, this is because the discourse in (21.6)
is clearly about one individual, John, describing his actions and feelings. The discourse
in (21.7), by contrast, focuses first on John, then the store,then back to John, then to
the store again. It lacks the ‘aboutness’ of the first discourse.

These examples show that for a discourse to be coherent it must exhibit certain
kinds of relationships with the entities it is about, introducing them and following them
in a focused way. This kind of coherence can be calledentity-based coherence, We
will introduce theCentering model of entity-based coherence in Sec. 21.6.2.

In the rest of the chapter we’ll study aspects of both discourse structure and dis-
course entities. We begin in Sec. 21.1 with the simplest kindof discourse structure:
simple discourse segmentationof a document into a linear sequence of multipara-
graph passages. In Section 21.2, we then introduce more fine-grained discourse struc-
ture, thecoherence relation, and give some algorithms for interpreting these relations.
Finally, in Section 21.3, we turn to entities, describing methods for interpretingrefer-
ring expressionssuch as pronouns.

21.1 DISCOURSESEGMENTATION

The first kind of discourse task we examine is an approximation to the global or high-
level structure of a text or discourse. Many genres of text are associated with particular
conventional structures. Academic articles might be divided into sections like Ab-
stract, Introduction, Methodology, Results, Conclusion.A newspaper story is often
described as having an inverted pyramid structure, in whichthe opening paragraphs
(thelede) contains the most important information. Spoken patient reports are dictatedLEDE

by doctors in four sections following the standard SOAP format (Subjective, Objective,
Assessment, Plan).

Automatically determining all of these types of structuresfor a large discourse
is a difficult and unsolved problem. But some kinds of discourse structure detec-
tion algorithms exist. This section introduces one such algorithm, for the simpler
problem ofdiscourse segmentation; separating a document into a linear sequence ofDISCOURSE

SEGMENTATION

subtopics. Such segmentation algorithms are unable to find sophisticated hierarchical
structure. Nonetheless, linear discourse segmentation can be important forinforma-
tion retrieval , for example, for automatically segmenting a TV news broadcast or a
long news story into a sequence of stories so as to find a relevant story, or fortext
summarization algorithms which need to make sure that different segments of the
document are summarized correctly, or forinformation extraction algorithms which
tend to extract information from inside a single discourse segment.
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In the next two sections we introduce both an unsupervised and a supervised algo-
rithm for discourse segmentation.

21.1.1 Unsupervised Discourse Segmentation

Let’s consider the task of segmenting a text into multi-paragraph units that represent
subtopics or passages of the original text. As we suggested above, this task is often
called linear segmentation, to distinguish it from the task of deriving more sophisti-LINEAR

SEGMENTATION

cated hierarchical discourse structure. The goal of a segmenter, given raw text, might
be to assign subtopic groupings such as the ones defined by Hearst (1997) for the fol-
lowing 21-paragraph science news article calledStargazerson the existence of life on
earth and other planets (numbers indicate paragraphs):

l-3 Intro - the search for life in space
4–5 The moon’s chemical composition
6-8 How early earth-moon proximity shaped the moon
9–12 How the moon helped life evolve on earth
13 Improbability of the earth-moon system
14–16 Binary/trinary star systems make life unlikely
17–18 The low probability of nonbinary/trinary systems
19–20 Properties of earth’s sun that facilitate life
21 Summary

An important class of unsupervised algorithms for the linear discourse segmenta-
tion task rely on the concept ofcohesion(Halliday and Hasan, 1976).Cohesionis theCOHESION

use of certain linguistic devices to link or tie together textual units.Lexical cohesionLEXICAL COHESION

is cohesion indicated by relations between words in the two units, such as use of an
identical word, a synonym, or a hypernym. For example the fact that the wordshouse,
shingled, andI occur in both of the two sentences in (21.8ab), is a cue that the two are
tied together as a discourse:

(21.8) • Before winterI built a chimney, andshingledthe sides of myhouse...
• I have thus a tightshingledand plasteredhouse

In Ex. (21.9), lexical cohesion between the two sentences isindicated by the hyper-
nym relation betweenfruit and the wordspearsandapples.

(21.9) Peel, core and slicethe pears and the apples. Add the fruit to the skillet.

There are also non-lexical cohesion relations, such as the use ofanaphora, shown
here betweenWoodhousesandthem(we will define and discuss anaphora in detail in
Sec. 21.6):

(21.10) The Woodhouseswere first in consequence there. All looked up tothem.

In addition to single examples of lexical cohesion between two words, we can have a
cohesion chain, in which cohesion is indicated by a whole sequence of related words:COHESION CHAIN

(21.11) Peel, core and slicethe pears and the apples. Add the fruit to the skillet. Whenthey
are soft...

Coherenceandcohesionare often confused; let’s review the difference.Cohesion
refers to the way textual units are tied or linked together. Acohesive relation is like
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a kind of glue grouping together two units into a single unit.Coherencerefers to
the meaningrelation between the two units. A coherence relation explains how the
meaning of different textual units can combine to jointly build a discourse meaning for
the larger unit.

The intuition of the cohesion-based approach to segmentation is that sentences or
paragraphs in a subtopic are cohesive with each other, but not with paragraphs in a
neighboring subtopic. Thus if we measured the cohesion between every neighboring
sentence, we might expect a ‘dip’ in cohesion at subtopic boundaries.

Let’s look at one such cohesion-based approach, theTextTiling algorithm (Hearst,TEXTTILING

1997). The algorithm has three steps:tokenization, lexical score determination, and
boundary identification. In the tokenization stage, each space-delimited word in the
input is converted to lower-case, words in a stop list of function words are thrown
out, and the remaining words are morphologically stemmed. The stemmed words are
grouped into pseudo-sentences of lengthw = 20 (equal-length pseudo-sentences are
used rather than real sentences).

Now we look at each gap between pseudo-sentences, and compute alexical cohe-
sion scoreacross that gap. The cohesion score is defined as the average similarity of
the words in the pseudo-sentences before gap to the pseudo-sentences after the gap. We
generally use a block ofk = 10 pseudo-sentences on each side of the gap. To compute
similarity, we create a word vectorb from the block before the gap, and a vectora from
the block after the gap, where the vectors are of lengthN (the total number of non-stop
words in the document) and theith element of the word vector is the frequency of the
word wi. Now we can compute similarity by the cosine (= normalized dot product)
measure defined in Eq. (??) from Ch. 20, rewritten here:

simcosine(
~b,~a) =

~b · ~a

|~b||~a|
=

∑N

i=1
bi × ai

√

∑N

i=1
b2
i

√

∑N

i=1
a2

i

(21.12)

This similarity score (measuring how similar pseudo-sentencesi − k to i are to
sentencesi + 1 to i + k + 1) is computed for each gapi between pseudo-sentences.
Let’s look at the example in Fig. 21.1, wherek = 2. Fig. 21.1a shows a schematic view
of four pseudo-sentences. Each 20-word pseudo-sentence might have multiple true
sentences in it; we’ve shown each with two true sentences. The figure also indicates the
computation of the dot-product between successive pseudosentences. Thus for example
in the first pseudo-sentence, consisting of sentences 1 and 2, the word A occurs twice,
B once, C twice, and so on. The dot product between the first twopseudosentences is
2× 1 + 1× 1 + 2× 1 + 1× 1 + 2× 1 = 8. What is the cosine between these first two,
assuming all words not shown have zero count?

Finally, we compute adepth scorefor each gap, measuring the depth of the ‘sim-
ilarity valley’ at the gap. The depth score is the distance from the peaks on both sides
of the valley to the valley; In Fig. 21.1(b), this would be(ya1

− ya2
) + (ya3

− ya2
).

Boundaries are assigned at any valley which is deeper than a cutoff threshold (such
ass̄ − σ, i.e. one standard deviation deeper than the mean valley depth).

Instead of using these depth score thresholds, more recent cohesion-based seg-
menters usedivisive clustering (Choi, 2000; Choi et al., 2001); see the end of the
chapter for more information.
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Figure 21.1 The TextTiling algorithm, showing (a) the dot-product computation of sim-
ilarity between two sentences (1 and 2) and 2 following sentences (3 and 4); capital letters
(A, B, C, etc) indicate occurrences of words. (b) shows the computation of the depth score
of a valley. After Hearst (1997).

21.1.2 Supervised Discourse Segmentation

We’ve now seen a method for segmenting discourses when no hand-labeled segment
boundaries exist. For some kinds of discourse segmentationtasks, however, it is rela-
tively easy to acquire boundary-labeled training data.

Consider the spoken discourse task of segmentation of broadcast news. In order
to do summarization of radio or TV broadcasts, we first need toassign boundaries
between news stories. This is a simple discourse segmentation task, and training sets
with hand-labeled news story boundaries exist. Similarly,for speech recognition of
monologues like lectures or speeches, we often want to automatically break the text up
into paragraphs. For the task ofparagraph segmentation, it is trivial to find labeledPARAGRAPH

SEGMENTATION

training data from the web (marked with<p>) or other sources.
Every kind of classifier has been used for this kind of supervised discourse seg-

mentation. For example, we can use a binary classifier (SVM, decision tree) and make
a yes-no boundary decision between any two sentences. We canalso use a sequence
classifier (HMM, CRF), making it easier to incorporate sequential constraints.

The features in supervised segmentation are generally a superset of those used in
unsupervised classification. We can certainly use cohesionfeatures such as word over-
lap, word cosine, LSA, lexical chains, coreference, and so on.

A key additional feature that is often used for supervised segmentation is the pres-
ence ofdiscourse markersor cue words. A discourse marker is a word or phrase thatDISCOURSE

MARKERS

CUE WORDS functions to signal discourse structure. Discourse markers will play an important role
throughout this chapter. For the purpose of broadcast news segmentation, important
discourse markers might include a phrase likegood evening, I’m〈PERSON〉, which
tends to occur at the beginning of broadcasts, or the wordjoining, which tends to occur
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in the phrasejoining us now is〈PERSON〉, which often occurs at beginnings of specific
segments. Similarly, the cue phrasecoming upoften appears at the end of segments
(Reynar, 1999; Beeferman et al., 1999).

Discourse markers tend to be very domain-specific. For the task of segmenting
newspaper articles from the Wall Street Journal, for example, the wordincorporated
is a useful feature, since Wall Street Journal articles often start by introducing a com-
pany with the full nameXYZ Incorporated, but later using justXYZ. For the task of
segmenting out real estate ads, Manning (1998) used discourse cue features like‘is the
following word a neighborhood name?’, ‘is previous word a phone number?’and even
punctuation cues like‘is the following word capitalized?’.

It is possible to write hand-written rules or regular expressions to identify discourse
markers for a given domain. Such rules often refer to named entities (like thePERSON

examples above), and so a named entity tagger must be run as a preprocessor. Auto-
matic methods for finding discourse markers for segmentation also exist. They first
encode all possible words or phrases as features to a classifier, and then doing some
sort of feature selectionon the training set to find only the words that are the best
indicators of a boundary (Beeferman et al., 1999; Kawahara et al., 2004).

21.1.3 Evaluating Discourse Segmentation

Discourse segmentation is generally evaluated by running the algorithm on a test set
in which boundaries have been labeled by humans. The performance of the algorithm
is computed by comparing the automatic and human boundary labels using theWin-
dowDiff (Pevzner and Hearst, 2002) orPk (Beeferman et al., 1999) metrics.

We generally don’t use precision, recall and F-measure for evaluating segmenta-
tion because they are not sensitive to near misses. Using standard F-measure, if our
algorithm was off by one sentence in assigning each boundary, it would get as bad a
score as an algorithm which assigned boundaries nowhere near the correct locations.
BothWindowDiffandPk assign partial credit. We will present WindowDiff, since itis
a more recent improvement toPk.

WindowDiff compares a reference (human labeled) segmentation with a hypothesis
segmentation by sliding a probe, a moving window of lengthk, across the hypothesis
segmentation. At each position in the hypothesis string, wecompare the number of
referenceboundaries that fall within the probe (ri) to the number ofhypothesized
boundaries that fall within the probe (hi). The algorithm penalizes any hypothesis for
whichri 6= hi, i.e. for which|ri−hi| 6= 0. The window sizek is set as half the average
segment in the reference string. Fig. 21.2 shows a schematicof the computation.

More formally, if b(i, j) is the number of boundaries between positionsi andj in a
text, andN is the number of sentences in the text:

WindowDiff(ref, hyp) =
1

N − k

N−k
∑

i=1

(|b(refi, refi+k) − b(hypi, hypi+k)| 6= 0)(21.13)

WindowDiff returns a value between 0 and 1, where 0 indicatesthat all boundaries
are assigned correctly.
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Ref
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0
1
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0

Figure 21.2 The WindowDiff algorithm, showing the moving window sliding over the
hypothesis string, and the computation of|ri − hi| at four positions. After Pevzner and
Hearst (2002).

21.2 TEXT COHERENCE

The previous section showed that cohesive devices, like lexical repetition, can be used
to find structure in a discourse. The existence of such devices alone, however, does
not satisfy a stronger requirement that a discourse must meet, that of beingcoherent.
We briefly introduced coherence in the introduction. In thissection we offer more
details on what it means for a text to be coherent, and computational mechanisms for
determining coherence. We will focus oncoherence relationsand reserveentity-
based coherencefor discussion in Sec. 21.6.2.

Recall from the introduction the difference between passages (21.14) and (21.15).

(21.14) John hid Bill’s car keys. He was drunk.
(21.15) ?? John hid Bill’s car keys. He likes spinach.

The reason (21.14) is more coherent is that the reader can form a connection be-
tween the two utterances, in which the second utterance provides a potentialCAUSE

or EXPLANATION for the first utterance. This link is harder to form for (21.15). The
possible connections between utterances in a discourse canbe specified as a set ofco-
herence relations. A few such relations, proposed by Hobbs (1979), are given below.COHERENCE

RELATIONS

The termsS0 andS1 represent the meanings of the two sentences being related.

Result: Infer that the state or event asserted byS0 causes or could cause the state or
event asserted byS1.

(21.16) The Tin Woodman was caught in the rain. His joints rusted.

Explanation: Infer that the state or event asserted byS1 causes or could cause the state
or event asserted byS0.

(21.17) John hid Bill’s car keys. He was drunk.

Parallel: Inferp(a1, a2, ...) from the assertion ofS0 andp(b1, b2, ...) from the assertion
of S1, whereai andbi are similar, for alli.

(21.18) The Scarecrow wanted some brains. The Tin Woodman wanted a heart.
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Elaboration: Infer the same propositionP from the assertions ofS0 andS1.

(21.19) Dorothy was from Kansas. She lived in the midst of the great Kansas prairies.

Occasion:A change of state can be inferred from the assertion ofS0, whose final state
can be inferred fromS1, or a change of state can be inferred from the assertion ofS1,
whose initial state can be inferred fromS0.

(21.20) Dorothy picked up the oil-can. She oiled the Tin Woodman’s joints.

We can also talk about the coherence of an entire discourse, by considering the
hierarchical structure between coherence relations. Consider passage (21.21).

(21.21) John went to the bank to deposit his paycheck. (S1)
He then took a train to Bill’s car dealership. (S2)
He needed to buy a car. (S3)
The company he works for now isn’t near any public transportation. (S4)
He also wanted to talk to Bill about their softball league. (S5)

Intuitively, the structure of passage (21.21) is not linear. The discourse seems to be
primarily about the sequence of events described in sentences S1 and S2, whereas
sentences S3 and S5 are related most directly to S2, and S4 is related most directly
to S3. The coherence relationships between these sentencesresult in the discourse
structure shown in Figure 21.3.

Occasion (e1;e2)

S1 (e1) Explanation (e2)

S2 (e2) Parallel (e3;e5)

Explanation (e3) S5 (e5)

S3 (e3) S4 (e4)

Figure 21.3 The discourse structure of passage (21.21).

Each node in the tree represents a group of locally coherent clauses or sentences,
called adiscourse segment. Roughly speaking, one can think of discourse segmentsDISCOURSE

SEGMENT

as being analogous to constituents in sentence syntax.
Now that we’ve seen examples of coherence, we can see more clearly how a coher-

ence relation can play a role in summarization or information extraction. For example,
discourses that are coherent by virtue of the Elaboration relation are often character-
ized by a summary sentence followed by one or more sentences adding detail to it, as
in passage (21.19). Although there are two sentences describing events in this passage,
the Elaboration relation tells us that the same event is being described in each. Au-
tomatic labeling of the Elaboration relation could thus tell an information extraction
or summarization system to merge the information from the sentences and produce a
single event description instead of two.
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21.2.1 Rhetorical Structure Theory

Another theory of coherence relations that has received broad usage isRhetorical
Structure Theory (RST), a model of text organization that was originally proposedRHETORICAL

STRUCTURE THEORY

RST for the study of text generation (Mann and Thompson, 1987).
RST is based on a set of 23rhetorical relationsthat can hold between spans of

text within a discourse. Most relations hold between two text spans (often clauses or
sentences), anucleusand asatellite. The nucleus is the unit that is more central toNUCLEUS

SATELLITE the writer’s purpose, and that is interpretable independently; the satellite is less central,
and generally is only interpretable with respect to the nucleus.

Consider theEvidencerelation, in which a satellite presents evidence for the propo-EVIDENCE

sition or situation expressed in the nucleus:

(21.22) Kevin must be here. His car is parked outside.

RST relations are traditionally represented graphically;the asymmetric Nucleus-
Satellite relation is represented with an arrow from the satellite to the nucleus:

Kevin must be here. His car is parked outside

In the original (Mann and Thompson, 1987) formulation, an RST relation is for-
mally defined by a set ofconstraintson the nucleus and satellite, having to do with the
goals and beliefs of the writer (W) and reader (R), and by theeffecton the reader (R).
The Evidence relation, for example, is defined as follows:

Relation Name: Evidence
Constraints on N: R might not believe N to a degree satisfactory to W
Constraints on S: R believes S or will find it credible
Constraints on N+S: R’s comprehending S increases R’s belief of N
Effects: R’s belief of N is increased

There are many different sets of rhetorical relations in RSTand related theories and
implementations. The RST TreeBank (Carlson et al., 2001), for example, defines 78
distinct relations, grouped into 16 classes. Here are some common RST relations, with
definitions adapted from Carlson and Marcu (2001).

Elaboration: There are various kinds of elaboration relations; in each one, the satel-
lite gives further information about the content of the nucleus:

[N The company wouldn’t elaborate,] [S citing competitive reasons]

Attribution: The satellite gives the source of attribution for an instance of reported
speech in the nucleus.

[S Analysts estimated,] [N that sales at U.S. stores declined in the quarter, too]

Contrast: This is a multinuclear relation, in which two or more nuclei contrast along
some important dimension:

[N The priest was in a very bad temper,] [N but the lama was quite happy.]
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List: In this multinuclear relation, a series of nuclei is given, without contrast or
explicit comparison:

[N Billy Bones was the mate; ] [N Long John, he was quartermaster]

Background: The satellite gives context for interpreting the nucleus:

[S T is the pointer to the root of a binary tree.] [N Initialize T.]

Just as we saw for the Hobbs coherence relations, RST relations can be hierarchi-
cally organized into an entire discourse tree. Fig. 21.4 shows one from Marcu (2000a)
for the text in (21.23) from the Scientific American magazine.

(21.23) With its distant orbit–50 percent farther from the sun than Earth–and slim atmospheric
blanket, Mars experiences frigid weather conditions. Surface temperatures typically
average about -60 degrees Celsius (-76 degrees Fahrenheit)at the equator and can dip
to -123 degrees C near the poles. Only the midday sun at tropical latitudes is warm
enough to thaw ice on occasion, but any liquid water formed inthis way would
evaporate almost instantly because of the low atmospheric pressure.

Title
(1)
Mars

2-9

evidence

2-3

background

  (2)
WIth its 

distant orbit  
<p> -- 50
 percent 

farther from 
the sun than 
Earth -- </p> 
and slim 

atmospheric 
blanket,

(3)
Mars

experiences
frigid weather
conditions.

4-9

elaboration-additional

(4)
Surface 

temperatures
 typically average 

about -60 
degrees Celsius
 <p> (-76 degrees
Fahrenheit)</p>
 at the equator

4-5

List

(5)
and can dip
to -123

degrees C
near the
poles.

6-9

Contrast

6-7

(6)
Only the

midday sun at
tropical latitudes
is warm enough

(7)
to thaw ice
on occasion,

purpose

8-9

explanation-argumentative

(8)
but any liquid water
formed in this way 
would evaporate 
almost instantly

(9)
because of
the low

atmospheric
pressure.

Figure 21.4 A discourse tree for the Scientific American text in (21.23),from Marcu (2000a). Note that
asymmetric relations are represented with a curved arrow from the satellite to the nucleus.

See the end of the chapter for pointers to other theories of coherence relations and
related corpora, and Ch. 23 for the application of RST and similar coherence relations
to summarization.

21.2.2 Automatic Coherence Assignment

Given a sequence of sentences, how can we automatically determine the coherence
relations between them? Whether we use RST, Hobbs, or one of the many other sets of
relations (see the end of the chapter), we call this taskcoherence relation assignment.
If we extend this task from assigning a relation between two sentences to the larger
goal of extracting a tree or graph representing an entire discourse, the termdiscourse
parsing is often used.DISCOURSE PARSING
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Both of these tasks are quite difficult, and remain unsolved open research problems.
Nonetheless, a variety of methods have been proposed, and inthis section we describe
shallow algorithms based oncue phrases. In the following section we sketch a more
sophisticated but less robust algorithm based onabduction.

A shallow cue-phrase-based algorithm for coherence extraction has three stages:

1. Identify the cue phrases in a text

2. Segment the text into discourse segments, using cue phrases

3. Classify the relationship between each consecutive discourse segment, using cue
phrases.

We said earlier that acue phrase(or discourse marker or cue word) is a wordCUE PHRASE

DISCOURSE MARKER or phrase that functions to signal discourse structure, especially by linking together
discourse segments. In Sec. 21.1 we mentioned cue phrases orfeatures likejoining us
now is〈PERSON〉 (for broadcast news segmentation) orfollowing word is the name of
a neighborhood(for real estate ad segmentation). For extracting coherence relations,
we rely on cue phrases calledconnectives, which are often conjunctions or adverbs,CONNECTIVES

and which give us a ‘cue’ to the coherence relations that holdbetween segments. For
example, the connectivebecausestrongly suggests theEXPLANATION relation in pas-
sage (21.24).

(21.24) John hid Bill’s car keys becausehe was drunk.

Other such cue phrases includealthough, but, for example, yet, with, and and.
Discourse markers can be quite ambiguous between thesediscourseuses and non-
discourse relatedsentential uses. For example, the wordwith can be used as a cueSENTENTIAL

phrase as in (21.25), or in a sentential use as in (21.26)1:

(21.25) With its distant orbit, Mars exhibits frigid weather conditions

(21.26) We can see Marswith an ordinary telescope.

Some simple disambiguation of the discourse versus sentential use of a cue phrase
can be done with simple regular expressions, once we have sentence boundaries. For
example, if the wordsWith or Yet are capitalized and sentence-initial, they tend to
be discourse markers. The wordsbecauseor wheretend to be discourse markers if
preceded by a comma. More complete disambiguation requiresthe WSD techniques
of Ch. 20 using many other features. If speech is available, for example, discourse
markers often bear different kinds of pitch accent than sentential uses (Hirschberg and
Litman, 1993).

The second step in determining the correct coherence relation is to segment the text
into discourse segments. Discourse segments generally correspond to clauses or sen-
tences, although sometimes they are smaller than clauses. Many algorithms approx-
imate segmentation by using entire sentences, employing the sentence segmentation
algorithm of Fig.?? (page??), or the algorithm of Sec.??.

Often, however, a clause or clause-like unit is a more appropriate size for a dis-
course segment, as we see in the following examples from Sporleder and Lapata (2004):

(21.27) [We can’t win] [but we must keep trying] (CONTRAST)

1 Where perhaps it will be a cue instead for the semantic roleINSTRUMENT
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(21.28) [The ability to operate at these temperature is advantageous], [because the devices need less
thermal insulation] (EXPLANATION)

One way to segment these clause-like units is to use hand-written segmentation
rules based on individual cue phrases. For example, if the cue-phraseBecauseoccurs
sentence-initially and is eventually followed by a comma (as in (21.29)), it may begin
a segment (terminated by the comma) that relates to the clause after the comma. If
becauseoccurs sentence-medially, it may divide the sentence into aprevious and fol-
lowing discourse segment (as in (21.30)). These cases can bedistinguished by hand-
written rules based on punctuation and sentence boundaries.

(21.29) [Becauseof the low atmospheric pressure,] [any liquid water would evaporate
instantly]

(21.30) [Any liquid water would evaporate instantly] [becauseof the low atmospheric
pressure.]

If a syntactic parser is available, we can write more complexsegmentation rules
making use of syntactic phrases.

The third step in coherence extraction is to automatically classify the relation be-
tween each pair of neighboring segments. We can again write rules for each discourse
marker, just as we did for determining discourse segment boundaries. Thus a rule
could specify that a segmenting beginning with sentence-initial Becauseis a satellite
in a CAUSE relationship with a nucleus segment that follows the comma.

In general, the rule-based approach to coherence extraction does not achieve ex-
tremely high accuracy. Partly this is because cue phrases are ambiguous;because, for
example, can indicate bothCAUSE andEVIDENCE, but can indicateCONTRAST, AN-
TITHESIS, andCONCESSION, and so on. We need additional features than just the cue
phrases themselves. But a deeper problem with the rule-based method is that many
coherence relations are not signaled by cue phrases at all. In the RST corpus of Carl-
son et al. (2001), for example, Marcu and Echihabi (2002) found that only 61 of the
238CONTRASTrelations, and only 79 of the 307EXPLANATION-EVIDENCE relations,
were indicated by explicit cue phrases. Instead, many coherence relations are signalled
by more implicit cues. For example, the following two sentences are in theCONTRAST

relation, but there is no explicitin contrastor but connective beginning the second
sentence:

(21.31) The $6 billion that some 40 companies are looking to raise in the year ending March
31 compares with only $2.7 billion raised on the capital market in the previous fiscal
year

(21.32) In fiscal 1984 before Mr. Gandhi came to power, only $810 million was raised.

How can we extract coherence relations between discourse segments if no cue
phrases exist? There are certainly many implicit cues that we could use. Consider
the following two discourse segments:

(21.33) [I don’t want a truck;] [I’d prefer a convertible.]

TheCONTRASTrelation between these segments is signalled by their syntactic par-
allelism, by the use of negation in the first segment, and by the lexical coordinate
relation betweenconvertibleand truck. But many of these features are quite lexical,
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requiring a large number of parameters which couldn’t be trained on the small amount
of labeled coherence relation data that currently exists.

This suggests the use ofbootstrapping to automatically label a larger corpus with
coherence relations that could then be used to train these more expensive features. We
can do this by relying on discourse markers that are very strong unambiguous cues
for particular relations. For exampleconsequentlyis an unambiguous signal forRE-
SULT, in other wordsfor SUMMARY, for examplefor ELABORATION, andsecondlyfor
CONTINUATION. We write regular expressions to extract pairs of discoursesegments
surrounding these cue phrases, and then remove the cue phrases themselves. The re-
sulting sentence pairs, without the cue phrases, are used asa supervised training set for
these coherence relations.

Given this labeled training set, any supervised machine learning method may be
used. Marcu and Echihabi (2002), for example, use a naive Bayes classifier based only
on word-pair features(w1, w2), where the first wordw1 occurs in the first discourse
segment, and the secondw2 occurs in the following segment. This feature captures
lexical relations likeconvertible/truckabove. Sporleder and Lascarides (2005) include
other features, including individual words, parts of speech, or stemmed words in the
left and right discourse segment. They found, for example, that words likeother, still,
andnot were chosen by feature selection as good cues forCONTRAST. Words likeso,
indeed, andundoubtedlywere chosen as cues forRESULT.

21.3 REFERENCERESOLUTION

and even Stigand, the patriotic archbishop of Canterbury, found it advisable–”’
‘Found WHAT?’ said the Duck.
‘Found IT,’ the Mouse replied rather crossly: ‘of course youknow what ”it” means.’
‘I know what “it” means well enough, when I find a thing,’ said the Duck: ‘it’s generally
a frog or a worm. The question is, what did the archbishop find?

Lewis Carroll, Alice in Wonderland

In order to interpret the sentences of any discourse, we needto know who or what
entity is being talked about. Consider the following passage:

(21.34) Victoria Chen,Chief Financial Officerof MegabucksBanking Corp since 2004, saw
her pay jump 20%, to $1.3 million, asthe37-year-old also becametheDenver-based
financial-servicescompany’spresident. It has been ten years sinceshe came to
Megabucks from rival Lotsabucks.

In this passage, each of the underlined phrases is used by thespeaker to denote one
person named Victoria Chen. We refer to this use of linguistic expressions likeher or
Victoria Chento denote an entity or individual asreference. In the next few sectionsREFERENCE

of this chapter we study the problem ofreference resolution. Reference resolution isREFERENCE
RESOLUTION

the task of determining what entities are referred to by which linguistic expressions.
We first define some terminology. A natural language expression used to perform

reference is called areferring expression, and the entity that is referred to is calledREFERRING
EXPRESSION

thereferent. Thus,Victoria Chenandshein passage (21.34) are referring expressions,REFERENT

and Victoria Chen is their referent. (To distinguish between referring expressions and
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their referents, we italicize the former.) As a convenient shorthand, we will sometimes
speak of a referring expression referring to a referent, e.g., we might say thatsherefers
to Victoria Chen. However, the reader should keep in mind that what we really mean
is that the speaker is performing the act of referring to Victoria Chen by utteringshe.
Two referring expressions that are used to refer to the same entity are said tocorefer;COREFER

thus Victoria Chenand shecorefer in passage (21.34). There is also a term for a
referring expression that licenses the use of another, in the way that the mention of
Johnallows John to be subsequently referred to usinghe. We callJohntheantecedentANTECEDENT

of he. Reference to an entity that has been previously introducedinto the discourse is
calledanaphora, and the referring expression used is said to beanaphoric. In passageANAPHORA

ANAPHORIC (21.34), the pronounssheandher, and the definite NPthe 37-year-oldare therefore
anaphoric.

Natural languages provide speakers with a variety of ways torefer to entities. Say
that your friend has a 1961 Ford Falcon automobile and you want to refer to it. De-
pending on the operativediscourse context, you might sayit, this, that, this car, thatDISCOURSE

CONTEXT

car, the car, the Ford, the Falcon, or my friend’s car, among many other possibilities.
However, you are not free to choose between any of these alternatives in any con-
text. For instance, you cannot simply sayit or the Falconif the hearer has no prior
knowledge of your friend’s car, it has not been mentioned before, and it is not in the
immediate surroundings of the discourse participants (i.e., thesituational context ofSITUATIONAL

CONTEXT

the discourse).
The reason for this is that each type of referring expressionencodes different sig-

nals about the place that the speaker believes the referent occupies within the hearer’s
set of beliefs. A subset of these beliefs that has a special status form the hearer’s
mental model of the ongoing discourse, which we call adiscourse model(Webber,DISCOURSE MODEL

1978). The discourse model contains representations of theentities that have been re-
ferred to in the discourse and the relationships in which they participate. Thus, there
are two components required by a system to successfully interpret (or produce) refer-
ring expressions: a method for constructing a discourse model that evolves with the
dynamically-changing discourse it represents, and a method for mapping between the
signals that various referring expressions encode and the hearer’s set of beliefs, the
latter of which includes this discourse model.

We will speak in terms of two fundamental operations to the discourse model.
When a referent is first mentioned in a discourse, we say that arepresentation for it
is evoked into the model. Upon subsequent mention, this representation is accessedEVOKED

ACCESSED from the model. The operations and relationships are illustrated in Figure 21.5. As we
will see in Sec. 21.8, the discourse model plays an importantrole in how coreference
algorithms are evaluated.

We are now ready to introduce two reference resolution tasks: coreference reso-
lution andpronominal anaphora resolution. Coreference resolution is the task ofCOREFERENCE

RESOLUTION

finding referring expressions in a text that refer to the sameentity, i.e. finding expres-
sions thatcorefer. We call the set of coreferring expressions acoreference chain. ForCOREFERENCE

CHAIN

example, in processing (21.34), a coreference resolution algorithm would need to find
four coreference chains:

1. { Victoria Chen, Chief Financial Officer of Megabucks Banking Corp since 1994, her, the
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Discourse Model

"John" "he"corefer

refer (evoke)
refer (access)

Figure 21.5 Reference operations and relationships with respect to thediscourse model.

37-year-old, the Denver-based financial-services company’s president, She}

2. { Megabucks Banking Corp, the Denver-based financial-services company, Megabucks}

3. { her pay}

4. { Lotsabucks}

Coreference resolution thus requires finding all referringexpressions in a discourse,
and grouping them into coreference chains. By contrast,pronominal anaphora res-
olution is the task of finding the antecedent for a single pronoun; forexample, given

PRONOMINAL
ANAPHORA

RESOLUTION

the pronounher, our task is to decide that the antecedent ofher is Victoria Chen. Thus
pronominal anaphora resolution can be viewed as a subtask ofcoreference resolution.2

In the next section we introduce different kinds of reference phenomena. We then
give various algorithms for reference resolution. Pronominal anaphora has received
a lot of attention in speech and language processing, and so we will introduce three
algorithms for pronoun processing: theHobbs algorithm, aCentering algorithm, and
a log-linear (MaxEnt) algorithm. We then give an algorithm for the more general
coreference resolution task.

We will see that each of these algorithms focuses on resolving reference to enti-
ties or individuals. It is important to note, however, that discourses do include ref-
erence to many other types of referents than entities. Consider the possibilities in
example (21.35), adapted from Webber (1991).

(21.35) According to Doug, Sue just bought a 1961 Ford Falcon.

a. Butthat turned out to be a lie.
b. But thatwas false.
c. Thatstruck me as a funny way to describe the situation.
d. Thatcaused a financial problem for Sue.

The referent ofthat is a speech act (see Ch. 24) in (21.35a), a proposition in (21.35b),
a manner of description in (21.35c), and an event in (21.35d). The field awaits the
development of robust methods for interpreting these typesof reference.

2 Although technically there are cases of anaphora that are not cases of coreference; see van Deemter and
Kibble (2000) for more discussion.
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21.4 REFERENCEPHENOMENA

The set of referential phenomena that natural languages provide is quite rich indeed.
In this section, we provide a brief description of several basic reference phenomena,
surveying five types of referring expression:indefinite noun phrases, definite noun
phrases, pronouns, demonstratives, andnames. We then summarize the way these
referring expressions are used to encodegiven andnew information, along the way
introducing two types of referents that complicate the reference resolution problem:
inferrablesandgenerics.

21.4.1 Five Types of Referring Expressions

Indefinite Noun Phrases Indefinite reference introduces entities that are new to the
hearer into the discourse context. The most common form of indefinite reference is
marked with the determinera (or an), but it can also be marked by a quantifier such as
someor even the determinerthis:

(21.36) (a) Mrs. Martin was so very kind as to send Mrs. Goddarda beautiful goose.
(b) He had gone round one day to bring hersome walnuts.
(c) I sawthis beautiful Ford Falcontoday.

Such noun phrases evoke a representation for a new entity that satisfies the given de-
scription into the discourse model.

The indefinite determinera does not indicate whether the entity is identifiable to
the speaker, which in some cases leads to aspecific/non-specificambiguity. Example
(21.36a) only has the specific reading, since the speaker hasa particular goose in mind,
particularly the one Mrs. Martin sent. In sentence (21.37),on the other hand, both
readings are possible.

(21.37) I am going to the butchers to buy a goose.

That is, the speaker may already have the goose picked out (specific), or may just be
planning to pick one out that is to her liking (nonspecific).

Definite Noun Phrases Definite reference is used to refer to an entity that is identifi-
able to the hearer. An entity can be identifiable to the hearerbecause it has been men-
tioned previously in the text, and thus is already represented in the discourse model:

(21.38) It concerns a white stallion which I have sold to an officer. But the pedigree ofthe
white stallionwas not fully established.

Alternatively, an entity can be identifiable because it is contained in the hearer’s set
of beliefs about the world, or the uniqueness of the object isimplied by the description
itself, in which case it evokes a representation of the referent into the discourse model,
as in (21.39):

(21.39) I read about it inThe New York Times.

Pronouns Another form of definite reference is pronominalization, illustrated in ex-
ample (21.40).

(21.40) Emma smiled and chatted as cheerfully asshecould,
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The constraints on using pronominal reference are strongerthan for full definite noun
phrases, requiring that the referent have a high degree of activation orsaliencein theSALIENCE

discourse model. Pronouns usually (but not always) refer toentities that were intro-
duced no further than one or two sentences back in the ongoingdiscourse, whereas
definite noun phrases can often refer further back. This is illustrated by the difference
between sentences (21.41d) and (21.41d’).

(21.41) a. John went to Bob’s party, and parked next to a classic Ford Falcon.
b. He went inside and talked to Bob for more than an hour.
c. Bob told him that he recently got engaged.

d. ?? He also said that he boughtit yesterday.
d.’ He also said that he boughtthe Falconyesterday.

By the time the last sentence is reached, the Falcon no longerhas the degree of salience
required to allow for pronominal reference to it.

Pronouns can also participate incataphora, in which they are mentioned beforeCATAPHORA

their referents are, as in example (21.42).

(21.42) Even beforeshesawit, Dorothy had been thinking about the Emerald City every day.

Here, the pronounssheandit both occurbeforetheir referents are introduced.
Pronouns also appear in quantified contexts in which they areconsidered to be

bound, as in example (21.43).BOUND

(21.43) Every dancer broughther left arm forward.

Under the relevant reading,her does not refer to some woman in context, but instead
behaves like a variable bound to the quantified expressionevery dancer. We will not
be concerned with the bound interpretation of pronouns in this chapter.

Demonstratives Demonstrative pronouns, likethis andthat, behave somewhat dif-
ferently than simple definite pronouns likeit. They can appear either alone or as deter-
miners, for instance,this ingredient, that spice. Thisandthatdiffer in lexical meaning;
(this, theproximal demonstrative, indicating literal or metaphorical closeness, whilePROXIMAL

DEMONSTRATIVE

that, thedistal demonstrativeindicating literal or metaphorical distance (further awayDISTAL
DEMONSTRATIVE

in time, as in the following example)):

(21.44) I just bought a copy of Thoreau’sWalden. I had bought one five years ago.That one
had been very tattered;this onewas in much better condition.

Note thatthis NP is ambiguous; in colloquial spoken English, it can be indefinite,
as in (21.36), or definite, as in (21.44).

Names Names are a very common form of referring expression, including names of
people, organizations, and locations, as we saw in the discussion of named entities in
Sec.??. Names can be used to refer to both new and old entities in the discourse:

(21.45) a. Miss Woodhousecertainly had not done him justice.

b. International Business Machinessought patent compensation from Amazon;
I.B.M. had previously sued other companies.
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21.4.2 Information Status

We noted above that the same referring expressions (such as many indefinite NPs) can
be used to introduce new referents, while other expressions(such as many definite NPs,
or pronouns) can be used to refer anaphorically to old referents. This idea of studying
the way different referential forms are used to provide new or old information is called
information status or information structure .INFORMATION

STATUS

INFORMATION
STRUCTURE There are a variety of theories that express the relation between different types of

referential form and the informativity or saliency of the referent in the discourse. For
example, thegivenness hierarchy(Gundel et al., 1993) is a scale representing sixGIVENNESS

HIERARCHY

kinds of information status that different referring expression are used to signal:
The givenness hierarchy:

uniquely type
in focus> activated> familiar > identifiable> referential> identifiable

{it}

{

that
this
thisN

}

{that N} {the N} {indef. this N} {a N}

The relatedaccessibility scaleof Ariel (2001) is based on the idea that referentsACCESSIBILITY
SCALE

that are more salient will be easier for the hearer to call to mind, and hence can be
referred to with less linguistic material. By contrast, less salient entities will need a
longer and more explicit referring expression to help the hearer recover the referent.
The following shows a sample scale going from low to high accessibility:

Full name> long definite description> short definite description> last name
> first name> distal demonstrative> proximate demonstrative> NP> stressed
pronoun> unstressed pronoun

Note that accessibility correlates with length, with less accessible NPs tending to
be longer. Indeed, if we follow a coreference chain in a discourse, we will often find
longer NPs (for example long definition descriptions with relative clauses) early in the
discourse, and much shorter ones (for example pronouns) later in the discourse.

Another perspective, based on the work of (Prince, 1992), isto analyze information
status in terms of two crosscutting dichotomies:hearer statusand discourse status.
Thehearer statusof a referent expresses whether it is previously known to thehearer,
or whether it is new. Thediscourse statusexpresses whether the referent has been
previously mentioned in the discourse.

The relationship between referring expression form and information status can be
complicated; we summarize below three such complicating factors (the use ofin-
ferrables, generics, andnon-referential forms):

Inferrables: In some cases, a referring expression does not refer to an entity that
has been explicitly evoked in the text, but instead one that is inferentially related to
an evoked entity. Such referents are calledinferrables, bridging inferences, or me-INFERRABLES

BRIDGING
INFERENCES

diated(Haviland and Clark, 1974; Prince, 1981; Nissim et al., 2004) Consider the
MEDIATED expressionsa doorandthe enginein sentence (21.46).

(21.46) I almost bought a 1961 Ford Falcon today, buta doorhad a dent andthe engine
seemed noisy.
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The indefinite noun phrasea doorwould normally introduce a new door into the dis-
course context, but in this case the hearer is to infer something more: that it is not just
any door, but one of the doors of the Falcon. Similarly, the use of the definite noun
phrasethe enginenormally presumes that an engine has been previously evokedor is
otherwise uniquely identifiable. Here, no engine has been explicitly mentioned, but
the hearer makes abridging inference to infer that the referent is the engine of the
previously mentioned Falcon.

Generics: Another kind of expression that does not refer back to an entity explicitly
evoked in the text isgenericreference. Consider example (21.47).

(21.47) I’m interested in buying a Mac laptop.Theyare very stylish.

Here, they refers, not to a particular laptop (or even a particular set of laptops), but
instead to the class of Mac laptops in general. Similarly, the pronounyoucan be used
generically in the following example:

(21.48) In March in Boulderyouhave to wear a jacket.

Non-referential uses: Finally, some non-referential forms bear a confusing super-
ficial resemblance to referring expressions. For example inaddition to its referring
usages, the wordit can be used inpleonasticcases likeit is raining, in idioms likehitPLEONASTIC

it off, or in particular syntactic situations likeclefts(21.49a) orextraposition (21.49b):CLEFTS

(21.49) (a) It was Frodo who carried the ring.
(b) It was good that Frodo carried the ring.

21.5 FEATURES FORPRONOMINAL ANAPHORA RESOLUTION

We now turn to the task of resolving pronominal reference. Ingeneral, this problem is
formulated as follows. We are given a single pronoun (he, him, she, her, it, and some-
timesthey/them), together with the previous context. Our task is to find the antecedent
of the pronoun in this context. We present three systems for this task; but first we
summarize useful constraints on possible referents.

We begin with five relatively hard-and-fast morphosyntactic features that can be
used to filter the set of possible referents:number, person, gender, and binding
theory constraints.

Number Agreement: Referring expressions and their referents must agree in num-
ber; for English, this means distinguishing betweensingular and plural references.
Englishshe/her/he/him/his/itare singular,we/us/they/themare plural, andyou is un-
specified for number. Some illustrations of the constraintson number agreement:

John has a Ford Falcon. It is red. * John has a Ford Falcon. Theyare red.
John has three Ford Falcons. They are red. * John has three Ford Falcons. It is red.

We cannot always enforce a very strict grammatical notion ofnumber agreement,
since sometimes semantically plural entities can be referred to by eitherit or they:
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(21.50) IBM announced a new machine translation product yesterday.Theyhave been
working on it for 20 years.

Person Agreement: English distinguishes between three forms of person: first,sec-
ond, and third. The antecedent of a pronoun must agree with the pronoun in number.
A first person pronoun (I, me, my) must have a first person antecedent (I, me, or my).
A second person pronoun (youor your) must have a second person antecedent (youor
your). A third person pronoun (he, she, they, him, her, them, his, her, their) must have
a third person antecedent (one of the above or any other noun phrase).

Gender Agreement: Referents also must agree with the gender specified by the re-
ferring expression. English third person pronouns distinguish betweenmale, (he, him,
his), female, (she, her) andnonpersonal(it) genders. Unlike in some languages, En-
glish male and female pronoun genders only apply to animate entities; inanimate enti-
ties are always nonpersonal/neuter. Some examples:

(21.51) John has a Ford. He is attractive. (he=John, not the Ford)

(21.52) John has a Ford. It is attractive. (it=the Ford, not John)

Binding Theory Constraints: Reference relations may also be constrained by the
syntactic relationships between a referential expressionand a possible antecedent noun
phrase when both occur in the same sentence. For instance, the pronouns in all of the
following sentences are subject to the constraints indicated in brackets.

(21.53) John bought himself a new Ford. [himself=John]

(21.54) John bought him a new Ford. [him6=John]

(21.55) John said that Bill bought him a new Ford. [him6=Bill]

(21.56) John said that Bill bought himself a new Ford. [himself=Bill]

(21.57) He said that he bought John a new Ford. [He 6=John; he6=John]

English pronouns such ashimself, herself, and themselvesare calledreflexives.REFLEXIVES

Oversimplifying the situation, a reflexive corefers with the subject of the most imme-
diate clause that contains it (ex. 21.53), whereas a nonreflexive cannot corefer with this
subject (ex. 21.54). That this rule applies only for the subject of the most immediate
clause is shown by examples (21.55) and (21.56), in which theopposite reference pat-
tern is manifest between the pronoun and the subject of the higher sentence. On the
other hand, a full noun phrase likeJohncannot corefer with the subject of the most
immediate clause nor with a higher-level subject (ex. 21.57).

These constraints are often called thebinding theory (Chomsky, 1981), and quiteBINDING THEORY

complicated versions of these constraints have been proposed. A complete statement
of the constraints requires reference to semantic and otherfactors, and cannot be stated
purely in terms of syntactic configuration. Nonetheless, for the algorithms discussed
later in this chapter we will assume a simple syntactic account of restrictions on in-
trasentential coreference.

Selectional Restrictions: The selectional restrictions that a verb places on its argu-
ments (see Ch. 19) may be responsible for eliminating referents, as in example (21.58).

(21.58) John parked his car in the garage after driving it around for hours.
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There are two possible referents forit, the car and the garage. The verbdrive, however,
requires that its direct object denote something that can bedriven, such as a car, truck,
or bus, but not a garage. Thus, the fact that the pronoun appears as the object of
drive restricts the set of possible referents to the car. Selectional restrictions can be
implemented by storing a dictionary of probabilistic dependencies between the verb
associated with the pronoun and the potential referent.

Recency: We next turn to features for predicting the referent of a pronoun that are
less hard-and-fast. Entities introduced in recent utterances tend to be more salient than
those introduced from utterances further back. Thus, in example (21.59), the pronoun
it is more likely to refer to Jim’s map than the doctor’s map.

(21.59) The doctor found an old map in the captain’s chest. Jim found an even older map
hidden on the shelf. It described an island.

Grammatical Role: Many theories specify a salience hierarchy of entities thatis
ordered by the grammatical position of the expressions which denote them. These
typically treat entities mentioned in subject position as more salient than those in object
position, which are in turn more salient than those mentioned in subsequent positions.

Passages such as (21.60) and (21.61) lend support for such a hierarchy. Although
the first sentence in each case expresses roughly the same propositional content, the
preferred referent for the pronounhe varies with the subject in each case – John in
(21.60) and Bill in (21.61).

(21.60) Billy Bones went to the bar with Jim Hawkins. He called for a glass of rum.
[ he = Billy ]

(21.61) Jim Hawkins went to the bar with Billy Bones. He called for a glass of rum.
[ he = Jim ]

Repeated Mention: Some theories incorporate the idea that entities that have been
focused on in the prior discourse are more likely to continueto be focused on in sub-
sequent discourse, and hence references to them are more likely to be pronominalized.
For instance, whereas the pronoun in example (21.61) has Jimas its preferred interpre-
tation, the pronoun in the final sentence of example (21.62) may be more likely to refer
to Billy Bones.

(21.62) Billy Bones had been thinking about a glass of rum ever since the pirate ship docked.
He hobbled over to the Old Parrot bar. Jim Hawkins went with him. He called for a
glass of rum. [ he = Billy ]

Parallelism: There are also strong preferences that appear to be induced by paral-
lelism effects, as in example (21.63).

(21.63) Long John Silver went with Jim to the Old Parrot. Billy Bones went with him to the
Old Anchor Inn. [ him = Jim ]

The grammatical role hierarchy described above ranks Long John Silver as more salient
than Jim, and thus should be the preferred referent ofhim. Furthermore, there is no
semantic reason that Long John Silver cannot be the referent. Nonetheless,him is
instead understood to refer to Jim.
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Verb Semantics Certain verbs appear to place a semantically-oriented emphasis on
one of their argument positions, which can have the effect ofbiasing the manner in
which subsequent pronouns are interpreted. Compare sentences (21.64) and (21.65).

(21.64) John telephoned Bill. He lost the laptop.

(21.65) John criticized Bill. He lost the laptop.

These examples differ only in the verb used in the first sentence, yet the subject pronoun
in passage (21.64) is typically resolved to John, whereas the pronoun in passage (21.65)
is resolved to Bill. It has been argued that this effect results from what the “implicit
causality” of a verb: the implicit cause of a “criticizing” event is considered to be
its object, whereas the implicit cause of a “telephoning” event is considered to be its
subject. This emphasis results in a higher degree of salience for the entity in this
argument position.

21.6 THREE ALGORITHMS FOR PRONOMINAL ANAPHORA RESOLU-
TION

21.6.1 Pronominal Anaphora Baseline: The Hobbs Algorithm

The first of the three algorithms we present for pronominal anaphora resolution is the
Hobbs algorithm. The Hobbs algorithm (the simpler of two algorithms presented orig-HOBBS ALGORITHM

inally in Hobbs (1978)) depends only on a syntactic parser plus a morphological gender
and number checker. For this reason it is often used as a baseline when evaluating new
pronominal anaphora resolution algorithms.

The input to the Hobbs algorithm is a pronoun to be resolved, together with a
syntactic parse of the sentences up to and including the current sentence. The algorithm
searches for an antecedent noun phrase in these trees. The intuition of the algorithm is
to start with the target pronoun and walk up the parse tree to the rootS. For eachNP

or S node that it finds, it does a breadth-first left-to-right search of the node’s children
to the left of the target. As each candidate noun phrase is proposed, it is checked for
gender, number, and person agreement with the pronoun. If noreferent is found, the
algorithm performs the same breadth-first search on preceding sentences.

The Hobbs algorithm does not capture all the constraints andpreferences on pronom-
inalization described above. It does, however, approximate thebinding theory, recency,
andgrammatical rolepreferences by the order in which the search is performed, and
thegender, person, andnumberconstraints by a final check.

An algorithm that searches parse trees must also specify a grammar, since the as-
sumptions regarding the structure of syntactic trees will affect the results. A fragment
for English that the algorithm uses is given in Figure 21.6. The steps of theHobbs
algorithm are as follows:

1. Begin at the noun phrase (NP) node immediately dominatingthe pronoun.

2. Go up the tree to the first NP or sentence (S) node encountered. Call this node
X, and call the path used to reach itp.
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S → NP VP

NP →







(Det) Nominal

({

PP
Rel

})∗

pronoun







Det →

{

determiner
NP ’s

}

PP → preposition NP
Nominal → noun(PP)∗

Rel → wh-word S
VP → verb NP(PP)∗

Figure 21.6 A grammar fragment for the Tree Search algorithm.

3. Traverse all branches below node X to the left of pathp in a left-to-right, breadth-
first fashion. Propose as the antecedent any NP node that is encountered which
has an NP or S node between it and X.

4. If node X is the highest S node in the sentence, traverse thesurface parse trees
of previous sentences in the text in order of recency, the most recent first; each
tree is traversed in a left-to-right, breadth-first manner,and when an NP node is
encountered, it is proposed as antecedent. If X is not the highest S node in the
sentence, continue to step 5.

5. From node X, go up the tree to the first NP or S node encountered. Call this new
node X, and call the path traversed to reach itp.

6. If X is an NP node and if the pathp to X did not pass through the Nominal node
that X immediately dominates, propose X as the antecedent.

7. Traverse all branches below node X to theleft of path p in a left-to-right, breadth-
first manner. Propose any NP node encountered as the antecedent.

8. If X is an S node, traverse all branches of node X to theright of pathp in a left-to-
right, breadth-first manner, but do not go below any NP or S node encountered.
Propose any NP node encountered as the antecedent.

9. Go to Step 4.

Demonstrating that this algorithm yields the correct coreference assignments for an
example sentence is left as Exercise 21.2.

Most parsers return number information (singular or plural), and person informa-
tion is easily encoded by rule for the first and second person pronouns. But parsers for
English rarely return gender information for common or proper nouns. Thus the only
additional requirement to implementing the Hobbs algorithm, besides a parser, is an
algorithm for determining gender for each antecedent noun phrase.

One common way to assign gender to a noun phrase is to extract the head noun,
and then use WordNet (Ch. 19) to look at the hypernyns of the head noun. Ancestors
like personor living thing indicate an animate noun. Ancestors likefemaleindicate a
female noun. A list of personal names associated with genders, or patterns likeMr.
can also be used (Cardie and Wagstaff, 1999).
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More complex algorithms exist, such as that of Bergsma and Lin (2006); Bergsma
and Lin also make freely available a large list of nouns and their (automatically ex-
tracted) genders.

21.6.2 A Centering Algorithm for Anaphora Resolution

The Hobbs algorithm does not use an explicit representationof a discourse model.
By contrastCentering theory, (Grosz et al., 1995b, henceforth GJW) is a family ofCENTERING THEORY

models which has an explicit representation of a discourse model, and incorporates an
additional claim: that there is a single entity being “centered” on at any given point
in the discourse which is to be distinguished from all other entities that have been
evoked. Centering theory has been applied to many problems in discourse, such as
the computation ofentity-based coherence; in this section we see its application to
anaphora resolution.

There are two main representations tracked in the Centeringtheory discourse model.
In what follows, takeUn andUn+1 to be two adjacent utterances. Thebackward look-
ing centerof Un, denoted asCb(Un), represents the entity currently being focused onBACKWARD LOOKING

CENTER

in the discourse afterUn is interpreted. Theforward looking centers of Un, denotedFORWARD LOOKING
CENTERS

asCf (Un), form an ordered list containing the entities mentioned inUn, all of which
could serve as theCb of the following utterance. In fact,Cb(Un+1) is by definition the
most highly ranked element ofCf (Un) mentioned inUn+1. (The Cb of the first utter-
ance in a discourse is undefined.) As for how the entities in the Cf (Un) are ordered,
for simplicity’s sake we can use the grammatical role hierarchy below.3

subject> existential predicate nominal> object> indirect object or oblique
> demarcated adverbial PP

As a shorthand, we will call the highest-ranked forward-looking centerCp (for “pre-
ferred center”).

We describe a centering-based algorithm for pronoun interpretation due to Brennan
et al. (1987, henceforth BFP). (See also Walker et al. (1994)and the end of the chapter
for other centering algorithms). In this algorithm, preferred referents of pronouns are
computed from relations that hold between the forward and backward looking centers
in adjacent sentences. Four intersentential relationships between a pair of utterancesUn

andUn+1 are defined which depend on the relationship betweenCb(Un+1), Cb(Un),
andCp(Un+1); these are shown in Figure 21.7.

Cb(Un+1) = Cb(Un) Cb(Un+1) 6= Cb(Un)
or undefinedCb(Un)

Cb(Un+1) = Cp(Un+1) Continue Smooth-Shift
Cb(Un+1) 6= Cp(Un+1) Retain Rough-Shift

Figure 21.7 Transitions in the BFP algorithm.

The following rules are used by the algorithm:

3 This is an extended form of the hierarchy used in Brennan et al. (1987), described below.
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• Rule 1: If any element ofCf (Un) is realized by a pronoun in utteranceUn+1,
thenCb(Un+1) must be realized as a pronoun also.

• Rule 2: Transition states are ordered. Continue is preferred to Retain is preferred
to Smooth-Shift is preferred to Rough-Shift.

Having defined these concepts and rules, the algorithm is defined as follows.

1. Generate possibleCb-Cf combinations for each possible set of reference assign-
ments .

2. Filter by constraints, e.g., syntactic coreference constraints, selectional restric-
tions, centering rules and constraints.

3. Rank by transition orderings.

The pronominal referents that get assigned are those which yield the most preferred
relation in Rule 2, assuming that Rule 1 and other coreference constraints (gender,
number, syntactic, selectional restrictions) are not violated.

Let us step through passage (21.66) to illustrate the algorithm.

(21.66) John saw a beautiful 1961 Ford Falcon at the used car dealership. (U1)
He showed it to Bob. (U2)
He bought it. (U3)

Using the grammatical role hierarchy to order the Cf , for sentenceU1 we get:

Cf (U1): {John, Ford, dealership}

Cp(U1): John

Cb(U1): undefined

SentenceU2 contains two pronouns:he, which is compatible with John, andit, which
is compatible with the Ford or the dealership. John is by definition Cb(U2), because he
is the highest ranked member ofCf (U1) mentioned inU2 (since he is the only possible
referent forhe). We compare the resulting transitions for each possible referent of it.
If we assumeit refers to the Falcon, the assignments would be:

Cf (U2): {John, Ford, Bob}

Cp(U2): John

Cb(U2): John

Result: Continue (Cp(U2)=Cb(U2); Cb(U1) undefined)

If we assumeit refers to the dealership, the assignments would be:

Cf (U2): {John, dealership, Bob}

Cp(U2): John

Cb(U2): John

Result: Continue (Cp(U2)=Cb(U2); Cb(U1) undefined)

Since both possibilities result in a Continue transition, the algorithm does not say which
to accept. For the sake of illustration, we will assume that ties are broken in terms of the
ordering on the previousCf list. Thus, we will takeit to refer to the Falcon instead of
the dealership, leaving the current discourse model as represented in the first possibility
above.
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In sentenceU3, he is compatible with either John or Bob, whereasit is compatible
with the Ford. If we assumeherefers to John, then John isCb(U3) and the assignments
would be:

Cf (U3): {John, Ford}

Cp(U3): John

Cb(U3): John

Result: Continue (Cp(U3)=Cb(U3)=Cb(U2))

If we assumeherefers to Bob, then Bob isCb(U3) and the assignments would be:

Cf (U3): {Bob, Ford}

Cp(U3): Bob
Cb(U3): Bob

Result: Smooth-Shift (Cp(U3)=Cb(U3); Cb(U3)6=Cb(U2))

Since a Continue is preferred to a Smooth-Shift per Rule 2, John is correctly taken to
be the referent.

The main salience factors that the centering algorithm implicitly incorporates in-
clude the grammatical role, recency, and repeated mention preferences. The manner in
which the grammatical role hierarchy affects salience is indirect, since it is the resulting
transition type that determines the final reference assignments. In particular, a referent
in a low-ranked grammatical role will be preferred to one in amore highly ranked role
if the former leads to a more highly ranked transition. Thus,the centering algorithm
may incorrectly resolve a pronoun to a low salience referent. For instance, in example
(21.67),

(21.67) Bob opened up a new dealership last week. John took a look at the Fords in his lot. He
ended up buying one.

the centering algorithm will assign Bob as the referent of the subject pronounhein the
third sentence – since Bob isCb(U2), this assignment results in a Continue relation
whereas assigning John results in a Smooth-Shift relation.On the other hand, the
Hobbs algorithm will correctly assign John as the referent.

Like the Hobbs algorithm, the centering algorithm requiresa full syntactic parse as
well as morphological detectors for gender.

Centering theory is also a model of entity coherence, and hence has implications for
other discourse applications like summarization; see the end of the chapter for pointers.

21.6.3 A Log-Linear model for Pronominal Anaphora Resoluton

As our final model of pronominal anaphora resolution, we present a simple supervised
machine learning approach, in which we train a log-linear classifier on a corpus in
which the antecedents are marked for each pronoun. Any supervised classifier can
be used for this purpose; log-linear models are popular, butNaive Bayes and other
classifiers have been used as well.

For training, the system relies on a hand-labeled corpus in which each pronoun has
been linked by hand with the correct antecedent. The system needs to extract positive
and negative examples of anaphoric relations. Positive examples occur directly in the
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training set. Negative examples can be found by pairing eachpronoun with some other
noun phrase. Features (discussed in the next section) are extracted for each training
observation, and a classifier is trained to predict1 for the true pronoun-antecedent
pairs, and0 for the incorrect pronoun-antecedent pairs.

For testing, just as we saw with as with the Hobbs and Centering classifiers, the log-
linear classifier takes as input a pronoun (he, him, his, she, her, it, they, them, their),
together with the current and preceding sentences.

In order to deal with non-referential pronouns, we first filter out pleonastic pro-
nouns (like the pleonasticit is raining), using hand-written rules based on frequent
lexical patterns.

The classifier then extracts all potential antecedents by doing a parse of the current
and previous sentences, either using a full parser or a simple chunker. Next, each NP
in the parse is considered a potential antecedent for each following pronoun. Each
pronoun-potential antecedent pair is then presented to theclassifier.

21.6.4 Features

Some commonly used features for pronominal anaphora resolution between a pronoun
Proi and a potential referentNPj include:

1. strict gender [true or false]. True if there is a strict match in gender (e.g. male
pronounProi with male antecedentNPj).

2. compatible gender [trueor false]. True ifProi andNPj are merely compatible
(e.g. male pronounProi with antecedentNPj of unknown gender).

3. strict number [true or false] True if there is a strict match in number (e.g.
singular pronoun with singular antecedent)

4. compatible number [true or false]. True if Proi andNPj are merely compat-
ible (e.g. singular pronounProi with antecedentNPj of unknown number).

5. sentence distance [0, 1, 2, 3,...]. The number of sentences between pronoun and
potential antecedent.

6. Hobbs distance [0, 1, 2, 3,...]. The number of noun groups that the Hobbs
algorithm has to skip, starting backwards from the pronounProi, before the
potential antecedentNPj is found.

7. grammatical role [subject, object, PP]. Whether the potential antecedent is a
syntactic subject, direct object, or is embedded in a PP.

8. linguistic form [proper, definite, indefinite, pronoun] . Whether the potential
antecedentNPj is a proper name, definite description, indefinite NP, or a pro-
noun.

Fig. 21.8 shows some sample feature values for potential antecedents for the final
He in U3:

(21.68) John saw a beautiful 1961 Ford Falcon at the used car dealership. (U1)
He showed it to Bob. (U2)
He bought it. (U3)

The classifier will learn weights indicating which of these features are more likely
to be good predictors of a successful antecedent (e.g. beingnearby the pronoun, in
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He (U2) it (U2) Bob (U2) John (U1)
strict number 1 1 1 1
compatible number 1 1 1 1
strict gender 1 0 1 1
compatible gender 1 0 1 1
sentence distance 1 1 1 2
Hobbs distance 2 1 0 3
grammatical role subject object PP subject
linguistic form pronoun pronoun proper proper

Figure 21.8 Feature values in log-linear classifier, for various pronouns from (21.68).

subject position, agreeing in gender and number). Thus where the Hobbs and Centering
algorithms rely on hand-built heuristics for antecedent selection, the machine learning
classifiers learn the importance of these different features based on their co-occurrence
in the training set.

21.7 COREFERENCERESOLUTION

In the previous few sections, we concentrated on interpreting a particular subclass of
the reference phenomena that we outlined in Sec. 21.4: the personal pronouns such
ashe, she, andit. But for the general coreference task we’ll need to decide whether
any pair of noun phrases corefer. This means we’ll need to deal with the other types
of referring expressions from Sec. 21.4, the most common of which aredefinite noun
phrasesandnames. Let’s return to our coreference example, repeated below:

(21.69) Victoria Chen,Chief Financial Officerof MegabucksBanking Corp since 2004, saw
her pay jump 20%, to $1.3 million, asthe37-year-old also becametheDenver-based
financial-servicescompany’spresident. It has been ten years sinceshe came to
Megabucks from rival Lotsabucks.

Recall that we need to extract four coreference chains from this data:

1. { Victoria Chen, Chief Financial Officer of Megabucks Banking Corp since 1994, her, the
37-year-old, the Denver-based financial-services company’s president, She}

2. { Megabucks Banking Corp, the Denver-based financial-services company, Megabucks}

3. { her pay}

4. { Lotsabucks}

As before, we have to deal with pronominal anaphora (figuringout thather refers
to Victoria Chen). And we still need to filter out non-referential pronouns like the
pleonasticIt in It has been ten years), as we did for pronominal anaphora.

But for full NP coreference we’ll also need to deal with definite noun phrases, to
figure out thatthe 37-year-oldis coreferent withVictoria Chen, andthe Denver-based
financial-services companyis the same asMegabucks. And we’ll need to deal with
names, to realize thatMegabucksis the same asMegabucks Banking Corp.
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An algorithm for coreference resolution can use the same log-linear classifier ar-
chitecture we saw for pronominal anaphora. Thus we’ll builda binary classifier which
is given an anaphor and a potential antecedent and returns true (the two are coreferen-
tial) or false (the two are not coreferential). We’ll use this classifier in the resolution
algorithm as follows. We process a document from left to right. For eachNPj we en-
counter, we’ll search backwards through the document examining each previousNP .
For each such potential antecedentNPi, we’ll run our classifier, and if it returns true,
we successfully coindexNPi andNPj . The process for eachNPj terminates when
we either find a successful antecedentNPi or reach the beginning of the document.
We then move on to the next anaphorNPj .

In order to train our binary coreference classifier, just as for pronoun resolution,
we’ll need a labeled training set in which each anaphorNPi has been linked by hand
with the correct antecedent. In order to build a classifier, we’ll need both positive and
negative training examples of coreference relations. A positive examples forNPi is the
noun phraseNPj which is marked as coindexed. We get negative examples by pairing
the anaphorNPj with the intervening NPsNPi+1, NPi+2 which occur between the
true antecedentNPi and the anaphorNPj .

Next features are extracted for each training observation,and a classifier is trained
to predict whether an (NPj ,NPi) pair corefer or not. Which features should we use
in the binary coreference classifier? We can use all the features we used for anaphora
resolution; number, gender, syntactic position, and so on.But we will also need to
add new features to deal with phenomena that are specific to names and definite noun
phrases. For example, we’ll want a feature representing thefact thatMegabucksand
Megabucks Banking Corpshare the wordMegabucks, or thatMegabucks Banking Corp
andthe Denver-based financial-services companyboth end in words (Corp andcom-
pany) indicating a corporate organization.

Here are some commonly used features for coreference between an anaphorNPi

and a potential antecedentNPj (in addition to the features for pronominal anaphora
resolution listed on page 29):

1. anaphor edit distance [0,1,2,...,]. The characterminimum edit distance from
the potential antecedent to the anaphor. Recall from Ch. 3 that the character
minimum edit distance is the minimum number of character editing operations
(insertions, substitutions, deletions) necessary to turnone string into another.
More formally,

100 ×
m − (s + i + d)

m

given the antecedent lengthm, and the number of substitutionss, insertionsi,
and deletionsd.

2. antecedent edit distance [0,1,2,...,]. The minimum edit distance from the
anaphor to the antecedent. Given the anaphor lengthn:

100 ×
n − (s + i + d)

n

3. alias [true or false]: A multi-part feature proposed by Soon et al. (2001) which
requires anamed entity tagger. Returns true ifNPi andNPj are both named



DRAFT

32 Chapter 21. Computational Discourse

entities of the same type, andNPi is analias of NPj . The meaning ofalias
depends on the types; two dates are aliases of each other if they refer to the same
date. For typePERSON, prefixes likeDr. or Chairmanare stripped off and then
the NPs are checked to see if they are identical. For typeORGANIZATION, the
alias function checks for acronyms (e.g.,IBM for International Business Ma-
chines Corp).

4. appositive [true or false]: True if the anaphor is in the syntactic apposition rela-
tion to the antecedent. For example the NPChief Financial Officer of Megabucks
Banking Corpis in apposition to the NPVictoria Chen. These can be detected us-
ing a parser, or more shallowly by looking for commas and requiring that neither
NP have a verb and one of them be a name.

5. linguistic form [proper, definite, indefinite, pronoun] . Whether the potential
anaphorNPj is a proper name, definite description, indefinite NP or a pronoun.

21.8 EVALUATING COREFERENCERESOLUTION

One standard way of evaluating coreference is the Model-Theoretic coreference scoring
scheme (Vilain et al., 1995), originally proposed for the MUC-6 and MUC-7 informa-
tion extraction evaluation (Sundheim, 1995).

The evaluation is based on a human-labeled gold standard forcoreference between
referring expressions. We can represent this gold information as a set of identity links
between referring expressions. For example, the fact that referring expression A and
referring expression B are coreferent could be representedas a link A-B. If A, B, and
C are coreferent, this can be represented as the two links A-B, B-C (or alternatively
as A-C, B-C). We can call this set of correct links thereferenceor key set of links.
Similarly, thehypothesisor responsefrom a coreference algorithm can be viewed as
a set of links.

What we’d like to do is compute the precision and recall of theresponselinks
against thekey links. But recall that if entities A, B, and C are coreferent in the key, this
can be represented either via (A-B, B-C) or via (A-C, B-C). Aslong as our coreference
system correctly figures out that A, B, and C are coreferent, we don’t want to penalize
it for representing this fact in a different set of links thanhappen to be in the key.

For example, suppose that A, B, C, and D are coreferent, and this happens to be rep-
resented in the key by links (A-B, B-C, C-D). Suppose furtherthat a particular coref-
erence algorithm returns (A-B, C-D). What score should be given to this response?
Intuitively the precision should be 1 (since both links correctly join referring expres-
sions that indeed corefer). The recall should be 2/3, since intuitively it takes three links
to correctly indicate that 4 expressions are coreferent, and the algorithm returned two
of these three links. The details of this intuition are fleshed out in the Vilain et al.
(1995) algorithm, which is based on computing the number of equivalence classes of
expressions generated by the key.
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21.9 ADVANCED: INFERENCE-BASED COHERENCERESOLUTION

The algorithms we have seen in this chapter for the resolution of coherence and coref-
erence have relied solely on shallow information like cue phrases and other lexical and
simple syntactic cues. But many problems in resolution seemto require much more
sophisticated kinds of knowledge. Consider the following example of coreference,
adapted from Winograd (1972):

(21.70) The city council denied the demonstrators a permit because

a. they feared violence.
b. they advocated violence.

Determining the correct antecedent for the pronounthey requires understanding
first that the second clause is intended as anExplanation of the first clause, and also
that city councils are perhaps more likely than demonstrators to fear violence, and
demonstrators might be more likely to advocate violence. A more advanced method
for coherence resolution might assign this Explanation relation and in doing so help us
figure out the referents of both pronouns.

We might perform this kind of more sophisticated coherence resolution by relying
on the semantic constraints that are associated with each coherence relation, assuming
a parser that could assign a reasonable semantics to each clause.

Applying these constraints requires a method for performing inference. Perhaps
the most familiar type of inference isdeduction; recall from Sec.?? that the centralDEDUCTION

rule of deduction is modus ponens:

α ⇒ β

α

β

An example of modus ponens is the following:

All Falcons are fast.
John’s car is an Falcon.

John’s car is fast.

Deduction is a form ofsound inference: if the premises are true, then the conclusionSOUND INFERENCE

must be true.
However, much of language understanding is based on inferences that are not

sound. While the ability to draw unsound inferences allows for a greater range of
inferences to be made, it can also lead to false interpretations and misunderstandings.
A method for such inference is logicalabduction (Peirce, 1955). The central rule ofABDUCTION

abductive inference is:

α ⇒ β

β

α
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Whereas deduction runs an implication relation forward, abduction runs it backward,
reasoning from an effect to a potential cause. An example of abduction is the following:

All Falcons are fast.
John’s car is fast.

John’s car is an Falcon.

Obviously, this may be an incorrect inference: John’s car may be made by another
manufacturer yet still be fast.

In general, a given effectβ may have many potential causesαi. We generally will
not want to merely reason from a fact to apossibleexplanation of it, we want to iden-
tify the bestexplanation of it. To do this, we need a method for comparing the quality
of alternative abductive proofs. This can be done with probabilistic models (Charniak
and Goldman, 1988; Charniak and Shimony, 1990), or with heuristic strategies (Char-
niak and McDermott, 1985, Chapter 10), such as preferring the explanation with the
smallest number of assumptions, or the most specific explanation. We will illustrate
a third approach to abductive interpretation, due to Hobbs et al. (1993), which ap-
plies a more general cost-based strategy that combines features of the probabilistic and
heuristic approaches. To simplify the discussion, however, we will largely ignore the
cost component of the system, keeping in mind that one is nonetheless necessary.

Hobbs et al. (1993) apply their method to a broad range of problems in language
interpretation; here we focus on its use in establishing discourse coherence, in which
world and domain knowledge are used to determine the most plausible coherence rela-
tion holding between utterances. Let us step through the analysis that leads to establish-
ing the coherence of passage (21.4). First, we need axioms about coherence relations
themselves. Axiom (21.71) states that a possible coherencerelation is the Explanation
relation; other relations would have analogous axioms.

(21.71)

∀ei, ej Explanation(ei, ej) ⇒ CoherenceRel(ei, ej)

The variablesei andej represent the events (or states) denoted by the two utterances
being related. In this axiom and those given below, quantifiers always scope over
everything to their right. This axiom tells us that, given that we need to establish a
coherence relation between two events, one possibility is to abductively assume that
the relation is Explanation.

The Explanation relation requires that the second utterance express the cause of the
effect that the first sentence expresses. We can state this asaxiom (21.72).

(21.72)

∀ei, ej cause(ej, ei) ⇒ Explanation(ei, ej)

In addition to axioms about coherence relations, we also need axioms representing
general knowledge about the world. The first axiom we use saysthat if someone is
drunk, then others will not want that person to drive, and that the former causes the
latter (for convenience, the state of not wanting is denotedby thediswantpredicate).
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(21.73)

∀x, y, ei drunk(ei, x) ⇒
∃ej , ek diswant(ej , y, ek) ∧ drive(ek, x) ∧ cause(ei, ej)

Before we move on, a few notes are in order concerning this axiom and the others we
will present. First, axiom (21.73) is stated using universal quantifiers to bind several
of the variables, which essentially says that in all cases inwhich someone is drunk, all
people do not want that person to drive. Although we might hope that this is generally
the case, such a statement is nonetheless too strong. The wayin which this is handled in
the Hobbs et al. system is by including an additional relation, called anetcpredicate, in
the antecedent of such axioms. Anetcpredicate represents all the other properties that
must be true for the axiom to apply, but which are too vague to state explicitly. These
predicates therefore cannot be proven, they can only be assumed at a corresponding
cost. Because rules with high assumption costs will be dispreferred to ones with low
costs, the likelihood that the rule applies can be encoded interms of this cost. Since
we have chosen to simplify our discussion by ignoring costs,we will similarly ignore
the use ofetcpredicates.

Second, each predicate has what may look like an “extra” variable in the first ar-
gument position; for instance, thedrive predicate has two arguments instead of one.
This variable is used to reify the relationship denoted by the predicate so that it can be
referred to from argument places in other predicates. For instance, reifying thedrive
predicate with the variableek allows us to express the idea of not wanting someone to
drive by referring to it in the final argument of thediswantpredicate.

Picking up where we left off, the second world knowledge axiom we use says that
if someone does not want someone else to drive, then they do not want this person to
have his car keys, since car keys enable someone to drive.

(21.74)

∀x, y, ej , ek diswant(ej , y, ek) ∧ drive(ek, x) ⇒
∃z, el, em diswant(el, y, em) ∧ have(em, x, z)

∧carkeys(z, x) ∧ cause(ej, el)

The third axiom says that if someone doesn’t want someone else to have something, he
might hide it from him.

(21.75)

∀x, y, z, el, em diswant(el, y, em) ∧ have(em, x, z) ⇒
∃en hide(en, y, x, z) ∧ cause(el, en)

The final axiom says simply that causality is transitive, that is, if ei causesej andej

causesek, thenei causesek.
(21.76)

∀ei, ej, ek cause(ei, ej) ∧ cause(ej, ek) ⇒ cause(ei, ek)

Finally, we have the content of the utterances themselves, that is, that John hid
Bill’s car keys (from Bill),
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(21.77) hide(e1, John, Bill, ck) ∧ carkeys(ck, Bill)

and that someone described using the pronoun “he” was drunk;we will represent the
pronoun with the free variablehe.

(21.78) drunk(e2, he)

We can now see how reasoning with the content of the utterances along with the
aforementioned axioms allows the coherence of passage (21.4) to be established under
the Explanation relation. The derivation is summarized in Figure 21.9; the sentence
interpretations are shown in boxes. We start by assuming there is a coherence relation,
and using axiom (21.71) hypothesize that this relation is Explanation,

(21.79) Explanation(e1, e2)

which, by axiom (21.72), means we hypothesize that

(21.80) cause(e2, e1)

holds. By axiom (21.76), we can hypothesize that there is an intermediate causee3,

(21.81) cause(e2, e3) ∧ cause(e3, e1)

and we can repeat this again by expanding the first conjunct of(21.81) to have an
intermediate causee4.

(21.82) cause(e2, e4) ∧ cause(e4, e3)

We can take thehidepredicate from the interpretation of the first sentence in (21.77)
and the secondcausepredicate in (21.81), and, using axiom (21.75), hypothesize that
John did not want Bill to have his car keys:

(21.83) diswant(e3, John, e5) ∧ have(e5, Bill, ck)

From this, thecarkeyspredicate from (21.77), and the secondcausepredicate from
(21.82), we can use axiom (21.74) to hypothesize that John does not want Bill to drive:

(21.84) diswant(e4, John, e6) ∧ drive(e6, Bill)

From this, axiom (21.73), and the secondcausepredicate from (21.82), we can hypoth-
esize that Bill was drunk:

(21.85) drunk(e2, Bill)

But now we find that we can “prove” this fact from the interpretation of the second
sentence if we simply assume that the free variablehe is bound to Bill. Thus, the
establishment of coherence has gone through, as we have identified a chain of reasoning
between the sentence interpretations – one that includes unprovable assumptions about
axiom choice and pronoun assignment – that results incause(e2, e1), as required for
establishing the Explanation relationship.

This derivation illustrates a powerful property of coherence establishment, namely
its ability to cause the hearer to infer information about the situation described by the
discourse that the speaker has left unsaid. In this case, thederivation required the
assumption that John hid Bill’s keys because he did not want him to drive (presumably
out of fear of him having an accident, or getting stopped by the police), as opposed
to some other explanation, such as playing a practical joke on him. This cause is not
stated anywhere in passage (21.4); it arises only from the inference process triggered
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CoherenceRel(e1,e2)

Explanation(e1,e2)

cause(e2,e1)

cause(e2,e3) cause(e3,e1) hide(e1,john,bill,ck)

cause(e4,e3) diswant(e3,j,e5) ∧ have(e5,bill,ck) carkeys(ck,bill)

cause(e2,e4) diswant(e4,y,e6) ∧ drive(e6,he)

drunk(e2,bill) (he=bill)

Figure 21.9 Establishing the coherence of passage (21.4).

by the need to establish coherence. In this sense, the meaning of a discourse is greater
than the sum of the meanings of its parts. That is, a discoursetypically communicates
far more information than is contained in the interpretations of the individual sentences
that comprise it.

We now return to passage (21.5), repeated below as (21.87), which was notable in
that it lacks the coherence displayed by passage (21.4), repeated below as (21.86).

(21.86) John hid Bill’s car keys. He was drunk.
(21.87) ?? John hid Bill’s car keys. He likes spinach.

We can now see why this is: there is no analogous chain of inference capable of linking
the two utterance representations, in particular, there isno causal axiom analogous to
(21.73) that says that liking spinach might cause someone tonot want you to drive.
Without additional information that can support such a chain of inference (such as the
aforementioned scenario in which someone promised John spinach in exchange for
hiding Bill’s car keys), the coherence of the passage cannotbe established.

Because abduction is a form of unsound inference, it must be possible to subse-
quently retract the assumptions made during abductive reasoning, that is, abductive
inferences aredefeasible. For instance, if passage (21.86) was followed by sentenceDEFEASIBLE

(21.88),

(21.88) Bill’s car isn’t here anyway; John was just playing a practical joke on him.

the system would have to retract the original chain of inference connecting the two
clauses in (21.86), and replace it with one utilizing the fact that the hiding event was
part of a practical joke.

In a more general knowledge base designed to support a broad range of inferences,
one would want axioms that are more general than those we usedto establish the co-
herence of passage (21.86). For instance, consider axiom (21.74), which says that if
you do not want someone to drive, then you do not want them to have their car keys. A
more general form of the axiom would say that if you do not wantsomeone to perform
an action, and an object enables them to perform that action,then you do not want
them to have the object. The fact that car keys enable someoneto drive would then be
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encoded separately, along with many other similar facts. Likewise, axiom (21.73) says
that if someone is drunk, you don’t want them to drive. We might replace this with an
axiom that says that if someone does not want something to happen, then they don’t
want something that will likely cause it to happen. Again, the facts that people typi-
cally don’t want other people to get into car accidents, and that drunk driving causes
accidents, would be encoded separately.

While it is important to have computational models that shedlight on the coherence
establishment problem, large barriers remain for employing this and similar methods
on a wide-coverage basis. In particular, the large number ofaxioms that would be
required to encode all of the necessary facts about the world, and the lack of a robust
mechanism for constraining inference with such a large set of axioms, makes these
methods largely impractical in practice. Nonetheless, approximations to these kinds of
knowledge and inferential rules can already play an important role in natural language
understanding systems.

21.10 PSYCHOLINGUISTIC STUDIES OF REFERENCE ANDCOHER-
ENCE

To what extent do the techniques described in this chapter model human discourse
comprehension? We summarize here a few selected results from the substantial body
of psycholinguistic research; for reasons of space we focushere solely on anaphora
resolution.

A significant amount of work has been concerned with the extent to which people
use the preferences described in Section 21.5 to interpret pronouns, the results of which
are often contradictory. Clark and Sengal (1979) studied the effects that sentence re-
cency plays in pronoun interpretation using a set ofreading time experiments. AfterREADING TIME

EXPERIMENTS

receiving and acknowledging a three sentence context to read, human subjects were
given a target sentence containing a pronoun. The subjects pressed a button when they
felt that they understood the target sentence. Clark and Sengal found that the reading
time was significantly faster when the referent for the pronoun was evoked from the
most recent clause in the context than when it was evoked fromtwo or three clauses
back. On the other hand, there was no significant difference between referents evoked
from two clauses and three clauses back, leading them to claim that “the last clause
processed grants the entities it mentions a privileged place in working memory”.

Crawley et al. (1990) compared the grammatical role parallelism preference with
a grammatical role preference, in particular, a preferencefor referents evoked from
the subject position of the previous sentence over those evoked from object position.
Unlike previous studies which conflated these preferences by considering only subject-
to-subject reference effects, Crawley et al. studied pronouns in object position to see if
they tended to be assigned to the subject or object of the lastsentence. They found that
in two task environments – aquestion answering taskwhich revealed how the humanQUESTION

ANSWERING

subjects interpreted the pronoun, and areferent naming task in which the subjectsREFERENT NAMING
TASK

identified the referent of the pronoun directly – the human subjects resolved pronouns
to the subject of the previous sentence more often than the object.
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However, Smyth (1994) criticized the adequacy of Crawley etal.’s data for eval-
uating the role of parallelism. Using data that met more stringent requirements for
assessing parallelism, Smyth found that subjects overwhelmingly followed the paral-
lelism preference in a referent naming task. The experimentsupplied weaker support
for the preference for subject referents over object referents, which he posited as a
default strategy when the sentences in question are not sufficiently parallel.

Caramazza et al. (1977) studied the effect of the “implicit causality” of verbs on
pronoun resolution. Verbs were categorized in terms of having subject bias or object
bias using asentence completion task. Subjects were given sentence fragments suchSENTENCE

COMPLETION TASK

as (21.89).

(21.89) John telephoned Bill because he

The subjects provided completions to the sentences, which identified to the experi-
menters what referent for the pronoun they favored. Verbs for which a large percentage
of human subjects indicated a grammatical subject or objectpreference were catego-
rized as having that bias. A sentence pair was then constructed for each biased verb:
a “congruent” sentence in which the semantics supported thepronoun assignment sug-
gested by the verb’s bias, and an “incongruent” sentence in which the semantics sup-
ported the opposite prediction. For example, sentence (21.90) is congruent for the
subject-bias verb “telephoned”, since the semantics of thesecond clause supports as-
signing the subjectJohnas the antecedent ofhe, whereas sentence (21.91) is incongru-
ent since the semantics supports assigning the objectBill .

(21.90) John telephoned Bill because he wanted some information.
(21.91) John telephoned Bill because he withheld some information.

In a referent naming task, Caramazza et al. found that namingtimes were faster for the
congruent sentences than for the incongruent ones. Perhapssurprisingly, this was even
true for cases in which the two people mentioned in the first clause were of different
genders, thus rendering the reference unambiguous.

Matthews and Chodorow (1988) analyzed the problem of intrasentential reference
and the predictions of syntactically-based search strategies. In a question answering
task, they found that subjects exhibited slower comprehension times for sentences in
which a pronoun antecedent occupied an early, syntactically deep position than for
sentences in which the antecedent occupied a late, syntactically shallow position. This
result is consistent with the search process used in Hobbs’stree search algorithm.

There has also been psycholinguistic work concerned with testing the principles of
centering theory. In a set of reading time experiments, Gordon et al. (1993) found that
reading times were slower when the current backward-looking center was referred to
using a full noun phrase instead of a pronoun, even though thepronouns were ambigu-
ous and the proper names were not. This effect – which they called arepeated name
penalty – was found only for referents in subject position, suggesting that theCb isREPEATED NAME

PENALTY

preferentially realized as a subject. Brennan (1995) analyzed how choice of linguis-
tic form correlates with centering principles. She ran a setof experiments in which
a human subject watched a basketball game and had to describeit to a second per-
son. She found that the human subjects tended to refer to an entity using a full noun
phrase in subject position before subsequently pronominalizing it, even if the referent
had already been introduced in object position.
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21.11 SUMMARY

In this chapter, we saw that many of the problems that naturallanguage processing sys-
tems face operate between sentences, that is, at thediscourselevel. Here is a summary
of some of the main points we discussed:

• Discourses, like sentences, have hierarchical structure.In the simplest kind of
structure detection, we assume a simpler linear structure,and segment a dis-
course on topic or other boundaries. The main cues for this are lexical cohesion
as well as discourse markers/cue phrases.

• Discourses are not arbitrary collections of sentences; they must becoherent.
Among the factors that make a discourse coherent are coherence relations be-
tween the sentences and entity-based coherence.

• Various sets ofcoherence relationsand rhetorical relations have been proposed.
Algorithms for detecting these coherence relations can usesurface-based cues
(cue phrases, syntactic information).

• Discourse interpretation requires that one build an evolving representation of
discourse state, called adiscourse model, that contains representations of the
entities that have been referred to and the relationships inwhich they participate.

• Natural languages offer many ways to refer to entities. Eachform of reference
sends its own signals to the hearer about how it should be processed with respect
to her discourse model and set of beliefs about the world.

• Pronominal reference can be used for referents that have an adequate degree
of saliencein the discourse model. There are a variety of lexical, syntactic,
semantic, and discourse factors that appear to affect salience.

• The Hobbs, Centering, and Log-linear models for pronominalanaphora offer
different ways of drawing on and combining various of these constraints.

• The full NP coreference task also has to deal with names and definite NPs. String
edit distance is a useful features for these.

• Advanced algorithms for establishing coherence apply constraints imposed by
one or more coherence relations, often leads to the inference of additional infor-
mation left unsaid by the speaker. The unsound rule of logical abductioncan be
used for performing such inference.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Building on the foundations set by early systems for naturallanguage understanding
(Woods et al., 1972; Winograd, 1972; Woods, 1978), much of the fundamental work
in computational approaches to discourse was performed in the late 70’s. Webber’s
(1978, 1983) work provided fundamental insights into how entities are represented
in the discourse model and the ways in which they can license subsequent reference.
Many of the examples she provided continue to challenge theories of reference to this
day. Grosz (1977) addressed the focus of attention that conversational participants
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maintain as the discourse unfolds. She defined two levels of focus; entities relevant to
the entire discourse were said to be inglobal focus, whereas entities that are locally in
focus (i.e., most central to a particular utterance) were said to be in immediatefocus.
Sidner (1979, 1983) described a method for tracking (immediate) discourse foci and
their use in resolving pronouns and demonstrative noun phrases. She made a distinction
between the current discourse focus and potential foci, which are the predecessors to
the backward and forward looking centers of centering theory respectively.

The roots of the centering approach originate from papers byJoshi and Kuhn (1979)
and Joshi and Weinstein (1981), who addressed the relationship between immediate
focus and the inferences required to integrate the current utterance into the discourse
model. Grosz et al. (1983) integrated this work with the prior work of Sidner and
Grosz. This led to a manuscript on centering which, while widely circulated since
1986, remained unpublished until Grosz et al. (1995b). A series of papers on centering
based on this manuscript/paper were subsequently published (Kameyama, 1986; Bren-
nan et al., 1987; Di Eugenio, 1990; Walker et al., 1994; Di Eugenio, 1996; Strube and
Hahn, 1996; Kehler, 1997a, inter alia). A collection of later centering papers appears
in Walker et al. (1998), and see Poesio et al. (2004) for more recent work. We have
focused in this chapter on Centering and anaphora resolution; Sse Karamanis (2003,
2007), Barzilay and Lapata (2007) and related papers discussed in Ch. 23 for the ap-
plication of Centering to entity-based coherence.

There is a long history in linguistics of studies ofinformation status(Chafe, 1976;
Prince, 1981; Ariel, 1990; Prince, 1992; Gundel et al., 1993; Lambrecht, 1994, in-
ter alia).

Beginning with Hobbs’s (1978) tree-search algorithm, researchers have pursued
syntax-based methods for identifying reference robustly in naturally occurring text. An
early system for a weighted combination of different syntactic and other features was
Lappin and Leass (1994), which we described in detail in our first edition. Kennedy and
Boguraev (1996) describe a similar system that does not relyon a full syntactic parser,
but merely a mechanism for identifying noun phrases and labeling their grammatical
roles. Both approaches use Alshawi’s (1987) framework for integrating salience fac-
tors. An algorithm that uses this framework for resolving references in a multimodal
(i.e., speech and gesture) human-computer interface is described in Huls et al. (1995).
A discussion of a variety of approaches to reference in operational systems can be
found in Mitkov and Boguraev (1997).

Methods for reference resolution based on supervised learning were proposed quite
early (Connolly et al., 1994; Aone and Bennett, 1995; McCarthy and Lehnert, 1995;
Kehler, 1997b; Ge et al., 1998, inter alia). More recently both supervised and unsu-
pervised approaches have received a lot of research attention, focused both on anaphora
resolution Kehler et al. (2004), Bergsma and Lin (2006) and full NP coreference (Cardie
and Wagstaff, 1999; Ng and Cardie, 2002b; Ng, 2005). For definite NP reference, there
are general algorithms (Poesio and Vieira, 1998; Vieira andPoesio, 2000), as well as
specific algorithms that focus on deciding if a particular definite NP is anaphoric or not
(Bean and Riloff, 1999, 2004; Ng and Cardie, 2002a; Ng, 2004).

Mitkov (2002) is an excellent comprehensive overview of anaphora resolution.
The idea of using cohesion for linear discourse segmentation was implicit in the

groundbreaking work of (Halliday and Hasan, 1976), but was first explicitly imple-
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mented by Morris and Hirst (1991), and quickly picked up by many other researchers,
including (Kozima, 1993; Reynar, 1994; Hearst, 1994, 1997;Reynar, 1999; Kan et al.,
1998; Choi, 2000; Choi et al., 2001; Brants et al., 2002; Bestgen, 2006). Power et al.
(2003) studies discourse structure, while Filippova and Strube (2006), Sporleder and
Lapata (2004, 2006) focus on paragraph segmentation.

The use of cue phrases in segmentation has been widely studied, including work on
many textual genres as well as speech (Passonneau and Litman, 1993; Hirschberg and
Litman, 1993; Manning, 1998; Kawahara et al., 2004)

Many researchers have posited sets of coherence relations that can hold between
utterances in a discourse (Halliday and Hasan, 1976; Hobbs,1979; Longacre, 1983;
Mann and Thompson, 1987; Polanyi, 1988; Hobbs, 1990; Sanders et al., 1992; Carlson
et al., 2001, 2002; Asher and Lascarides, 2003; Baldridge etal., 2007, inter alia). A
compendium of over 350 relations that have been proposed in the literature can be
found in Hovy (1990).

There are a wide variety of approaches to coherence extraction. The cue-phrase
based model described in Sec. 21.2.2 is due to Daniel Marcu and colleagues (Marcu,
2000b, 2000a; Carlson et al., 2001, 2002). The Linguistic Discourse Model (Polanyi,
1988; Scha and Polanyi, 1988; Polanyi et al., 2004a, 2004b) is a framework in which
discourse syntax is more heavily emphasized; in this approach, a discourse parse tree
is built on a clause-by-clause basis in direct analogy with how a sentence parse tree
is built on a constituent-by-constituent basis. Corston-Oliver (1998) also explores ex-
plores syntactic and parser-based features. A more recent line of work has applied a
version of the tree-adjoining grammar formalism to discourse parsing (Webber et al.,
1999; Webber, 2004). This model has also been used to annotate the Penn Discourse
Treebank (Miltsakaki et al., 2004b, 2004a). See Asher and Lascarides (2003) and
Baldridge et al. (2007) on Segmented Discourse Representation Structure (SDRT).SDRT

Wolf and Gibson (2005) argue that coherence structure includes crossed bracketings
which make it impossible to represent as a tree, and propose agraph representation
instead.

In addition to determining discourse structure and meaning, theories of discourse
coherence have been used in algorithms for interpreting discourse-level linguistic phe-
nomena, including pronoun resolution (Hobbs, 1979; Kehler, 2000), verb phrase ellip-
sis and gapping (Prüst, 1992; Asher, 1993; Kehler, 1993, 1994a), and tense interpre-
tation (Lascarides and Asher, 1993; Kehler, 1994b, 2000). An extensive investigation
into the relationship between coherence relations and discourse connectives can be
found in Knott and Dale (1994).

EXERCISES

21.1 Early work in syntactic theory attempted to characterize rules for pronominal-
ization through purely syntactic means. A rule was proposedin which a pronoun was
interpreted by deleting it from the syntactic structure of the sentence that contains it,
and replacing it with the syntactic representation of the antecedent noun phrase.
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Explain why the following sentences (called “Bach-Peters”sentences) are prob-
lematic for such an analysis:

(21.92) The man who deserves it gets the prize he wants.

(21.93) The pilot who shot at it hit the MIG that chased him.

What other types of reference discussed on pages 18–21 are problematic for this type
of analysis?

21.2 Draw syntactic trees for example (21.66) on page 27 and applyHobbs’s tree
search algorithm to it, showing each step in the search.

21.3 Hobbs (1977) cites the following examples from his corpus asbeing problematic
for his tree-search algorithm:

(21.94) The positions of pillars in one hall were marked by river boulders and a shaped
convex cushion of bronze that had served as theirfootings.

(21.95) They were at once assigned an important place among the scanty remains which
record the physical developments of the human race from the time of itsfirst
appearance in Asia.

(21.96) Sites at which the coarse grey pottery of the Shang period hasbeen discovered do not
extend far beyond the southernmost reach of the Yellow river, or westward beyond its
junction with the Wei.

(21.97) The thin, hard, black-burnished pottery, made in shapes of angular profile, which
archaeologists consider as the clearest hallmark of the Lung Shan culture, developed
in the east. The site from which ittakes its name is in Shantung. Itis traced to the
north-east as far as Liao-ning province.

(21.98) He had the duty of performing the national sacrifices to heaven and earth: his role as
source of honours and material rewards for services rendered by feudal lords and
ministers is commemorated in thousands of inscriptions made by the recipients on
bronze vessels which were eventually deposited in theirgraves.

In each case, identify the correct referent of the underlined pronoun and the one that
the algorithm will identify incorrectly. Discuss any factors that come into play in de-
termining the correct referent in each case, and what types of information might be
necessary to account for them.

21.4 Implement the Hobbs algorithm. Test it on a sample of the PennTreeBank.
You will need to modify the algorithm to deal with differences between the Hobbs and
TreeBank grammars.

21.5 Consider the following passage, from Brennan et al. (1987):

(21.99) Brennan drives an Alfa Romeo.
She drives too fast.
Friedman races her on weekends.
She goes to Laguna Seca.

Identify the referent that the BFP algorithm finds for the pronoun in the final sentence.
Do you agree with this choice, or do you find the example ambiguous? Discuss why
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introducing a new noun phrase in subject position, with a pronominalized reference in
object position, might lead to an ambiguity for a subject pronoun in the next sentence.
What preferences are competing here?

21.6 Consider passages (21.100a-b), adapted from Winograd (1972).

(21.100) The city council denied the demonstrators a permit because

a. they feared violence.
b. they advocated violence.

What are the correct interpretations for the pronouns in each case? Sketch out an
analysis of each in the interpretation as abduction framework, in which these reference
assignments are made as a by-product of establishing the Explanation relation.

21.7 Select an editorial column from your favorite newspaper, and determine the dis-
course structure for a 10-20 sentence portion. What problems did you encounter? Were
you helped by superficial cues the speaker included (e.g., discourse connectives) in any
places?



DRAFT

Section 21.11. Summary 45

Alshawi, H. (1987).Memory and Context for Language Inter-
pretation. Cambridge University Press.

Aone, C. and Bennett, S. W. (1995). Evaluating automated and
manual acquisition of anaphora resolution strategies. InACL-
95, Cambridge, MA, pp. 122–129.

Ariel, M. (2001). Accessibility theory: An overview. In
Sanders, T., Schilperoord, J., and Spooren, W. (Eds.),Text
Representation: Linguistic and Psycholinguistic Aspects, pp.
29–87. Benjamins.

Ariel, M. (1990). Accessing Noun Phrase Antecedents. Rout-
ledge.

Asher, N. (1993).Reference to Abstract Objects in Discourse.
SLAP 50, Dordrecht, Kluwer.

Asher, N. and Lascarides, A. (2003).Logics of Conversation.
Cambridge University Press.

Baldridge, J., Asher, N., and Hunter, J. (2007). Annotationfor
and robust parsing of discourse structure on unrestricted texts.
Zeitschrift für Sprachwissenschaft. In press.

Barzilay, R. and Lapata, M. (2007). Modeling local coherence:
an entity-based approach.Computational Linguistics. To ap-
pear.

Bean, D. and Riloff, E. (1999). Corpus-based identificationof
non-anaphoric noun phrases. InACL-99, pp. 373–380.

Bean, D. and Riloff, E. (2004). Unsupervised learning of con-
textual role knowledge for coreference resolution. InHLT-
NAACL-04.

Beeferman, D., Berger, A., and Lafferty, J. D. (1999). Statisti-
cal Models for Text Segmentation.Machine Learning, 34(1),
177–210.

Bergsma, S. and Lin, D. (2006). Bootstrapping path-based pro-
noun resolution. InCOLING/ACL 2006, Sydney, Australia,
pp. 33–40.

Bestgen, Y. (2006). Improving Text Segmentation Using Latent
Semantic Analysis: A Reanalysis of Choi, Wiemer-Hastings,
and Moore (2001).Computational Linguistics, 32(1), 5–12.

Brants, T., Chen, F., and Tsochantaridis, I. (2002). Topic-
based document segmentation with probabilistic latent seman-
tic analysis. InCIKM ’02: Proceedings of the eleventh inter-
national conference on Information and knowledge manage-
ment, pp. 211–218.

Brennan, S. E. (1995). Centering attention in discourse.Lan-
guage and Cognitive Processes, 10, 137–167.

Brennan, S. E., Friedman, M. W., and Pollard, C. (1987). A
centering approach to pronouns. InACL-87, Stanford, CA,
pp. 155–162.

Caramazza, A., Grober, E., Garvey, C., and Yates, J. (1977).
Comprehension of anaphoric pronouns.Journal of Verbal
Learning and Verbal Behaviour, 16, 601–609.

Cardie, C. and Wagstaff, K. (1999). Noun phrase coreference
as clustering. InEMNLP/VLC-99, College Park, MD.

Carlson, L. and Marcu, D. (2001). Discourse tagging manual.
Tech. rep. ISI-TR-545, ISI.

Carlson, L., Marcu, D., and Okurowski, M. E. (2001). Build-
ing a discourse-tagged corpus in the framework of rhetorical
structure theory. InProceedings of SIGDIAL.

Carlson, L., Marcu, D., and Okurowski, M. E. (2002). Build-
ing a discourse-tagged corpus in the framework of rhetorical
structure theory. In van Kuppevelt, J. and Smith, R. (Eds.),
Current Directions in Discourse and Dialogue. Kluwer.

Chafe, W. L. (1976). Givenness, contrastiveness, definiteness,
subjects, topics, and point of view. In Li, C. N. (Ed.),Subject
and Topic, pp. 25–55. Academic Press.

Charniak, E. and Shimony, S. E. (1990). Probabilistic seman-
tics for cost based abduction. In Dietterich, T. S. W. (Ed.),
AAAI-90, pp. 106–111. MIT Press.

Charniak, E. and Goldman, R. (1988). A logic for semantic
interpretation. InProceedings of the 26th ACL, Buffalo, NY.

Charniak, E. and McDermott, D. (1985).Introduction to Artifi-
cial Intelligence. Addison Wesley.

Choi, F. Y. Y. (2000). Advances in domain independent linear
text segmentation. InNAACL 2000, pp. 26–33.

Choi, F. Y. Y., Wiemer-Hastings, P., and Moore, J. (2001). La-
tent semantic analysis for text segmentation. InEMNLP 2001,
pp. 109–117.

Chomsky, N. (1981).Lectures on Government and Binding.
Foris, Dordrecht.

Clark, H. H. and Sengal, C. J. (1979). In search of referents for
nouns and pronouns.Memory and Cognition, 7, 35–41.

Connolly, D., Burger, J. D., and Day, D. S. (1994). A machine
learning approach to anaphoric reference. InProceedings of
the International Conference on New Methods in Language
Processing (NeMLaP).

Corston-Oliver, S. H. (1998). Identifying the linguistic corre-
lates of rhetorical relations. InWorkshop on Discourse Rela-
tions and Discourse Markers, pp. 8–14.

Crawley, R. A., Stevenson, R. J., and Kleinman, D. (1990). The
use of heuristic strategies in the interpretation of pronouns.
Journal of Psycholinguistic Research, 19, 245–264.

Di Eugenio, B. (1990). Centering theory and the Italian
pronominal system. InCOLING-90, Helsinki, pp. 270–275.

Di Eugenio, B. (1996). The discourse functions of Italian sub-
jects: A centering approach. InCOLING-96, Copenhagen,
pp. 352–357.

Filippova, K. and Strube, M. (2006). Using linguistically mo-
tivated features for paragraph boundary identification. In
EMNLP 2006.

Ge, N., Hale, J., and Charniak, E. (1998). A statistical approach
to anaphora resolution. InProceedings of the Sixth Workshop
on Very Large Corpora, pp. 161–171.

Gordon, P. C., Grosz, B. J., and Gilliom, L. A. (1993). Pro-
nouns, names, and the centering of attention in discourse.
Cognitive Science, 17(3), 311–347.

Grosz, B. J. (1977). The representation and use of focus in a
system for understanding dialogs. InIJCAI-77, pp. 67–76.
Morgan Kaufmann. Reprinted in Grosz et al. (1986).



DRAFT

46 Chapter 21. Computational Discourse

Grosz, B. J., Joshi, A. K., and Weinstein, S. (1983). Provid-
ing a unified account of definite noun phrases in English. In
ACL-83, pp. 44–50.

Grosz, B. J., Joshi, A. K., and Weinstein, S. (1995a). Centering:
A framework for modeling the local coherence of discourse.
Computational Linguistics, 21(2), 203–225.

Grosz, B. J., Joshi, A. K., and Weinstein, S. (1995b). Centering:
A framework for modelling the local coherence of discourse.
Computational Linguistics, 21(2).

Gundel, J. K., Hedberg, N., and Zacharski, R. (1993). Cogni-
tive status and the form of referring expressions in discourse.
Language, 69(2), 274–307.

Halliday, M. A. K. and Hasan, R. (1976).Cohesion in English.
Longman, London. English Language Series, Title No. 9.

Haviland, S. E. and Clark, H. H. (1974). What’s new? Acquir-
ing new information as a process in comprehension.Journal
of Verbal Learning and Verbal Behaviour, 13, 512–521.

Hearst, M. A. (1994). Multi-paragraph segmentation of expos-
itory text. InProceedings of the 32nd ACL, pp. 9–16.

Hearst, M. A. (1997). Texttiling: Segmenting text into multi-
paragraph subtopic passages.Computational Linguistics, 23,
33–64.

Hirschberg, J. and Litman, D. J. (1993). Empirical Studies on
the Disambiguation of Cue Phrases.Computational Linguis-
tics, 19(3), 501–530.

Hobbs, J. R. (1977). 38 examples of elusive antecedents from
published texts. Tech. rep. 77-2, Department of Computer
Science, City University of New York.

Hobbs, J. R. (1978). Resolving pronoun references.Lingua,
44, 311–338. Reprinted in Grosz et al. (1986).

Hobbs, J. R. (1979). Coherence and coreference.Cognitive
Science, 3, 67–90.

Hobbs, J. R. (1990).Literature and Cognition. CSLI Lecture
Notes 21.

Hobbs, J. R., Stickel, M. E., Appelt, D. E., and Martin, P.
(1993). Interpretation as abduction.Artificial Intelligence,
63, 69–142.

Hovy, E. H. (1990). Parsimonious and profligate approaches to
the question of discourse structure relations. InProceedings of
the Fifth International Workshop on Natural Language Gen-
eration, Dawson, PA, pp. 128–136.

Huls, C., Bos, E., and Classen, W. (1995). Automatic referent
resolution of deictic and anaphoric expressions.Computa-
tional Linguistics, 21(1), 59–79.

Joshi, A. K. and Kuhn, S. (1979). Centered logic: The role
of entity centered sentence representation in natural language
inferencing. InIJCAI-79, pp. 435–439.

Joshi, A. K. and Weinstein, S. (1981). Control of inference:
Role of some aspects of discourse structure – centering. In
IJCAI-81, pp. 385–387.

Kameyama, M. (1986). A property-sharing constraint in cen-
tering. InACL-86, New York, pp. 200–206.

Kan, M. Y., Klavans, J. L., and McKeown, K. R. (1998). Linear
segmentation and segment significance. InProc. 6th Work-
shop on Very Large Corpora (WVLC-98), Montreal, Canada,
pp. 197–205.

Karamanis, N. (2003).Entity Coherence for Descriptive Text
Structuring. Ph.D. thesis, University of Edinburgh.

Karamanis, N. (2007). Supplementing entity coherence with
local rhetorical relations for information ordering.Journal of
Logic, Language and Information. To appear.

Kawahara, T., Hasegawa, M., Shitaoka, K., Kitade, T., and
Nanjo, H. (2004). Automatic indexing of lecture presentations
using unsupervised learning of presumed discourse markers.
Speech and Audio Processing, IEEE Transactions on, 12(4),
409–419.

Kehler, A. (1993). The effect of establishing coherence in ellip-
sis and anaphora resolution. InProceedings of the 31st ACL,
Columbus, Ohio, pp. 62–69.

Kehler, A. (1994a). Common topics and coherent situations:
Interpreting ellipsis in the context of discourse inference. In
Proceedings of the 32nd ACL, Las Cruces, New Mexico, pp.
50–57.

Kehler, A. (1994b). Temporal relations: Reference or discourse
coherence?. InProceedings of the 32nd ACL, Las Cruces,
New Mexico, pp. 319–321.

Kehler, A. (1997a). Current theories of centering for pronoun
interpretation: A critical evaluation.Computational Linguis-
tics, 23(3), 467–475.

Kehler, A. (1997b). Probabilistic coreference in information
extraction. InEMNLP 1997, Providence, RI, pp. 163–173.

Kehler, A. (2000). Coherence, Reference, and the Theory of
Grammar. CSLI Publications.

Kehler, A., Appelt, D. E., Taylor, L., and Simma, A. (2004).
The (non)utility of predicate-argument frequencies for pro-
noun interpretation. InHLT-NAACL-04.

Kennedy, C. and Boguraev, B. (1996). Anaphora for every-
one: Pronominal anaphora resolution without a parser. In
COLING-96, Copenhagen, pp. 113–118.

Knott, A. and Dale, R. (1994). Using linguistic phenomena to
motivate a set of coherence relations.Discourse Processes,
18(1), 35–62.

Kozima, H. (1993). Text segmentation based on similarity be-
tween words. InProceedings of the 31st ACL, pp. 286–288.

Lambrecht, K. (1994). Information Structure and Sentence
Form. Cambridge University Press.

Lappin, S. and Leass, H. (1994). An algorithm for pronom-
inal anaphora resolution.Computational Linguistics, 20(4),
535–561.

Lascarides, A. and Asher, N. (1993). Temporal interpretation,
discourse relations, and common sense entailment.Linguis-
tics and Philosophy, 16(5), 437–493.

Longacre, R. E. (1983).The Grammar of Discourse. Plenum
Press.



DRAFT

Section 21.11. Summary 47

Mann, W. C. and Thompson, S. A. (1987). Rhetorical structure
theory: A theory of text organization. Tech. rep. RS-87-190,
Information Sciences Institute.

Manning, C. D. (1998). Rethinking text segmentation models:
An information extraction case study. Tech. rep. SULTRY-98-
07-01, University of Sydney.

Marcu, D. (2000a). The rhetorical parsing of unrestricted texts:
A surface-based approach.Computational Linguistics, 26(3),
395–448.

Marcu, D. (Ed.). (2000b).The Theory and Practice of Dis-
course Parsing and Summarization. MIT Press.

Marcu, D. and Echihabi, A. (2002). An unsupervised approach
to recognizing discourse relations. InACL-02, pp. 368–375.

Matthews, A. and Chodorow, M. S. (1988). Pronoun resolu-
tion in two-clause sentences: Effects of ambiguity, antecedent
location, and depth of embedding.Journal of Memory and
Language, 27, 245–260.

McCarthy, J. F. and Lehnert, W. G. (1995). Using decision trees
for coreference resolution. InIJCAI-95, Montreal, Canada,
pp. 1050–1055.

Miltsakaki, E., Prasad, R., Joshi, A. K., and Webber, B. L.
(2004a). Annotating discourse connectives and their argu-
ments. InProceedings of the NAACL/HLT Workshop: Fron-
tiers in Corpus Annotation.

Miltsakaki, E., Prasad, R., Joshi, A. K., and Webber, B. L.
(2004b). The Penn Discourse Treebank. InLREC-04.

Mitkov, R. (2002).Anaphora Resolution. Longman.

Mitkov, R. and Boguraev, B. (Eds.). (1997).Proceedings of
the ACL-97 Workshop on Operational Factors in Practical,
Robust Anaphora Resolution for Unrestricted Texts, Madrid,
Spain.

Morris, J. and Hirst, G. (1991). Lexical cohesion computed
by thesaural relations as an indicator of the structure of text.
Computational Linguistics, 17(1), 21–48.

Ng, V. (2004). Learning noun phrase anaphoricity to improve
coreference resolution: Issues in representation and optimiza-
tion. In ACL-04.

Ng, V. (2005). Machine learning for coreference resolution:
From local classification to global ranking. InACL-05.

Ng, V. and Cardie, C. (2002a). Identifying anaphoric and non-
anaphoric noun phrases to improve coreference resolution.In
COLING-02.

Ng, V. and Cardie, C. (2002b). Improving machine learning
approaches to coreference resolution. InACL-02.

Nissim, M., Dingare, S., Carletta, J., and Steedman, M. (2004).
An annotation scheme for information status in dialogue. In
LREC-04, Lisbon.

Passonneau, R. and Litman, D. J. (1993). Intention-based seg-
mentation: Human reliability and correlation with linguistic
cues. InProceedings of the 31st ACL, Columbus, Ohio, pp.
148–155.

Peirce, C. S. (1955). Abduction and induction. In Buchler, J.
(Ed.), Philosophical Writings of Peirce, pp. 150–156. Dover
Books, New York.

Pevzner, L. and Hearst, M. A. (2002). A critique and improve-
ment of an evaluation metric for text segmentation.Computa-
tional Linguistics, 28(1), 19–36.

Poesio, M., Stevenson, R., Di Eugenio, B., and Hitzeman, J.
(2004). Centering: A parametric theory and its instantiations.
Computational Linguistics, 30(3), 309–363.

Poesio, M. and Vieira, R. (1998). A corpus-based investigation
of definite description use.Computational Linguistics, 24(2),
183–216.

Polanyi, L., Culy, C., van den Berg, M., Thione, G. L., and Ahn,
D. (2004a). A Rule Based Approach to Discourse Parsing. In
Proceedings of SIGDIAL.

Polanyi, L., Culy, C., van den Berg, M., Thione, G. L., and
Ahn, D. (2004b). Sentential Structure and Discourse Parsing.
In Discourse Annotation Workshop, ACL04.

Polanyi, L. (1988). A formal model of the structure of dis-
course.Journal of Pragmatics, 12.

Power, R., Scott, D., and Bouayad-Agha, N. (2003). Document
structure.Computational Linguistics, 29(2), 211–260.

Prince, E. (1981). Toward a taxonomy of given-new informa-
tion. In Cole, P. (Ed.),Radical Pragmatics, pp. 223–255. Aca-
demic Press.

Prince, E. (1992). The ZPG letter: Subjects, definiteness, and
information-status. In Thompson, S. and Mann, W. (Eds.),
Discourse Description: Diverse Analyses of a Fundraising
Text, pp. 295–325. John Benjamins, Philadelphia/Amsterdam.
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22
INFORMATION
EXTRACTION

I am the very model of a modern Major-General,
I’ve information vegetable, animal, and mineral,
I know the kings of England, and I quote the fights historical
From Marathon to Waterloo, in order categorical...

Gilbert and Sullivan,Pirates of Penzance

Imagine that you are an analyst with an investment firm that tracks airline stocks.
You’re given the task of determining the relationship (if any) between airlinean-
nouncements of fare hikes and the behavior of their stocks on the followingday.
Historical data about stock prices is easy to come by, but what about the informa-
tion about airline announcements? To do a reasonable job on this task, you would
need to know at least the name of the airline, the nature of the proposed fare hike,
the dates of the announcement and possibly the response of other airlines. Fortu-
nately, this information resides in archives of news articles reporting on airline’s
actions, as in the following recent example.

Citing high fuel prices, United Airlines said Friday it has increased fares by
$6 per round trip on flights to some cities also served by lower-cost carriers.
American Airlines, a unit of AMR Corp., immediately matchedthe move,
spokesman Tim Wagner said. United, a unit of UAL Corp., said the increase
took effect Thursday and applies to most routes where it competes against
discount carriers, such as Chicago to Dallas and Denver to San Francisco.

Of course, distilling information like names, dates and amounts from natu-
rally occurring text is a non-trivial task. This chapter presents a seriesof techniques
that can be used to extract limited kinds of semantic content from text. This pro-
cess ofinformation extraction (IE) turns the unstructured information embeddedINFORMATION

EXTRACTION

in texts into structured data. More concretely, information extraction is an effective
way to to populate the contents of a relational database. Once the information is
encoded formally, we can apply all the capabilities provided by database systems,



DRAFT

2 Chapter 22. Information Extraction

statistical analysis packages and other forms of decision support systemsto address
the problems we’re trying to solve.

As we proceed through this chapter, we’ll see that robust solutions to IEprob-
lems are actually clever combinations of techniques we’ve seen earlier in the book.
In particular, the finite-state methods described in Chs. 2 and 3, the probabilistic
models introduced in Chs. 4 through 6 and the syntactic chunking methods from
Ch. 13 form the core of most current approaches to information extraction. Before
diving into the details of how these techniques are applied, let’s quickly introduce
the major problems in IE and how they can be approached.

The first step in most IE tasks is to detect and classify all the proper names
mentioned in a text — a task generally referred to asnamed entity recognitionNAMED ENTITY

RECOGNITION

(NER). Not surprisingly, what constitutes a proper name and the particular scheme
used to classify them is application-specific. Generic NER systems tend to fo-
cus on finding the names of people, places and organizations that are mentioned
in ordinary news texts; practical applications have also been built to detectevery-
thing from the names of genes and proteins (Settles, 2005) to the names of college
courses (McCallum, 2005).

Our introductory example contains 13 instances of proper names, which we’ll
refer to asnamed entity mentions, which can be classified as either organizations,NAMED ENTITY

MENTIONS

people, places, times or amounts.
Having located all of the mentions of named entities in a text, it is useful

to link, or cluster, these mentions into sets that correspond to the entities behind
the mentions. This is the task ofreference resolution, which we introduced in
Ch. 21, and is also an important component in IE. In our sample text, we would
like to know that theUnited Airlinesmention in the first sentence and theUnited
mention in the third sentence refer to the same real world entity. This general
reference resolution problem also includes anaphora resolution as a sub-problem.
In this case, determining that the two uses ofit refer toUnited AirlinesandUnited
respectively.

The task ofrelation detection and classificationis to find and classify se-RELATION
DETECTION AND
CLASSIFICATION

mantic relations among the entities discovered in a given text. In most practical
settings, the focus of relation detection is on small fixed sets of binary relations.
Generic relations that appear in standard system evaluations include family,em-
ployment, part-whole, membership, and geospatial relations. The relation detec-
tion and classification task is the one that most closely corresponds to the prob-
lem of populating a relational database. Relation detection among entities is also
closely related to the problem of discovering semantic relations among words in-
troduced in Ch. 20.

Our sample text contains 3 explicit mentions of generic relations:United is a
part ofUAL, American Airlinesis a part ofAMRandTim Wagneris an employee
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of American Airlines. Domain-specific relations from the airline industry would
include the fact thatUnitedservesChicago, Dallas, DenverandSan Francisco.

In addition to knowing about the entities in a text and their relation to one
another, we might like to find and classify the events in which the entities are
participating; this is the problem ofevent detection and classification. In ourEVENT DETECTION

AND CLASSIFICATION

sample text, the key events are the fare increase byUnitedand the ensuing increase
by American. In addition, there are several events reporting these main events as
indicated by the two uses ofsaidand the use ofcite. As with entity recognition,
event detection brings with it the problem of reference resolution; we need to figure
out which of the many event mentions in a text refer to the same event. In our
running example, the events referred to asthe moveandthe increasein the second
and third sentences are the same as theincreasein the first sentence.

The problem of figuring out when the events in a text happened and how
they relate to each other in time raises the twin problems oftemporal expression
detectionandtemporal analysis. Temporal expression detection tells us that ourTEMPORAL

EXPRESSION
DETECTION

TEMPORAL ANALYSIS sample text contains the temporal expressionsFriday and Thursday. Temporal
expressions include date expressions such as days of the week, months, holidays,
etc., as well as relative expressions including phrases liketwo days from nowor
next year. They also include expressions for clock times such asnoonor 3:30PM.

The overall problem oftemporal analysis is to map temporal expressions
onto specific calendar dates or times of day and then to use those times to situate
events in time. It includes the following subtasks.

• Fixing the temporal expressions with respect to an anchoring date or time,
typically the dateline of the story in the case of news stories;

• Associating temporal expressions with the events in the text;

• Arranging the events into a complete and coherent timeline.

In our sample text, the temporal expressionsFriday andThursdayshould be
anchored with respect to the dateline associated with the article itself. We also
know thatFriday refers to the time of United’s announcement, andThursdayrefers
to the time that the fare increase went into effect (i.e. the Thursday immediately
preceding the Friday). Finally, we can use this information to produce a timeline
where United’s announcement follows the fare increase and American’sannounce-
ment follows both of those events. Temporal analysis of this kind is useful innearly
any NLP application that deals with meaning, including question answering, sum-
marization and dialogue systems.

Finally, many texts describe stereotypical situations that recur with some fre-
quency in the domain of interest. The task oftemplate-filling is to find documentsTEMPLATEFILLING

that evoke such situations and then fill the slots in templates with appropriate ma-
terial. These slot-fillers may consist of text segments extracted directly fromthe
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text, or they may consist of concepts that have been inferred from text elements via
some additional processing (times, amounts, entities from an ontology, etc.).

Our airline text is an example of this kind of stereotypical situation since
airlines are often attempting to raise fares and then waiting to see if competitors
follow along. In this situation, we can identifyUnitedas a lead airline that initially
raised its fares, $6 as the amount by which fares are being raised,Thursdayas the
effective date for the fare increase, andAmericanas an airline that followed along.
A filled template from our original airline story might look like the following.

FARE-RAISE ATTEMPT:










LEAD A IRLINE : UNITED A IRLINES

AMOUNT: $6

EFFECTIVE DATE: 2006-10-26

FOLLOWER: AMERICAN A IRLINES











The following sections will review current approaches to each of these prob-
lems in the context of generic news text. Sec. 22.5 then describes how many of
these problems arise in the context of procecessing biology texts.

22.1 NAMED ENTITY RECOGNITION

The starting point for most information extraction applications is the detection and
classification of the named entities in a text. Bynamed entity, we simply meanNAMED ENTITY

anything that can be referred to with a proper name. This process ofnamed entity
recognition refers to the combined task of finding spans of text that constitute
proper names and then classifying the entities being referred to accordingto their
type.

Generic news-oriented NER systems focus on the detection of things like
people, places, and organizations. Figures 22.1 and 22.2 provide lists oftypical
named entity types with examples of each. Specialized applications may be con-
cerned with many other types of entities, including commercial products, weapons,
works of art, or as we’ll see in Sec. 22.5, proteins, genes and other biological enti-
ties. What these applications all share is a concern with proper names, the charac-
teristic ways that such names are signaled in a given language or genre, and a fixed
set of categories of entities from a domain of interest.

By the way that names are signaled, we simply mean that names are denoted
in a way that sets them apart from ordinary text. For example, if we’re dealing
with standard English text, then two adjacent capitalized words in the middle of a
text are likely to constitute a name. Further, if they are are preceded by aDr. or
followed by anMD, then it is likely that we’re dealing with a person. In contrast,
if they are preceded byarrived in or followed byNY then we’re probably dealing



DRAFT

Section 22.1. Named Entity Recognition 5

Type Tag Sample Categories
People PER Individuals, fictional characters, small groups
Organization ORG Companies, agencies, political parties, religious groups, sports teams
Location LOC Physical extents, mountains, lakes, seas
Geo-Political Entity GPE Countries, states, provinces, counties
Facility FAC Bridges, buildings, airports
Vehicles VEH Planes, trains and automobiles

Figure 22.1 A list of generic named entity types with the kinds of entities they refer to.

Type Example
People Turing is often considered to be the father of modern computer science.
Organization The IPCC said it is likely that future tropical cyclones will become more

intense.
Location TheMt. Sanitasloop hike begins at the base ofSunshine Canyon.
Geo-Political Entity Palo Altois looking at raising the fees for parking in the University Avenue

district
Facility Drivers were advised to consider either theTappan Zee Bridgeor theLin-

coln Tunnel.
Vehicles The updatedMini Cooperretains its charm and agility.

Figure 22.2 Named entity types with examples.

with a location. Note that these signals include facts about the proper names as
well as their surrounding contexts.

The notion of a named entity is commonly extended to include things that
aren’t entities per se, but nevertheless have practical importance and do have char-
acteristic signatures that signal their presence; examples include dates, times, named
events and other kinds oftemporal expressions, as well as measurements, counts,TEMPORAL

EXPRESSIONS

prices and other kinds ofnumerical expressions. We’ll consider some of theseNUMERICAL
EXPRESSIONS

later in Sec. 22.3.
Let’s revisit the sample text introduced earlier with the named entities marked

(with TIME andMONEY used to to mark the temporal and monetary expressions).

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has in-
creased fares by [MONEY $6] per round trip on flights to some cities also
served by lower-cost carriers. [ORGAmerican Airlines], a unit of [ORGAMR
Corp.], immediately matched the move, spokesman [PERSTim Wagner] said.
[ORGUnited], a unit of [ORGUAL Corp.], said the increase took effect [TIME
Thursday] and applies to most routes where it competes against discount car-
riers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San
Francisco].
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Name Possible Categories
Washington Person, Location, Political Entity, Organization, Facility
Downing St. Location, Organization
IRA Person, Organization, Monetary Instrument
Louis Vuitton Person, Organization, Commercial Product

Figure 22.3 Common categorical ambiguities associated with various proper
names.

[PERSWashington] was born into slavery on the farm of James Burroughs.
[ORGWashington] went up 2 games to 1 in the four-game series.
Blair arrived in [LOC Washington] for what may well be his last state visit.
In June, [GPE Washington] passed a primary seatbelt law.
The [FAC Washington] had proved to be a leaky ship, every passage I made...

Figure 22.4 Examples of type ambiguities in the use of the nameWashington.

As shown, this text contains 13 mentions of named entities including 5 organiza-
tions, 4 locations, 2 times, 1 person, and 1 mention of money. The 5 organizational
mentions correspond to 4 unique organizations, sinceUnitedandUnited Airlines
are distinct mentions that refer to the same entity.

22.1.1 Ambiguity in Named Entity Recognition

Named entity recognition systems face two types of ambiguity. The first arises
from the fact the same name can refer to different entities of the same type. For
example,JFK can refer to the former president or his son. This is basically a
reference resolution problem and approaches to resolving this kind of ambiguity
are discussed in Ch. 21.

The second source of ambiguity arises from the fact that identical named
entity mentions can refer to entities of completely different types. For example,in
addition to people,JFK might refer to the airport in New York, or to any number of
schools, bridges and streets around the United States. Some examples of thiskind
of cross-type confusion are given in Figures 22.3 and 22.4.

Notice that some of the ambiguities shown in Fig. 22.3 are completely coinci-
dental. There is no relationship between the financial and organizational uses of the
nameIRA — they simply arose coincidentally as acronyms from different sources
(Individual Retirement Accountand International Reading Association). On the
other hand, the organizational uses ofWashingtonandDowning St.are examples
of a LOCATION-FOR-ORGANIZATION metonymy, as discussed in Ch. 19.
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22.1.2 NER as Sequence Labeling

The standard way to approach the problem of named entity recognition is as a
word-by-word sequence labeling task, where the assigned tags capture both the
boundary and the type of any detected named entities. Viewed in this light, named
entity recognition looks very much like the problem of syntactic base-phrasechunk-
ing. In fact, the dominant approach to NER is based on the same statistical se-
quence labeling techniques introduced in Ch. 5 for part of speech tagging and
Ch. 13 for syntactic chunking.

In the sequence labeling approach to NER, classifiers are trained to labelthe
tokens in a text with tags that indicate the presence of particular kinds of named
entities. This approach makes use of the same style ofIOB encoding employed for
syntactic chunking. Recall that in this scheme anI is used to label tokensinsideof
a chunk,B is used to mark the beginning of a chunk, andO labels tokens outside
any chunk of interest. Consider the following sentence from our runningexample.

(22.1) [ORGAmerican Airlines], a unit of [ORGAMR Corp.], immediately matched the
move, spokesman [PERSTim Wagner] said.

This bracketing notation provides us with the extent and the type of the named
entities in this text. Fig. 22.5 shows a standard word-by-word IOB-style tagging
that captures the same information. As with syntactic chunking, the tagset forsuch
an encoding consists of 2 tags for each entity type being recognized, plus1 for the
O tag outside any entity, or(2×N)+1 tags.

Having encoded our training data withIOB tags, the next step is to select a
set of features to associate with each input example (i.e. each of the tokensto be
labeled in Fig. 22.5). These features should be plausible predictors of theclass
label and should be easily and reliably extractable from the source text. Recall that
such features can be based not only on characteristics of the token to beclassified,
but also on the text in a surrounding window as well.

Fig. 22.6 gives a list of standard features employed in state-of-the-art named
entity recognition systems. We’ve seen many of these features before in thecontext
of part-of-speech tagging and syntactic base-phrase chunking. Several, however,
are particularly important in the context of NER. Theshapefeature includes theSHAPE

usual upper case, lower case and capitalized forms, as well as more elaborate pat-
terns designed to capture expressions that make use of numbers (A9), punctuation
(Yahoo!) and atypical case alternations (eBay). It turns out that this feature by itself
accounts for a considerable part of the success of NER systems for English news
text. And as we’ll see in Sec. 22.5, shape features are also particularly important
in recognizing names of proteins and genes in biological texts. Fig. 22.7 describes
some commonly employed shape feature values.

Thepresence in a named entity listfeature can be very predictive. Extensive
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Words Label
American BORG

Airlines IORG

, O
a O
unit O
of O
AMR BORG

Corp. IORG

, O
immediately O
matched O
the O
move O
, O
spokesman O
Tim BPERS

Wagner IPERS

said O
. O

Figure 22.5 IOB encoding for a sample sentence.

lists of names for all manner of things are available from both publicly available
and commercial sources. Lists of place names, calledgazetteers, contain millionsGAZETTEERS

of entries for all manner of locations along with detailed geographical, geologic and
political information.1 The United States Census Bureau provides extensive lists
of first names and surnames derived from its decadal census in the U.S.2 Similar
lists of corporations, commercial products, and all manner of things biological and
mineral are also available from a variety of sources.

This feature is typically implemented as a binary vector with a bit for each
available kind of name list. Unfortunately, such lists can be difficult to create and
maintain, and their usefulness varies considerably based on the named entityclass.
It appears that gazetteers can be quite effective, while extensive lists of persons and
organizations are not nearly as beneficial (Mikheev et al., 1999).

Finally, features based on the presence ofpredictive words and N-gramsin
the context window can also be very informative. When they are present,preceding

1 www.geonames.org
2 www.census.gov
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Feature Explanation
Lexical items The token to be labeled
Stemmed lexical items Stemmed version of the target token
Shape The orthographic pattern of the target word
Character affixes Character level affixes of the target and surrounding words
Part of speech Part of speech of the word
Syntactic chunk labels Base phrase chunk label
Gazetteer or name list Presence of the word in one or more named entity lists
Predictive token(s) Presence of predictive words in surrounding text
Bag of words/Bag of N-grams Words and/or N-grams occurring in the surrounding context.

Figure 22.6 Features commonly used in training named entity recognition systems.

Shape Example
Lower cummings
Capitalized Washington
All caps IRA
Mixed case eBay
Capitalized initial with period H.
Ends in digit A9
Contains hyphen H-P

Figure 22.7 Selected shape features.

and following titles, honorifics, and other markers such asRev., MD andInc. can
accurately indicate the class of an entity. Unlike name lists and gazetteers, these
lists are relatively short and stable over time and are therefore easy to develop and
maintain.

The relative usefulness of any of these features, or combination of features,
depends to a great extent on the application, genre, media, language andtext en-
coding. For example, shape features, which are critical for English newswire texts,
are of little use with materials transcribed from spoken text via automatic speech
recognition, materials gleaned from informally edited sources such as blogsand
discussion forums, and for character-based languages like Chinese where case in-
formation isn’t available. The set of features given in Fig. 22.6 should therefore be
thought of as only a starting point for any given application.

Once an adequate set of features has been developed, they are extracted from
a representative training set and encoded in a form appropriate to train amachine
learning-based sequence classifier. A standard way of encoding these features is to
simply augment our earlierIOB scheme with more columns. Fig. 22.8 illustrates the
result of adding part-of-speech tags, syntactic base-phrase chunktags, and shape
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Features Label
American NNP BNP cap BORG

Airlines NNPS INP cap IORG

, PUNC O punc O
a DT BNP lower O
unit NN INP lower O
of IN BPP lower O
AMR NNP BNP upper BORG

Corp. NNP INP cappunc IORG

, PUNC O punc O
immediately RB BADVP lower O
matched VBD BVP lower O
the DT BNP lower O
move NN INP lower O
, PUNC O punc O
spokesman NN BNP lower O
Tim NNP INP cap BPER

Wagner NNP INP cap IPER

said VBD BVP lower O
. PUNC O punc O

Figure 22.8 Simple word-by-word feature encoding for NER.

information to our earlier example.
Given such a training set, a sequential classifier can be trained to label new

sentences. As with part-of-speech tagging and syntactic chunking, this problem
can be cast either as Markov-style optimization using HMMs or MEMMs as de-
scribed in Ch. 6, or as a multi-way classification task deployed as a sliding-window
labeler as described in Ch. 13. Figure Fig. 22.9 illustrates the operation of such a
sequence labeler at the point where the tokenCorp. is next to be labeled. If we
assume a context window that includes the 2 preceding and following words, then
the features available to the classifier are those shown in the boxed area. Fig. 22.10
summarizes the overall sequence labeling approach to creating a NER system.

22.1.3 Evaluating Named Entity Recognition

The familiar metrics ofrecall, precision and F1 measure introduced in Ch. 13
are used to evaluate NER systems. Recall that recall is the ratio of the number
of correctly labeled responses to the total that should have been labeled;precision
is the ratio of the number of correctly labeled responses to the total labeled. The
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Classifier

IN NNP NNP RB VBD

unit ofa...

lower

B_PP

...AMR Corp. immediately matched

B_NP

upper

I_NP

cap_punc

B_ADVP

lower

B_VP

lower

O B_ORG ? ......

,

PUNC

O
punc

Figure 22.9 Named entity recognition as sequence labeling. The features avail-
able to the classifier during training and classification arethose in the boxed area.

Document
Document
DocumentRepresentative 
Document 
Collection

Human 
Annotation

Feature 
Extraction and 
IOB Encoding

Train Classifiers to Perform 
Multiway Sequence 

Labeling (MEMMs, CRFs, 
SVMs, HMMs, etc.)

Annotated 
Documents

Training 
Data

NER System

Figure 22.10 Basic steps in the statistical sequence labeling approach to creating
a named entity recognition system.

F-measure (van Rijsbergen, 1975) provides a way to combine these two measures
into a single metric. The F-measure is defined as:

Fβ =
(β 2 +1)PR

β 2P+R
(22.2)

Theβ parameter is used to differentially weight the importance of recall and pre-
cision, based perhaps on the needs of an application. Values ofβ > 1 favor recall,
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while values ofβ < 1 favor precision. Whenβ = 1, precision and recall are equally
balanced; this is sometimes calledFβ=1 or justF1:

F1 =
2PR
P+R

(22.3)

As with syntactic chunking, it is important to distinguish the metrics used
to measure performance at the application level from those used during training.
At the application level, recall and precision are measured with respect to the ac-
tual named entities detected. On the other hand, with anIOB encoding scheme the
learning algorithms are attempting to optimize performance at the tag level. Per-
formance at these two levels can be quite different; since the vast majority oftags
in any given text are outside any entity, simply emitting anO tag for every token
gives fairly high tag-level performance.

High-performing systems at recent standardized evaluations have entity level
F-measures around .92 forPERSONSandLOCATIONS, and around .84 forORGA-
NIZATIONS (Sang and De Meulder, 2003).

22.1.4 Practical NER Architectures

Commercial approaches to NER are often based on pragmatic combinations of
lists, rules and supervised machine learning(Jackson and Moulinier, 2002). One
common approach is to make repeated passes over a text allowing the results of
one pass to influence the next. The stages typically first involve the use of rules
that have extremely high precision but low recall. Subsequent stages employmore
error-prone statistical methods that take the output of the first pass into account.

1. First use high-precision rules to tag unambiguous entity mentions;

2. Then search for sub-string matches of the previously detected names using
probabilistic string matching metrics (as described in Ch. 19).

3. Consult application-specific name lists to identify likely name entity men-
tions from the given domain.

4. Finally, apply probabilistic sequence labeling techniques that make use ofthe
tags from previous stages as additional features.

The intuition behind this staged approach is two-fold. First, some of the
entity mentions in a text will be more clearly indicative of a given entity’s class
than others. Second, once an unambiguous entity mention is introduced into a text,
it is likely that subsequent shortened versions will refer to the same entity (and thus
the same type of entity).
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Relations Examples Types
Affiliations

Personal married to, mother of PER→ PER

Organizational spokesman for, president of PER→ ORG

Artifactual owns, invented, produces (PER | ORG) → ART

Geospatial
Proximity near, on outskirts LOC → LOC

Directional southeast of LOC → LOC

Part-Of
Organizational a unit of, parent of ORG→ ORG

Political annexed, acquired GPE→ GPE

Figure 22.11 Typical semantic relations with examples and the named entity types
they involve.

22.2 RELATION DETECTION AND CLASSIFICATION

Next on our list of tasks is the ability to discern the relationships that exist among
the entities detected in a text. To see what this means, let’s return to our sample
airline text with all the entities marked.

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has in-
creased fares by [MONEY $6] per round trip on flights to some cities also
served by lower-cost carriers. [ORGAmerican Airlines], a unit of [ORGAMR
Corp.], immediately matched the move, spokesman [PERSTim Wagner] said.
[ORGUnited], a unit of [ORGUAL Corp.], said the increase took effect [TIME
Thursday] and applies to most routes where it competes against discount car-
riers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San
Francisco].

This text stipulates a set of relations among the named entities mentioned
within it. We know, for example, thatTim Wagneris a spokesman forAmeri-
can Airlines, that United is a unit ofUAL Corp., and thatAmericanis a unit of
AMR. These are all binary relations that can be seen as instances of more generic
relations such aspart-of or employsthat occur with fairly high frequency in news-
style texts. Fig. 22.11 shows a list of generic relations of the kind used in recent
standardized evaluations.3 More domain-specific relations that might be extracted
include the notion of an airline route. For example, from this text we can conclude
that United has routes to Chicago, Dallas, Denver and San Francisco.

These relations correspond nicely to the model-theoretic notions we intro-
duced in Ch. 17 to ground the meanings of the logical forms. That is, a relation

3 http://www.nist.gov/speech/tests/ace/
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Domain D = {a,b,c,d,e, f ,g,h, i}
United, UAL, American Airlines, AMR a,b,c,d
Tim Wagner e
Chicago, Dallas, Denver, and San Francisco f ,g,h, i
Classes
United, UAL, American and AMR are organizations Org = {a,b,c,d}
Tim Wagner is a person Pers= {e}
Chicago, Dallas, Denver and San Francisco are places Loc= { f ,g,h, i}
Relations
United is a unit of UAL PartOf = {〈a,b〉,〈c,d〉}
American is a unit of AMR
Tim Wagner works for American Airlines OrgAff = {〈c,e〉}
United serves Chicago, Dallas, Denver and San FranciscoServes= {〈a, f 〉,〈a,g〉,〈a,h〉,〈a, i〉}

Figure 22.12 A model-based view of the relations and entities in our sample text.

consists of set of ordered tuples over elements of a domain. In most standard in-
formation extraction applications, the domain elements correspond either to the
named entities that occur in the text, to the underlying entities that result from co-
reference resolution, or to entities selected from a domain ontology. Fig. 22.12
shows a model-based view of the set of entities and relations that can be extracted
from our running example. Notice how this model-theoretic view subsumes the
NER task as well; named entity recognition corresponds to the identification of a
class of unary relations.

22.2.1 Supervised Learning Approaches to Relation Analysis

Supervised machine learning approaches to relation detection and classification
follow a scheme that should be familiar by now. Texts are annotated with relations
chosen from a small fixed set by human analysts. These annotated texts are then
used to train systems to reproduce similar annotations on unseen texts. Such an-
notations indicate the text spans of the two arguments, the roles played by each
argument and the type of the relation involved.

The most straightforward approach breaks the problem down into two sub-
tasks: detecting when a relation is present between two entities and then classifying
any detected relations. In the first stage, a classifier is trained to make a binary
decision as to whether or not a given pair of named entities participate in a relation.
Positive examples are extracted directly from the annotated corpus, while negative
examples are generated from within-sentence entity pairs that are not annotated
with a relation.
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function FINDRELATIONS(words) returns relations

relations←nil
entities←FINDENTITIES(words)
forall entity pairs 〈e1,e2〉 in entitiesdo

if RELATED?(e1,e2)
relations← relations+CLASSIFYRELATION(e1,e2)

Figure 22.13 Finding and classifying the relations among entities in a text.

In the second phase, a classifier is trained to label the relations that exist
between candidate entity pairs. As discussed in Ch. 6, techniques such asdeci-
sion trees, naive Bayes or MaxEnt handle multiclass labeling directly. Binary ap-
proaches based on discovering separating hyperplanes such as SVMs solve multi-
class problems by employing a one-versus-all training paradigm. In this approach,
a sets of classifiers are trained where each classifier is trained on one label as the
positive class and all the other labels as the negative class. Final classification is
performed by passing each instance to be labeled to all of the classifiers and then
choosing the label from the classifier with the most confidence, or returninga rank
ordering over the positively responding classifiers. Fig. 22.13 illustratesthe basic
approach for finding and classifying relations among the named entities within a
discourse unit.

As with named entity recognition, the most important step in this process
is to identify surface features that will be useful for relation classification(Zhou
et al., 2005). The first source of information to consider arefeatures of the named
entities themselves.

• Named entity types of the two candidate arguments

• Concatenation of the two entity types

• Head words of the arguments

• Bag of words from each of the arguments

The next set of features are derived fromthe words in the text being exam-
ined. It is useful to think of these features as being extracted from threelocations:
the text between the two candidate arguments, a fixed window before the first ar-
gument, and a fixed window after the second argument. Given these locations, the
following word-based features have proven to be useful.

• The bag of words and bag of bigrams between the entities

• Stemmed versions of the same

• Words and stems immediately preceding and following the entities
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NP

NP

NNP

American

NNPS

Airlines

PUNC

,

NP

NP

DT

a

NN

unit

PP

IN

of

NP

NNP

AMR

NNP

Inc.

Figure 22.14 An appositive construction expressing ana-part-of relation.

• Distance in words between the arguments

• Number of entities between the arguments

Finally, the syntactic structure of a sentence can signal many of the rela-
tionships among any entities contained within it. The following features can be
derived from various levels of syntactic analysis including base-phrase chunking,
dependency parsing and full constituent parsing.

• Presence of particular constructions in a constituent structure

• Chunk base-phrase paths

• Bags of chunk heads

• Dependency-tree paths

• Constituent-tree paths

• Tree distance between the arguments

One method of exploiting parse trees is to create detectors that signal the pres-
ence of particular syntactic constructions and then associate binary features with
those detectors. As an example of this, consider the sub-tree shown in Fig.22.14
that dominates the named entitiesAmericanandAMR Inc. The NP construction
that dominates these two entities is called an appositive construction and is often
associated with bothpart-of anda-kind-of relations in English. A binary feature
indicating the presence of this construction can be useful in detecting theserela-
tions.

This method of feature extraction relies on a certain amount of a priori lin-
guistic analysis to identify those syntactic constructions that may be useful predic-
tors of certain classes. An alternative method is to automatically encode certain
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Entity-based features
Entity1 type ORG

Entity1 head airlines
Entity2 type PERS

Entity2 head Wagner
Concatenated types ORGPERS

Word-based features
Between-entity bag of words { a, unit, of, AMR, Inc., immediately, matched, the,

move, spokesman}
Word(s) before Entity1 NONE

Word(s) after Entity2 said
Syntactic features

Constituent path NP↑ NP↑ S↑ S↓ NP
Base syntactic chunk path NP→ NP→ PP→ NP→VP→ NP→ NP
Typed-dependency path Airlines←sub j matched←compsaid→sub j Wagner

Figure 22.15 Sample of features extracted while classifying the<American Airlines, Tim Wagner>
tuple.

aspects of tree structures as feature values and allow the machine learningalgo-
rithms to determine which values are informative for which classes. One simple
and effective way to do this this involves the use ofsyntactic pathsthrough trees.
Consider again the tree discussed earlier that dominatesAmerican Airlinesand
AMR Inc. The syntactic relationship between these arguments can be character-
ized by the path traversed through the tree in getting from one to the other:

NP↑ NP↓ NP↓ PP↓ NP
Similar path features defined over syntactic dependency trees as well as flat base-
phrase chunk structures have been shown to be useful for relation detection and
classification (Culotta and Sorensen, 2004; Bunescu and Mooney, 2005). Recall
that syntactic path features featured prominently in Ch. 20 in the context of seman-
tic role labeling.

Fig. 22.15 illustrates some of the features that would be extracted while trying
to classify the relationship betweenAmerican AirlinesandTim Wagnerfrom our
example text.

22.2.2 Lightly Supervised Approaches to Relation Analysis

The supervised machine learning approach just described assumes thatwe have
ready access to a large collection of previously annotated material with which
to train classifiers. Unfortunately, this assumption is impractical in many real-
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world settings. A simple approach to extracting relational information without
large amounts of annotated material is to use regular expression patterns to match
text segments that are likely to contain expressions of the relations in which weare
interested.

Consider the problem of building a table containing all the hub cities that var-
ious airlines utilize. Assuming we have access a search engine that permits some
form of phrasal search with wildcards, we might try something like the following
as a query:

/ * has a hub at * /

Given access to a reasonable amount of material of the right kind, such asearch
will yield a fair number of correct answers. A recent Google search using this
pattern yields the following relevant sentences among the return set.

(22.4) Milwaukee-based Midwest has a hub at KCI.

(22.5) Delta has a hub at LaGuardia.

(22.6) Bulgaria Air has a hub at Sofia Airport, as does Hemus Air.

(22.7) American Airlines has a hub at the San Juan airport.

Of course, patterns such as this can fail in the two ways we discussed all the
way back in Ch. 2: by finding some things they shouldn’t, and by failing to find
things they should. As an example of the first kind of error, consider the following
sentences that were also included the earlier return set.

(22.8) airline j has a hub at airport k

(22.9) The catheter has a hub at the proximal end

(22.10) A star topology often has a hub at its center.

We can address these errors by making our proposed pattern more specific.
In this case, replacing the unrestricted wildcard operator with a named entity class
restriction would rule these examples out:

/[ORG] has a hub at [LOC]/

The second problem is that we can’t know if we’ve found all the hubs for all
airlines, since we’ve limited ourselves to this one rather specific pattern. Consider
the following close calls missed by our first pattern.

(22.11) No frills rival easyJet, which has established a hub at Liverpool...

(22.12) Ryanair also has a continental hub at Charleroi airport (Belgium).

These examples are missed because they contain minor variations that causethe
original pattern to fail. There are two ways to address this problem. The first is to
generalize our pattern to capture expressions like these that contain the information
we are seeking. This can be accomplished by relaxing the pattern to allow matches
that skip parts of the candidate text. Of course, this approach is likely introduce
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more of the false positives that we tried to eliminate by making our pattern more
specific in the first place.

The second, more promising solution, is to expand our set of specific high-
precision patterns. Given a large and diverse document collection, an expanded
set of patterns should be able to capture more of the information we’re looking
for. One way to acquire these additional patterns is to simply have human ana-
lysts familiar with the domain come up with more patterns and hope to get better
coverage. A more interesting automatic alternative is to induce new patterns by
bootstrapping from the initial search results from a small set ofseed patterns.BOOTSTRAPPING

SEED PATTERNS To see how this works, let’s assume that we’ve discovered that Ryanair has
a hub at Charleroi. We can use this fact to discover new patterns by finding other
mentions of this relation in our corpus. The simplest way to do this is to search for
the termsRyanair, Charleroiandhubin some proximity. The following are among
the results from a recent search in Google News.

(22.13) Budget airline Ryanair, which uses Charleroi as a hub, scrapped all weekend
flights out of the airport.

(22.14) All flights in and out of Ryanair’s Belgian hub at Charleroi airport weregrounded
on Friday...

(22.15) A spokesman at Charleroi, a main hub for Ryanair, estimated that 8000
passengers had already been affected.

From these results, patterns such as the following can be extracted that look
for relevant named entities of various types in the right places.

/ [ORG], which uses [LOC] as a hub /

/ [ORG]’s hub at [LOC] /

/ [LOC] a main hub for [ORG] /

These new patterns can then be used to search for additional tuples.
Fig. 22.16 illustrates the overall bootstrapping approach. This figure shows

that the dual nature of patterns and seeds permits the process to start with either a
small set ofseed tuplesor a set ofseed patterns. This style of bootstrapping and
pattern-based relation extraction is closely related to the techniques discussed in
Ch. 20 for extracting hyponym and meronym-based lexical relations.

There are, of course, a fair number of technical details to be worked out to
actually implement such an approach. The following are among some of the key
problems.

• Representing the search patterns

• Assessing the accuracy and coverage of discovered patterns

• And assessing the reliability of the discovered tuples
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Figure 22.16 Pattern and bootstrapping-based relation extraction.

Patterns are typically represented in a way that captures the following four
factors.

• Context prior to the first entity mention

• Context between the entity mentions

• Context following the second mention

• The order of the arguments in the pattern

Contexts are either captured as regular expression patterns or as vectors of features
similar to those described earlier for machine learning-based approaches. In either
case, they can be defined over character strings, word-level tokens, or syntactic and
semantic structures. In general, regular expression approaches tendto be very spe-
cific, yielding high precision results; feature-based approaches, on the other hand,
are more capable of ignoring potentially inconsequential elements of contexts.

Our next problem is how to assess the reliability of newly discovered patterns
and tuples. Recall that we don’t, in general, have access to annotated materials
giving us the right answers. We therefore have to rely on the accuracyof the
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initial seed sets of patterns and/or tuples for gold-standard evaluation, and we have
to ensure that we don’t permit any significantsemantic drift to occur as we’reSEMANTIC DRIFT

learning new patterns and tuples. Semantic drift occurs when an erroneous pattern
leads to the introduction of erroneous tuples, which can then, turn, lead to the
creation of problematic patterns.

To see this consider the following example.

(22.16) Sydney has a ferry hub at Circular Quay.

If accepted as a positive example, this expression could lead to the introduction
of the tuple〈Sydney,CircularQuay〉. Patterns based on this tuple could propagate
further errors into the database.

There are two factors that need to be balanced in assessing a proposednew
pattern: the pattern’s performance with respect to the current set of tuples, and
the pattern’s productivity in terms of the number of matches it produces in the
document collection. More formally, given a document collectionD , a current set
of tuplesT, and a proposed patternp, there are three factors that we need to track.

• hits: the set of tuples inT that p matches while looking inD ;
• misses: The set of tuples inT that p misses while looking atD ;
• f inds: The total set of tuples thatp finds inD .

The following equation balances these considerations (Riloff and Jones,1999).

ConfRlogF(p) =
hitsp

hitsp +missesp
× log(findsp)(22.17)

It is useful to be able to treat this metric as a probability, so we’ll need to normalize
it. A simple way to do this is to track the range of confidences in a development
set and divide by some previously observed maximum confidence (Agichtein and
Gravano, 2000).

We can assess the confidence in a proposed new tuple by combining the ev-
idence supporting it from all the patternsP′ that match that tuple inD (Agichtein
and Gravano, 2000). One way to combine such evidence is thenoisy-or technique.NOISYOR

Assume that a given tuple is supported by a subset of the patterns inP, each with its
own confidence assessed as above. In the noisy-or model, we make two basic as-
sumptions. First, that for a proposed tuple to be false,all of its supporting patterns
must have been in error, and second that the sources of their individual failures are
all independent. If we loosely treat our confidence measures as probabilities, then
the probability of any individual patternp failing is 1−Conf(p); the probability of
all of the supporting patterns for a tuple being wrong is the product of theirindivid-
ual failure probabilities, leaving us with the following equation for our confidence
in a new tuple.

Conf(t) = 1− ∏
p∈P′

1−Conf(p)(22.18)
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The independence assumptions underlying the noisy-or model are very strong
indeed. If the failure mode of the patterns are not independent, then the method
will overestimate the confidence for the tuple. This overestimate is typically com-
pensated for by setting a very high threshold for the acceptance of new tuples.

Given these measures, we can dynamically assess our confidence in both
new tuples and patterns as the bootstrapping process iterates. Setting conservative
thresholds for the acceptance of new patterns and tuples should help prevent the
system from drifting from the targeted relation.

Although there have been no standardized evaluations for this style of relation
extraction on publicly available sources, the technique has gained wide acceptance
as a practical way to quickly populate relational tables from open source materials
(most commonly from the Web) (Etzioni et al., 2005).

22.2.3 Evaluating Relation Analysis Systems

There are two separate methods for evaluating relation detection systems. Inthe
first approach, the focus is on how well systems can find and classify allthe relation
mentions in a given text. In this approach, labeled and unlabeled recall, precision
and F-measures are used to evaluate systems against a test collection with human
annotated gold-standard relations. Labeled precision and recall requires the sys-
tem to classify the relation correctly, while unlabeled methods simply measure a
system’s ability to detect entities that are related.

The second approach focuses on the tuples to be extracted from a bodyof
text, rather than on the relation mentions. In this method, systems need not detect
every mention of a relation to be scored correctly. Instead, the final evaluation is
based on the set of tuples occupying the database when the system is finished. That
is, we want to know if the system can discover that RyanAir has a hub at Charleroi;
we don’t really care how many times it discovers it.

This method has typically used to evaluate unsupervised methods of the kind
discussed in the last section. In these evaluations human analysts simply examine
the set of tuples produced by the system. Precision is simply the fraction of correct
tuples out of all the tuples produced as judged by the human experts.

Recall remains a problem in this approach. It is obviously too costly to search
by hand for all the relations that could have been extracted from a potentially large
collection such as the Web. One solution is to compute recall at various levels
of precision as described in Ch. 25 (Etzioni et al., 2005). Of course, this isn’t true
recall, since we’re measuring against the number of correct tuples discovered rather
than the number of tuples that are theoretically extractable from the text.

Another possibility is to evaluate recall on problems where large resources
containing comprehensive lists of correct answers are available. Examples of in-
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clude gazetteers for facts about locations, the Internet Movie Database(IMDB)
for facts about movies or Amazon for facts about books. The problem with this
approach is that it measures recall against a database that may be far more compre-
hensive than the text collections used by relation extraction system.

22.3 TEMPORAL AND EVENT PROCESSING

Our focus thus far has been on extracting information about entities and their rela-
tions to one another. However, in most texts, entities are introduced in the course of
describing the events in which they take part. Finding and analyzing the events in a
text, and how they relate to each other in time, is crucial to extracting a more com-
plete picture of the contents of a text. Such temporal information is particularly
important in applications such as question answering and summarization.

In question answering, whether or not a system detects a correct answer may
depend on temporal relations extracted from both the question and the potential
answer text. As an example of this, consider the following sample question and
potential answer text.

When did airlines as a group last raise fares?

Last week, Delta boosted thousands of fares by $10 per round trip, and
most big network rivals immediately matched the increase. (Dateline
7/2/2007).

This snippet does provide an answer to the question, but extracting it requires tem-
poral reasoning to anchor the phraselast week, to link that time to theboosting
event, and finally to link the time of thematchingevent to that.

The following sections introduce approaches to recognizing temporal expres-
sions, figuring out the times that those expressions refer to, detecting events and
associating times with those events.

22.3.1 Temporal Expression Recognition

Temporal expressions are those that refer to absolute points in time, relativetimes,
durations and sets of these.Absolute temporal expressionsare those that canABSOLUTE

TEMPORAL
EXPRESSIONS

be mapped directly to calendar dates, times of day, or both.Relative temporal
expressionsmap to particular times via some other reference point (as ina weekRELATIVE TEMPORAL

EXPRESSIONS

from last Tuesday.) Finally, durations denote spans of time at varying levels ofDURATIONS

granularity (seconds, minutes, days, weeks, centuries etc.) Fig. 22.17 provides
some sample temporal expressions in each of these categories.

Syntactically, temporal expressions are syntactic constructions that havetem-
poral lexical triggers as their heads. In the annotation scheme in widest use, lex-LEXICAL TRIGGERS
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Absolute Relative Durations
April 24, 1916 yesterday four hours
The summer of ’77 next semester three weeks
10:15 AM two weeks from yesterday six days
The 3rd quarter of 2006 last quarter the last three quarters

Figure 22.17 Examples of absolute, relation and durational temporal expressions.

Category Examples
Noun morning, noon, night, winter, dusk, dawn
Proper Noun January, Monday, Ides, Easter, Rosh Hashana, Ramadan, Tet
Adjective recent, past, annual, former
Adverb hourly, daily, monthly, yearly

Figure 22.18 Examples of temporal lexical triggers.

ical triggers can be nouns, proper nouns, adjectives, and adverbs; full temporal
expression consist of their phrasal projections: noun phrases, adjective phrases and
adverbial phrases. Figure 22.18 provides examples of lexical triggersfrom these
categories.

The annotation scheme in widest use is derived from the TIDES standard(Ferro
et al., 2005). The approach presented here is based on the TimeML effort (Puste-
jovsky et al., 2005). TimeML provides an XML tag, TIMEX3, along with various
attributes to that tag, for annotating temporal expressions. The following example
illustrates the basic use of this scheme (ignoring the additional attributes, which
we’ll discuss as needed later in Sec. 22.3.2).

A fare increase initiated<TIMEX3>last week</TIMEX3> by UAL
Corp’s United Airlines was matched by competitors over<TIMEX3>the
weekend</TIMEX3>, marking the second successful fare increase in
<TIMEX3>two weeks</TIMEX2>.

The temporal expression recognitiontask consists of finding the start andTEMPORAL
EXPRESSION

RECOGNITION

end of all of the text spans that correspond to such temporal expressions. Although
there are myriad ways to compose time expressions in English, the set of temporal
trigger terms is, for all practical purposes, static and the set of constructions used
to generate temporal phrases is quite conventionalized. These facts suggest that
any of the major approaches to finding and classifying text spans that we’ve al-
ready studied should be successful. The following three approaches have all been
successfully employed in recent evaluations.

• Rule-based systems based on partial parsing or chunking

• Statistical sequence classifiers based on standard token-by-tokenIOB encod-
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ing

• Constituent-based classification as used in semantic role labeling

Rule-based approachesto temporal expression recognition use cascades of
automata to recognize patterns at increasing levels of complexity. Since temporal
expressions are limited to a fixed set of standard syntactic categories, mostof these
systems make use of pattern-based methods for recognizing syntactic chunks. That
is, tokens are first part-of-speech tagged and then larger and largerchunks are rec-
ognized using the results from previous stages. The only difference from the usual
partial parsing approaches is the fact that temporal expressions must contain tem-
poral lexical triggers. Patterns must, therefore, contain either specific trigger words
(e.g. February), or patterns representing classes (e.g.MONTH). Fig. 22.19 illus-
trates this approach with a small representative fragment from a rule-based system
written in Perl.

Sequence labeling approachesfollow exactly the same scheme introduced
in Ch. 13 for syntactic chunking. The three tagsI, O and B are used to mark
tokens that are either inside, outside or begin a temporal expression, as delimited
by TIMEX3 tags. Example 22.3.1 would be labeled as follows in this scheme.

A
O

fare
O

increase
O

initiated
O

last
B

week
I

by
O

UAL
O

Corp’s...
O

As expected, features are extracted from the context surrounding a token to
be tagged and a statistical sequence labeler is trained using those features. As
with syntactic chunking and named entity recognition, any of the usual statistical
sequence methods can be applied. Fig. 22.20 lists the standard features used in the
machine learning-based approach to temporal tagging.

Constituent-based methodscombine aspects of both chunking and token-
by-token labeling. In this approach, a complete constituent parse is produced by
automatic means. The nodes in the resulting tree are then classified, one by one,
as to whether they contain a temporal expression or not. This task is accomplished
by training a binary classifier with annotated training data, using many of the same
features employed inIOB-style training. This approach separates the classification
problem from the segmentation problem by assigning the segmentation problem
to the syntactic parser. The motivation for this choice was mentioned earlier; in
currently available training materials, temporal expressions are limited to syntactic
constituents from one of a fixed set of syntactic categories. Therefore, it makes
sense to allow a syntactic parser to solve the segmentation part of the problem.

In standard evaluations, temporal expression recognizers are evaluated using
the usual recall, precision and F-measures. In recent evaluations, both rule-based
and statistical systems achieve about the same level of performance, with thebest
systems reaching an F-measure of around .87 on a strict exact match criteria. On a
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# yesterday/today/tomorrow

$string =~ s/(($OT+(early|earlier|later?)$CT+\s+)?(($OT+the$CT+\s+)?$OT+day$CT+\s+

$OT+(before|after)$CT+\s+)?$OT+$TERelDayExpr$CT+(\s+$OT+(morning|afternoon|evening|night)

$CT+)?)/<TIMEX2 TYPE=\"DATE\">$1<\/TIMEX2>/gio;

$string =~ s/($OT+\w+$CT+\s+)

<TIMEX2 TYPE=\"DATE\"[^>]*>($OT+(Today|Tonight)$CT+)<\/TIMEX2>/$1$2/gso;

# this/that (morning/afternoon/evening/night)

$string =~ s/(($OT+(early|earlier|later?)$CT+\s+)?$OT+(this|that|every|the$CT+\s+

$OT+(next|previous|following))$CT+\s*$OT+(morning|afternoon|evening|night)

$CT+(\s+$OT+thereafter$CT+)?)/<TIMEX2 TYPE=\"DATE\">$1<\/TIMEX2>/gosi;

Figure 22.19 Fragment of Perl code from MITRE’s TempEx temporal tagging system.

Feature Explanation
Token The target token to be labeled
Tokens in window Bag of tokens in the window around a target
Shape Character shape features
POS Parts of speech of target and window words
Chunk tags Base-phrase chunk tag for target and words in a window
Lexical triggers Presence in a list of temporal terms

Figure 22.20 Typical features used to trainIOB style temporal expression taggers.

looser criterion based on overlap with gold standard temporal expressions, the best
systems reach an F-measure of .94.4

The major difficulties for all of these approaches are achieving reasonable
coverage, correctly identifying the extent of temporal expressions anddealing with
expressions that trigger false positives. The problem of false positives arises from
the use of temporal trigger words as parts of proper names. For example,all of
the following examples are likely to cause false positives for either rule-based or
statistical taggers.

(22.19) 1984tells the story of Winston Smith and his degradation by the totalitarian state
in which he lives.

(22.20) Edge is set to join Bono onstage to perform U2’s classicSundayBloodySunday.

(22.21) BlackSeptembertried to detonate three car bombs in New York City in March
1973.

4 http://www.nist.gov/speech/tests/ace/
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<TIMEX3 id=t1 type="DATE" value="2007-07-02" functionInDocument="CREATION_TIME">

July 2, 2007 </TIMEX3> A fare increase initiated <TIMEX3 id="t2" type="DATE"

value="2007-W26" anchorTimeID="t1">last week</TIMEX3> by UAL Corp’s United Airlines was

matched by competitors over <TIMEX3 id="t3" type="DURATION" value="P1WE"

anchorTimeID="t1"> the weekend </TIMEX3>, marking the second successful fare increase in

<TIMEX3 id="t4" type="DURATION" value="P2W" anchorTimeID="t1"> two weeks </TIMEX3>.

Figure 22.21 TimeML markup including normalized values for temporal expressions.

22.3.2 Temporal Normalization

The task of recognizing temporal expressions is typically followed by the task of
normalization.Temporal normalization refers to the process of mapping a tem-TEMPORAL

NORMALIZATION

poral expression to either a specific point in time, or to a duration. Points in time
correspond either to calendar dates or to times of day (or both). Durationsprimar-
ily consist of lengths of time, but may also include information concerning the start
and end points of a duration when that information is available.

Normalized representations of temporal expressions are captured usingthe
VALUE attribute from the ISO 8601 standard for encoding temporal values(ISO8601,
2004). To illustrate some aspects of this scheme, let’s return to our earlier example,
reproduced in Fig. 22.21 with the value attributes added in.

The dateline, or document date, for this text wasJuly 2, 2007. The ISO
representation for this kind offully qualified date expression is YYYY-MM-DD,FULLY QUALIFIED

DATE

or in this case, 2007-07-02. The encodings for the temporal expressions in our
sample text all follow from this date, and are shown here as values for theVALUE

attribute. Let’s consider each of these temporal expressions in turn.
The first temporal expression in the text proper refers to a particular week of

the year. In the ISO standard, weeks are numbered from 01 to 53, with thefirst
week of the year being the one that has the first Thursday of the year. These weeks
are represented using the template YYYY-Wnn. The ISO week for our document
date is week 27, thus the value forlast weekis represented as “2007-W26”.

The next temporal expression isthe weekend. ISO weeks begin on Monday,
thus, weekends occur at the end of a week and are fully contained within asingle
week. Weekends are treated as durations, so the value of theVALUE attribute has to
be a length. Durations are represented using the pattern Pnx, wheren is an integer
denoting the length andx represents the unit, as in P3Y forthree yearsor P2D for
two days. In this example, one weekend is captured as P1WE. In this case, there is
also sufficient information to anchor this particular weekend as part of a particular
week. Such information is encoded in theANCHORTIME ID attribute. Finally, the
phrasetwo weeksalso denotes a duration captured as P2W.
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Unit Pattern Sample Value
Fully Specified Dates YYYY-MM-DD 1991-09-28
Weeks YYYY-nnW 2007-27W
Weekends PnWE P1WE
24 hour clock times HH:MM:SS 11:13:45
Dates and Times YYYY-MM-DDTHH:MM:SS 1991-09-28T11:00:00
Financial quarters Qn 1999-3Q

Figure 22.22 Sample ISO patterns for representing various times and durations.

There is a lot more to both the ISO 8601 standard and the various temporal
annotation standards — far too much to cover here. Fig. 22.22 describes some of
the basic ways that other times and durations are represented. Consult (ISO8601,
2004; Ferro et al., 2005; Pustejovsky et al., 2005) for more details.

Most current approaches to temporal normalization employ rule-based meth-
ods that associate semantic analysis procedures with patterns matching particular
temporal expressions. This is a domain-specific instantiation of the compositional
rule-to-rule approach introduced in Ch. 18. In this approach, the meaning of a
constituent is computed from the meaning of its parts, and the method used to per-
form this computation is specific to the constituent being created. The only differ-
ence here is that the semantic composition rules involve simple temporal arithmetic
rather thanλ -calculus attachments.

To normalize temporal expressions, we’ll need rules for four kinds of expres-
sions.

• Fully qualified temporal expressions

• Absolute temporal expressions

• Relative temporal expressions

• Durations

Fully qualified temporal expressions contain a year, month and day in some
conventional form. The units in the expression must be detected and then placed
in the correct place in the corresponding ISO pattern. The following pattern nor-
malizes the fully-qualified temporal expression used in expressions likeApril 24,
1916.

FQTE → Month Date, Year {Year.val − Month.val − Date.val}

In this rule, the non-terminalsMonth, Date, andYear represent constituents that
have already been recognized and assigned semantic values, accessed via the*.val
notation. The value of thisFQE constituent can, in turn, be accessed asFQTE.val
during further processing.
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Fully qualified temporal expressions are fairly rare in real texts. Most tem-
poral expressions in news articles are incomplete and are only implicitly anchored,
often with respect to the dateline of the article, which we’ll refer to as the doc-
ument’stemporal anchor. The values of relatively simple temporal expressionsTEMPORAL ANCHOR

such astoday, yesterday, or tomorrowcan all be computed with respect to this tem-
poral anchor. The semantic procedure fortodaysimply assigns the anchor, while
the attachments fortomorrowandyesterdayadd a day and subtract a day from the
anchor, respectively. Of course, given the circular nature of our representations for
months, weeks, days and times of day, our temporal arithmetic procedures must
use modulo arithmetic appropriate to the time unit being used.

Unfortunately, even simple expressions such asthe weekendor Wednesday
introduce a fair amount of complexity. In our current example,the weekendclearly
refers to the weekend of the week that immediately precedes the document date.
But this won’t always be the case, as is illustrated in the following example.

(22.22) Random security checks that began yesterday at Sky Harbor will continue at least
through the weekend.

In this case, the expressionthe weekendrefers to the weekend of the week that the
anchoring date is part of (i.e. the coming weekend). The information that signals
this comes from the tense ofcontinue, the verb governingthe weekend.

Relative temporal expressions are handled with temporal arithmetic similar
to that used fortodayandyesterday. To illustrate this, consider the expressionlast
weekfrom our example. From the document date, we can determine that the ISO
week for the article is week 27, solast weekis simply 1 minus the current week.

Again, even simple constructions such as this can be ambiguous in English.
The resolution of expressions involvingnextand last must take into account the
distance from the anchoring date to the nearest unit in question. For example, a
phrase such asnext Fridaycan refer to either the immediately next Friday, or to the
Friday following that. The determining factor has to do with the proximity to the
reference time. The closer the document date is to a Friday, the more likely it is that
the phrasenext Fridaywill skip the nearest one. Such ambiguities are handled by
encoding language and domain specific heuristics into the temporal attachments.

The need to associate highly idiosyncratic temporal procedures with particu-
lar temporal constructions accounts for the widespread use of of rule-based meth-
ods in temporal expression recognition. Even when high performance statistical
methods are used for temporal recognition, rule-based patterns are still required
for normalization. Although the construction of these patterns can be tediousand
filled with exceptions, it appears that sets of patterns that provide good coverage in
newswire domains can be created fairly quickly (Ahn et al., 2005).

Finally, many temporal expressions are anchored to events mentioned in a
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text and not directly to other temporal expressions. Consider the followingexam-
ple.

(22.23) One week after the storm, JetBlue issued its customer bill of rights.

To determine when JetBlue issued its customer bill of rights we need to determine
the time ofthe stormevent, and then that time needs to be modified by the tem-
poral expressionone week after. We’ll return to this issue when we take up event
detection in the next section.

22.3.3 Event Detection and Analysis

The task ofevent detection and classificationis to identify mentions of eventsEVENT DETECTION
AND CLASSIFICATION

in texts and then assign those events to a variety of classes. For the purposes of
this task, an event mention is any expression denoting an event or state thatcan
be assigned to a particular point, or interval, in time. The following markup of
Example 22.3.1 shows all the events in this text.

[EVENTCiting] high fuel prices, United Airlines [EVENTsaid] Friday it has
[EVENT increased] fares by $6 per round trip on flights to some citiesalso
served by lower-cost carriers. American Airlines, a unit ofAMR Corp., imme-
diately [EVENTmatched] [EVENTthe move], spokesman Tim Wagner [EVENT
said]. United, a unit of UAL Corp., [EVENTsaid] [EVENT the increase] took
effect Thursday and [EVENT applies] to most routes where it [EVENT com-
petes] against discount carriers, such as Chicago to Dallasand Denver to San
Francisco.

In English, most event mentions correspond to verbs, and most verbs intro-
duce events. However, as we can see from our example this is not always the case.
Events can be introduced by noun phrases, as inthe moveand the increase, and
some verbs fail to introduce events, as in the phrasal verbtook effect, which refers
to when the event began rather than to the event itself. Similarly, light verbs such
asmake, take, andhaveoften fail to denote events. In these cases, the verb is sim-
ply providing a syntactic structure for the arguments to an event expressed by the
direct object as intook a flight.

Both rule-based and statistical machine learning approaches have been ap-
plied to the problem of event detection. Both approaches make use of surface in-
formation such as parts of speech information, presence of particular lexical items,
and verb tense information. Fig. 22.23 illustrates the key features used in current
event detection and classification systems.

Having detected both the events and the temporal expressions in a text, the
next logical task is to use this information to fit the events into a complete time-
line. Such a timeline would be useful for applications such as question answering



DRAFT

Section 22.3. Temporal and Event Processing 31

Feature Explanation
Character affixes Character-level prefixes and suffixes of target word
Nominalization suffix Character level suffixes for nominalizations (eg.-tion)
Part of speech Part of speech of the target word
Light verb Binary feature indicating that the target is governed by a light verb
Subject syntactic category Syntactic category of the subject of the sentence
Morphological stem Stemmed version of the target word
Verb root Root form of the verb basis for a nominalization
Wordnet hypernyms Hypernym set for the target

Figure 22.23 Features commonly used in both rule-based and statistical approaches to event detection.

and summarization. This ambitious task is is the subject of considerable current
research but is beyond the capabilities of current systems.

A somewhat simpler, but still useful, task is to impose a partial ordering on
the events and temporal expressions mentioned in a text. Such an ordering can
provide many of the same benefits as a true timeline. An example of such a partial
ordering would be to determine that the fare increase byAmerican Airlinescame
after the fare increase byUnited in our sample text. Determining such an ordering
can be viewed as a binary relation detection and classification task similar to those
described earlier in Sec. 22.2.

Current approaches to this problem attempt to identify a subset of Allen’s
13 temporal relations discussed earlier in Ch. 17, and shown here in Fig. 22.24.
Recent evaluation efforts have focused on detecting thebefore, after andduring
relations among the temporal expressions, document date and event mentions in a
text (Verhagen et al., 2007). Most of the top-performing systems employ statistical
classifiers, of the kind discussed earlier in Sec. 22.2, trained on the TimeBank
corpus (Pustejovsky et al., 2003b).

22.3.4 TimeBank

As we’ve seen with other tasks, it’s tremendously useful to have access totext
annotated with the types and relations in which we’re interested. Such resources
facilitate both corpus-based linguistic research as well as the training of systems to
perform automatic tagging. TheTimeBank corpus consists of text annotated withTIMEBANK

much of the information we’ve been discussing throughout this section (Puste-
jovsky et al., 2003b). The current release (TimeBank 1.2) of the corpus consists of
183 news articles selected from a variety of sources, including the Penn TreeBank
and PropBank collections.

Each article in the TimeBank corpus has had the temporal expressions and
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Figure 22.24 Allen’s 13 possible temporal relations.

event mentions in them explicitly annotated in the TimeML annotation (Puste-
jovsky et al., 2003a). In addition to temporal expressions and events, theTimeML
annotation provides temporal links between events and temporal expressions that
specify the nature of the relation between them. Consider the following sample
sentence and its corresponding markup shown in Fig. 22.25 selected fromone of
the TimeBank documents.
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<TIMEX3 tid=’’t57’’ type="DATE’’ value="1989-10-26"

functionInDocument="CREATION_TIME"> 10/26/89 </TIMEX3>

Delta Air Lines earnings <EVENT eid="e1" class="OCCURRENCE"> soared </EVENT>

33\% to a record in <TIMEX3 tid="t58" type="DATE" value="1989-Q1" anchorTimeID="t57">

the fiscal first quarter </TIMEX3>, <EVENT eid="e3" class="OCCURRENCE">bucking</EVENT>

the industry trend toward <EVENT eid="e4" class="OCCURRENCE">declining</EVENT> profits.

Figure 22.25 Example from the TimeBank corpus.

(22.24) Delta Air Lines soared 33% to a record in the fiscal first quarter, buckingthe
industry trend toward declining profits.

As annotated, this text includes three events and two temporal expressions.
The events are all in the occurrence class and are given unique identifiers for use
in further annotations. The temporal expressions include the creation time ofthe
article, which serves as the document time, and a single temporal expressionwithin
the text.

In addition to these annotations, TimeBank provides 4 links that capture the
temporal relations between the events and times in the text. The following are the
within sentence temporal relations annotated for this example.

• Soaringe1 is included in the fiscal first quartert58

• Soaringe1 is before1989-10-26t57

• Soaringe1 is simultaneouswith the buckinge3

• Declininge4 includessoaringe1

The set of 13 temporal relations used in TimeBank are based on Allen’s (Allen,
1984) relations introduced earlier in Fig. 22.24.

22.4 TEMPLATE-FILLING

Many texts contain reports of events, and possibly sequences of events, that often
correspond to fairly common, stereotypical situations in the world. These abstract
situations can be characterized asscripts, in that they consist of prototypical se-SCRIPTS

quences of sub-events, participants, roles and props (Schank and Abelson, 1977).
The use of explicit representations of such scripts in language processing can assist
in many of the IE tasks we’ve been discussing. In particular, the strong expecta-
tions provided by these scripts can facilitate the proper classification of entities, the
assignment of entities into roles and relations, and most critically, the drawing of
inferences that fill in things that have been left unsaid.
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In their simplest form, such scripts can be represented astemplatesconsist-TEMPLATES

ing of fixed sets ofslots which take as valuesslot-fillers belonging to particular
classes. The task oftemplate-filling is to find documents that invoke particular
scripts and then fill the slots in the associated templates with fillers extracted from
the text. These slot-fillers may consist of text segments extracted directly from the
text, or they may consist of concepts that have been inferred from text elements via
some additional processing (times, amounts, entities from an ontology, etc.)

A filled template from our original airline story might look like the following.

FARE-RAISE ATTEMPT:










LEAD A IRLINE : UNITED A IRLINES

AMOUNT: $6

EFFECTIVE DATE: 2006-10-26

FOLLOWER: AMERICAN A IRLINES











Note that as is often the case, the slot-fillers in this example all correspond to de-
tectable named entities of various kinds (organizations, amounts and times). This
suggests that template-filling applications should rely on tags provided by named
entity recognition, temporal expression and co-reference algorithms to identify
candidate slot-fillers.

The next section describes a straightforward approach to filling slots using
sequence labeling techniques. Sec. 22.4.2 then describes a system designed to
address a considerably more complex template-filling task, based on the use of
cascades of finite-state transducers.

22.4.1 Statistical Approaches to Template-Filling

A surprisingly effective approach to template-filling simply casts it as a statistical
sequence labeling problem. In this approach, systems are trained to label sequences
of tokens as potential fillers for particular slots. There are two basic waysto in-
stantiate this approach: the first is to train separate sequence classifiers for each
slot to be filled and then send the entire text through each labeler, the other isto
train one large classifier (usually an HMM) that assigns labels for each ofthe slots
to be recognized. We’ll focus on the former approach here; we’ll takeup the single
large classifier approach in Ch. 23.

Under the one classifier per slot approach, slots are filled with the text seg-
ments identified by each slot’s corresponding classifier. As with the other IEtasks
described earlier in this chapter, all manner of statistical sequence classifiers have
been applied to this problem, all using the usual set of features: tokens, shapes of
tokens, part-of-speech tags, syntactic chunk tags, and named entity tags.

There is the possibility in this approach that multiple non-identical text seg-
ments will be labeled with the same slot label. This situation can arise in two ways:
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from competing segments that refer to the same entity using different referring ex-
pressions, or from competing segments that represent truly distinct hypotheses. In
our sample text, we might expect the segmentsUnited, United Airlinesto be la-
beled as the LEAD A IRLINE. These are not incompatible choices and the reference
resolution techniques introduced in Ch. 21 can provide a path to a solution.

Truly competing hypotheses arise when a text contains multiple entities of
the expected type for a given slot. In our example,United AirlinesandAmerican
Airlines are both airlines and it is possible for both to be tagged as LEAD A IR-
LINE based on their similarity to exemplars in the training data. In general, most
systems simply choose the hypothesis with the highest confidence. Of course, the
implementation of this confidence heuristic is dependent on the style of sequence
classifier being employed. Markov-based approaches simply select the segment
with the highest probability labeling (Freitag and McCallum, 1999).

A variety of annotated collections have been used to evaluate this style of ap-
proach to template-filling, including sets of job announcements, conferencecalls
for papers, restaurant guides and biological texts. A frequently employed collec-
tion is the CMU Seminar Announcement Corpus5, a collection of 485 seminar
announcements retrieved from the Web with slots annotated for theSPEAKER, LO-
CATION, START TIME andEND TIME. State-of-the-art F-measures on this dataset
range from around .98 for the start and end time slots, to as high as .77 for the
speaker slot (Roth and tau Yih, 2001; Peshkin and Pfefer, 2003).

As impressive as these results are, they are due as much to the constrained
nature of the task as to the techniques they have been employed. Three strong
task constraints have contributed to this success. First, in most evaluations all
the documents in the collection are all relevant and homogeneous, that is they are
known to contain the slots of interest. Second, the documents are all relatively
small, providing little room for distractor segments that might incorrectly fill slots.
And finally, the target output consists solely of a small set of slots which areto be
filled with snippets from the text itself.

22.4.2 Finite-State Template-Filling Systems

The tasks introduced in theMessage Understanding Conferences(MUC) (Sund-
heim, 1993), a series of U.S. Government-organized information extractionevalu-
ations, represent a considerably more complex template-filling problem. Consider
the following sentences selected from the MUC-5 materials from Grishman and
Sundheim (1995).

5 http://www.isi.edu/info-agents/RISE/
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TIE-UP-1:
RELATIONSHIP: TIE-UP

ENTITIES: “Bridgestone Sports Co.”
“a local concern”
“a Japanese trading house”

JOINTVENTURECOMPANY “Bridgestone Sports Taiwan Co.”
ACTIVITY ACTIVITY-1
AMOUNT NT$20000000

ACTIVITY-1:
COMPANY “Bridgestone Sports Taiwan Co.”
PRODUCT “iron and “metal wood” clubs”
STARTDATE DURING: January 1990

Figure 22.26 The templates produced by theFASTUS (Hobbs et al., 1997) infor-
mation extraction engine given the input text on page 35.

Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan
with a local concern and a Japanese trading house to produce golf clubs to be
shipped to Japan.

The joint venture, Bridgestone Sports Taiwan Co., capitalized at 20 million
new Taiwan dollars, will start production in January 1990 with production of
20,000 iron and “metal wood” clubs a month.

The MUC-5 evaluation task required systems to produce hierarchically linked
templates describing the participants in the joint venture, the resulting company,
and its intended activity, ownership and capitalization. Fig. 22.26 shows the result-
ing structure produced by theFASTUS system (Hobbs et al., 1997). Note how the
filler of the ACTIVITY slot of theTIE-UP template is itself a template with slots to
be filled.

TheFASTUSsystem produces the template given above, based on a cascade of
transducers in which each level of linguistic processing extracts some information
from the text, which is passed on to the next higher level, as shown in Figure22.27

Most systems base most of these levels on finite-automata, although in prac-
tice most complete systems are not technically finite-state, either because the indi-
vidual automata are augmented with feature registers (as inFASTUS), or because
they are used only as preprocessing steps for full parsers (e.g., Gaizauskas et al.,
1995; Weischedel, 1995) , or are combined with other components based on statis-
tical methods (Fisher et al., 1995).

Let’s sketch theFASTUS implementation of each of these levels, following
Hobbs et al. (1997) and Appelt et al. (1995). After tokenization, the second level
recognizes multiwords likeset up, andjoint venture, and names likeBridgestone
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No. Step Description
1 Tokens: Transfer an input stream of characters

into a token sequence.
2 Complex Words: Recognize multi-word phrases, numbers,

and proper names.
3 Basic phrases: Segment sentences into noun groups,

verb groups, and particles.
4 Complex phrases: Identify complex noun groups and com-

plex verb groups.
5 Semantic Patterns: Identify semantic entities and events and

insert into templates.
6 Merging: Merge references to the same entity or

event from different parts of the text.

Figure 22.27 Levels of processing inFASTUS (Hobbs et al., 1997). Each level
extracts a specific type of information which is then passed on to the next higher
level.

Sports Co.. The named entity recognizer is a transducer, composed of a large set
of specific mappings designed to handle the usual set of named entities.

The following are typical rules for modeling names of performing organi-
zations likeSan Francisco Symphony OrchestraandCanadian Opera Company.
While the rules are written using a context-free syntax, there is no recursion and
therefore they can be automatically compiled into finite-state transducers.

Performer-Org → (pre-location) Performer-Noun+ Perf-Org-Suffix
pre-location → locname| nationality
locname → city | region
Perf-Org-Suffix → orchestra, company
Performer-Noun→ symphony, opera
nationality → Canadian, American, Mexican
city → San Francisco, London

The second stage also might transduce sequences likeforty two into the ap-
propriate numeric value (recall the discussion of this problem in Ch. 8).

The third FASTUS stage implements chunking and produces a sequence of
basic syntactic chunks, such as noun groups, verb groups, and so on, using finite-
state rules of the sort discussed in Ch. 13.

The output of theFASTUS basic phrase identifier is shown in Figure 22.28;
note the use of some domain-specific basic phrases likeCompanyandLocation.

Recall that Ch. 13 described how these basic phrases can be combined into
more complex noun groups and verb groups. This is accomplished in Stage 4of
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Company Bridgestone Sports Co.
Verb Group said
Noun Group Friday
Noun Group it
Verb Group had set up
Noun Group a joint venture
Preposition in
Location Taiwan
Preposition with
Noun Group a local concern
Conjunction and
Noun Group a Japanese trading house
Verb Group to produce
Noun Group golf clubs
Verb Group to be shipped
Preposition to
Location Japan

Figure 22.28 The output of Stage 2 of the FASTUS basic-phrase extractor, which
uses finite-state rules of the sort described by Appelt and Israel (1997) and shown on
page??.

(1) RELATIONSHIP: TIE-UP

ENTITIES: “Bridgestone Sports Co.”
“a local concern”
“a Japanese trading house”

(2) ACTIVITY : PRODUCTION

PRODUCT “golf clubs”
(3) RELATIONSHIP: TIE-UP

JOINTVENTURECOMPANY: “Bridgestone Sports Taiwan Co.”
AMOUNT: NT$20000000

(4) ACTIVITY : PRODUCTION

COMPANY: “Bridgestone Sports Taiwan Co.”
STARTDATE DURING: January 1990

(5) ACTIVITY PRODUCTION

PRODUCT “iron and “metal wood” clubs”

Figure 22.29 The five partial templates produced by Stage 5 of theFASTUS sys-
tem. These templates will be merged by the Stage 6 merging algorithm to produce
the final template shown in Fig. 22.26 on page 36.

FASTUS, by dealing with conjunction and with the attachment of measure phrases
as in the following.

20,000 iron and “metal wood” clubs a month,
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and prepositional phrases:

production of 20,000 iron and “metal wood” clubs a month,

The output of Stage 4 is a list of complex noun groups and verb groups. Stage
5 takes this list, ignoring all input that has not been chunked into a complex group,
recognizes entities and events in the complex groups, and inserts the recognized
objects into the appropriate slots in templates. The recognition of entities and
events is done by hand-coded finite-state automata whose transitions are based on
particular complex-phrase types annotated by particular head words or particular
features likecompany, currency, or date.

As an example, the first sentence of the news story above realizes the seman-
tic patterns based on the following two regular expressions (where NG indicates
Noun-Group and VG Verb-Group).

• NG(Company/ies) VG(Set-up) NG(Joint-Venture) with NG(Company/ies)

• VG(Produce) NG(Product)

The second sentence realizes the second pattern above as well as the following two
patterns:

• NG(Company) VG-Passive(Capitalized) at NG(Currency)

• NG(Company) VG(Start) NG(Activity) in/on NG(Date)

The result of processing these two sentences is the set of five draft templates
shown in Fig. 22.29. These five templates must then be merged into the single
hierarchical structure shown in Fig. 22.26. The merging algorithm decideswhether
two activity or relationship structures are sufficiently consistent that they might be
describing the same events, and merges them if so. The merging algorithm must
also perform reference resolution as described in Ch. 21.

22.5 ADVANCED: BIOMEDICAL INFORMATION EXTRACTION ∗

Information extraction from biomedical journal articles has become an important
application area in recent years. The motivation for this work comes primarilyfrom
biologists, who find themselves faced with an enormous increase in the numberof
publications in their field since the advent of modern genomics — so many that
keeping up with the relevant literature is nearly impossible for many scientists.
Fig. 22.30 amply demonstrates the severity of the problem faced by these scientists.
Clearly, applications that can automate the extraction and aggregation of useful
information from such sources would be a boon to researchers.

∗This section was written by K. Bretonnel Cohen
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Figure 22.30 Exponential growth in number of articles available in the PubMed
database from 1986 to 2004 (after (Cohen and Hunter, 2004)).

A growing application area for information extraction in the biomedical do-
main is as an aid to the construction of large databases of genomic and related
information. Without the availability of information extraction-based curator as-
sistance tools, many manual database construction efforts will not be complete for
decades — a time-span much too long to be useful (Jr. et al., 2007).

A good example of this kind of application is the MuteXt system. This sys-
tem targets two named entity types — mutations in proteins and two very specific
types of proteins calledG-coupled protein receptors and nuclear hormone recep-
tors. MuteXt was used to build a database that drew information from 2,008 doc-
uments; building it by hand would have taken an enormously time-consuming and
expensive undertaking. Mutations in G-protein coupled receptors are associated
with a range of diseases that includes diabetes, ocular albinism, and retinitis pig-
mentosa, so even this simple text mining system has a clear application to the relief
of human suffering.

Biologists and bioinformaticians have recently come up with even more in-
novative uses for text mining systems, in which the output is never intended for
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Semantic class Examples
Cell lines T98G, HeLa cell, Chinese hamster ovary cells, CHO cells
Cell types primary T lymphocytes, natural killer cells, NK cells
Chemicals citric acid, 1,2-diiodopentane, C
Drugs cyclosporin A, CDDP
Genes/proteins white, HSP60, protein kinase C, L23A
Malignancies carcinoma, breast neoplasms
Medical/clinical concepts amyotrophic lateral sclerosis
Mouse strains LAFT, AKR
Mutations C10T, Ala64→ Gly
Populations judo group

Figure 22.31 A sample of the semantic classes of named entities that have been recognized in biomed-
ical NLP. Note the surface similarities between many of the examples.

viewing by humans, but rather is used as part of the analysis of high-throughput
assays—experimental methods which produce masses of data points that would
have been unimaginable just twenty years ago—and as part of techniquesfor using
data in genomic data repositories. Ng (2006) provides a review and an insightful
analysis of work in this vein.

22.5.1 Biological Named Entity Recognition

Information extraction tasks in the biological realm are characterized by a much
wider range of relevant types of entities than thePERSON, ORGANIZATION, and
LOCATION semantic classes that characterize work that is focused on news-style
texts. Fig. 22.31 and the following example illustrate just a small subset of the
variety of semantic classes of named entities that have been the target of NER
systems in the biomedical domain.

[TISSUEPlasma] [GP BNP] concentrations were higher in both the [POPULATION
judo] and [POPULATION marathon groups] than in [POPULATIONcontrols],
and positively correlated with [ANAT LV] mass as well as with deceleration
time.

Nearly all of the techniques described in Sec. 22.1 have been applied to the
biomedical NER problem, with a particular focus on the problem of recognizing
gene/protein names. This task is particularly difficult due to the wide range of
forms that gene names can take:white, insulin, BRCA1, ether a go-go,andbreast
cancer associated 1are all the names of genes. The choice of algorithm for gene
name recognition seems to be less important than the choice of features; typical
feature sets include word-shape and contextual features, as discussed earlier; ad-
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ditionally, knowledge-based features, such as using the count of Google hits for a
sequence likeBRCA1 geneto decide whether or not a token of the stringBRCA1is
a reference to a gene or not, are sometimes incorporated into statistical systems.

Surprisingly, the use of huge publicly available lists of gene names has not
generally contributed to the performance of a gene/protein NER system (Yeh et al.,
2005), and in fact may actually degrade it (Jr. et al., 2006). It is not uncommon for
gene names to be many tokens long (e.g.breast cancer associated 1). Gene name
length has a demonstrable effect on NER system performance (Kinoshita et al.,
2005; Yeh et al., 2005), and any technique for correctly finding the boundaries
of multi-token names seems to increase performance. Use of the abbreviation-
definition-detection algorithm (Schwartz and Hearst, 2003) is common for thispur-
pose, since many such names appear as abbreviation or symbol definitionsat some
point in a publication. Base noun group chunkers can also be useful in this regard,
as can a surprisingly small number of heuristic rules (Kinoshita et al., 2005).

22.5.2 Gene Normalization

Having identified all the mentions of biological entities in a text, the next step is
to map them to unique identifiers in databases or ontologies. This task has been
most heavily studied for genes, where it is known asgene normalization. SomeGENE

NORMALIZATION

of the complexities of the problem come from high degrees of variability in the
realization of the names of specific entities in naturally-occurring text; the nature
of the problem was first delineated by Cohen et al. (2002). In that worka standard
discovery procedure from descriptive linguistics was used to determine what sorts
of variability in gene names can be ignored, and what sorts must not be ignored.
More recently, Morgan et al. (2007) have shown how linguistic characteristics of
community-specific gene-naming conventions affect the complexity of this task
when the normalization of genes from varying species is attempted. Gene nor-
malization can be considered a type of word sense disambiguation task, midway
between a targetted WSD task and an all-words WSD task.

An important thread of work on this problem involves mapping named en-
tities to biomedical ontologies, especially the Gene Ontology (Ashburner et al.,
2000). This has proven considerably more challenging; terms in the Gene On-
tology tend to be long, to have many possible lexical and syntactic forms, and to
sometimes require significant amounts of inference. ? (?) introduce this ontology
from the perspective of computational lexical semantics and review much ofthe
named entity recognition work that has involved it.
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22.5.3 Biological Roles and Relations

Finding and normalizing all the mentions of biological entities in a text is a pre-
liminary step to determining the roles played by entities in the text. Two ways to
do this that have been the focus of recent research are to discover and classify the
expressed binary relations between the entities in a text, and to identify and clas-
sify the roles played by entities with respect to the central events in the text. These
two tasks correspond roughly to the tasks of classifying the relationship between
pairs of entities as described in Sec. 22.2, and to the semantic role labeling task
introduced in Ch. 20.

Consider the following example texts that express binary relations between
entities.

(22.25) These results suggest that con A-induced [DISEASEhepatitis] was ameliorated by
pretreatment with [TREATMENTTJ-135].

(22.26) [DISEASEMalignant mesodermal mixed tumor of the uterus] following
[TREATMENTirradiation]

Each of these examples asserts a relationship between adiseaseand atreatment.
In the first example, the relationship can be classified as that ofcuring. In the
second example, the disease is aresult of the mentioned treatment. Rosario and
Hearst (2004) present a system for the classification of 7 kinds disease-treatment
relations. In this work, a series of HMM-based generative models as wellas a
discriminative neural network model were successfully applied.

More generally, a wide-range of rule-based and statistical approaches have
been applied to binary relation recognition problems such as this. Examples of
other widely studied biomedical relation recognition problems include genes and
their biological functions (Blaschke et al., 2005), genes and drugs (Rindflesch et al.,
2000), genes and mutations (Rebholz-Schuhmann et al., 2004), and protein-protein
interactions (Rosario and Hearst, 2005).

Now consider the following example that corresponds to a semantic role la-
beling style of problem.

(22.27) [THEME Full-length cPLA2] was [TARGETphosphorylated] stoichiometrically by
[AGENTp42 mitogen-activated protein (MAP) kinase] in vitro... and the major site
of phosphorylation was identified by amino acid sequencing as [SITESer505]

Thephosphorylationevent that lies at the core of this text has three semantic roles
associated with it: the causalAGENT of the event, theTHEME or entity being phos-
phorylated and finally the location, orSITE of the event. The problem is to identify
the constituents in the input that play these roles and assign them the correctrole
labels. Note that this example, contains a further complication in that the sec-
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ond event mentionphosphorylationmust be identified as coreferring with the first
phosphorylatedin order to capture theSITE role correctly.

Much of the difficulty with semantic role labeling in the biomedical domain
stems from the preponderance of nominalizations in these texts. Nominalizations
like phosphorylationtypically offer fewer syntactic cues to signal their arguments
than their verbal equivalents, making the identification task more difficult. A fur-
ther complication is that different semantic roles arguments often occur as parts of
the same, or dominating nominal constituents. To see this consider the following
examples.

(22.28) Serum stimulation of fibroblasts in floating matrices does not result in [TARGET
[ARG1ERK] translocation] to the [ARG3nucleus] and there was decreased serum
activation of upstream members of the ERK signaling pathway, MEK and Raf,

(22.29) The translocation of RelA/p65 was investigated using Western blotting and
immunocytochemistry. the COX-2 inhibitor SC236 worked directly through
suppressing [TARGET[ARG3nuclear] translocation] of [ARG1RelA/p65].

(22.30) Following UV treatment, Mcl-1 protein synthesis is blocked, the existing pool of
Mcl-1 protein is rapidly degraded by the proteasome, and [ARG1[ARG2cytosolic]
Bcl-xL] [ TARGETtranslocates] to the [ARG3mitochondria]

Each these examples contains arguments that are bundled into constituents with
other arguments or with the target predicate itself. For example, in the second
example the constituentnuclear translocationsignals both theTARGET and the
ARG3 role.

Both rule-based and statistical approaches have been applied to these seman-
tic role-like problems. As with relation-finding and NER, the choice of algorithm
is less important than the choice of features, many of which are derived from ac-
curate syntactic analyses. However, since there are no large treebanks available
for biological texts, we are left with the option using off-the-shelf parsers trained
on generic newswire texts. Of course, the errors introduced in this process may
negate whatever power we can derive from syntactic features. Therefore, an im-
portant area of research revolves around the adaptation of generic syntactic tools
to this domain (Blitzer et al., 2006).

Relational and event extraction applications in this domain often have an ex-
tremely limited foci. The motivation for this is that even systems with narrow
scope can make a contribution to the productivity of working bioscientists. Anex-
treme example of this is the RLIMS-P system discussed earlier. It tackles onlythe
verb phosphorylateand the associated nominalizationphosphorylization.Never-
theless, this system was successfully used to produce a large online database that
is in widespread use by the research community.
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As the targets of biomedical information extraction applications have become
more ambitious, the range of BioNLP application types has become correspond-
ingly more broad. Computational lexical semantics and semantic role labelling
(Verspoor et al., 2003; Wattarujeekrit et al., 2004; Ogren et al., 2004;Kogan et al.,
2005; Cohen and Hunter, 2006), summarization (Lu et al., 2006), and question-
answering are all active research topics in the biomedical domain. Sharedtasks like
BioCreative continue to be a source of large data sets for named entity recognition,
question-answering, relation extraction, and document classification (Hirschman
and Blaschke, 2006), as well as a venue for head-to-head assessment of the bene-
fits of various approaches to information extraction tasks.

22.6 SUMMARY

This chapter has explored a series of techniques for extracting limited formsof
semantic content from texts. Most techniques can be characterized as problems in
detection followed by classification.

• Named entitiescan be recognized and classified bystatistical sequence la-
beling techniques.

• Relations among entitiescan be detected and classified using supervised
learning methods when annotated training data is available; lightly super-
visedbootstrapping methods can be used when small numbers ofseed tu-
plesor seed patternsare available.

• Reasoning about time can be facilitated by detecting and normalizingtempo-
ral expressionsthrough a combination of statistical learning and rule-based
methods.

• Rule-based and statistical methods can be used to detect, classify and order
eventsin time. TheTimeBank corpus can facilitate the training and evalu-
ation of temporal analysis systems.

• Template-filling applications can recognize stereotypical situations in texts
and assign elements from the text to roles represented asfixed sets of slots.

• Information extraction techniques have proven to be particularly effective in
processing texts from thebiological domain.

• Scripts, plans and goals...
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BIBLIOGRAPHICAL AND HISTORICAL NOTES

The earliest work on information extraction addressed the template-filling taskand
was performed in the context of the Frump system (DeJong, 1982). Laterwork was
stimulated by the U.S. government sponsored MUC conferences (Sundheim, 1991,
1992, 1993, 1995). Chinchor et al. (1993) describes the evaluation techniques used
in the MUC-3 and MUC-4 conferences. Hobbs (1997) partially credits theinspira-
tion for FASTUS to the success of the University of MassachusettsCIRCUSsystem
(Lehnert et al., 1991) in MUC-3. TheSCISOR system is another system based
loosely on cascades and semantic expectations that did well in MUC-3 (Jacobs and
Rau, 1990).

Due to the difficulty of reusing or porting systems from one domain to an-
other, attention shifted to the problem of automatic knowledge acquisition for these
systems. The earliest supervised learning approaches to IE are described in Cardie
(1993), Cardie (1994), Riloff (1993), Soderland et al. (1995), Huffman (1996), and
Freitag (1998).

These early learning efforts focused on automating the knowledge acquisi-
tion process for mostly finite-state rule-based systems. Their success, and the ear-
lier success of HMM-based methods for automatic speech recognition, led tothe
development of statistical systems based on sequence labeling. Early efforts ap-
plying HMMs to IE problems include the work of Bikel et al. (1997, 1999) and
Freitag and McCallum (1999). Subsequent efforts demonstrated the effectiveness
of a range of statistical methods including MEMMs (McCallum et al., 2000), CRFs
(Lafferty et al., 2001) and SVMs (Sassano and Utsuro, 2000; McNamee and May-
field, 2002).

Progress in this area continues to be stimulated by formal evaluations with
shared benchmark datasets. The MUC evaluations of the mid-1990s were suc-
ceeded by the Automatic Content Extraction (ACE) program evaluations heldpe-
riodically from 2000 to 2007.6 These evaluations focused on the named entity
recognition, relation detection, and temporal expression detection and normaliza-
tion tasks. Other IE evaluations include the 2002 and 2003 CoNLL shared tasks on
language-independent named entity recognition (Sang, 2002; Sang andDe Meul-
der, 2003), and the 2007 SemEval tasks on temporal analysis (Verhagen et al.,
2007) and people search (Artiles et al., 2007).

The scope of information extraction continues to expand to meet the ever-
increasing needs of applications for novel kinds of information. Some of the
emerging IE tasks that we haven’t discussed include the classification of gender

6 www.nist.gov/speech/tests/ace/
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(Koppel et al., 2002), moods (Mishne and de Rijke, 2006), sentiment, affect and
opinions (Qu et al., 2004). Much of this work involvesuser generated contentUSER GENERATED

CONTENT

in the context ofsocial mediasuch as blogs, discussion forums, newsgroups andSOCIAL MEDIA

the like. Research results in this domain have been the focus of a number of recent
workshops and conferences (Nicolov et al., 2006; Nicolov and Glance, 2007).

EXERCISES

22.1 Develop a set of regular expressions to recognize the character shape fea-
tures described in Fig. 22.7.

22.2 Using a statistical sequence modeling toolkit of your choosing, develop and
evaluate an NER system.

22.3 The IOB labeling scheme given in this chapter isn’t the only possible one.
For example, anE tag might be added to mark the end of entities, or theB tag
can be reserved only for those situations where an ambiguity exists betweenad-
jacent entities. Propose a new set ofIOB tags for use with your NER system.
Perform experiments and compare its performance against the scheme presented
in this chapter.

22.4 Names of works of art (books, movies, video games, etc.) are quite different
from the kinds of named entities we’ve discussed in this chapter. Collect a listof
names of works of art from a particular category from a web-based source (eg.
gutenberg.org, amazon.com, imdb.com, etc.). Analyze your list and give examples
of ways that the names in it are likely to be problematic for the techniques described
in this chapter.

22.5 Develop an NER system specific to the category of names that you collected
in the last exercise. Evaluate your system on a collection of text likely to contain
instances of these named entities.

22.6 Acronym expansion, the process of associating a phrase with a particular
acronym, can be accomplished by a simple form of relational analysis. Develop
a system based on the relation analysis approaches described in this chapter to
populate a database of acronym expansions. If you focus on EnglishThree Letter
Acronyms (TLAs) you can evaluate your system’s performance by comparing it to
Wikipedia’s TLA page (en.wikipedia.org/wiki/Category:Lists_of_TLAs).

22.7 Collect a corpus of biographical Wikipedia entries of prominent people from
some coherent area of interest (sports, business, computer science,linguistics, etc.).
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Develop a system that can extract an occupational timeline for the subjects of these
articles. For example, the Wikipedia entry for Peter Norvig might result in the
ordering: Sun, Harlequin, Junglee, NASA, Google; the entry for DavidBeckham
would be: Manchester United, Real Madrid, Los Angeles Galaxy.

22.8 A useful functionality in newer email and calendar applications is the abil-
ity to associate temporal expressions associated with events in emails (doctor’s
appointments, meeting planning, party invitations, etc.) with specific calendar en-
tries. Collect a corpus of emails containing temporal expressions related to event
planning. How do these expressions compare to the kind of expressions commonly
found in news text that we’ve been discussing in this chapter?

22.9 Develop and evaluate a recognition system capable of recognizing temporal
expressions of the kind appearing in your email corpus.

22.10 Design a system capable of normalizing these expressions to the degree
required to insert them into a standard calendaring application.

22.11 Acquire the CMU seminar announcement corpus and develop a template-
filling system using any of the techniques mentioned in Sec. 22.4. Analyze how
well your system performs as compared to state-of-the-art results on thiscor-
pus.

22.12 Develop a new template that covers a situation commonly reported on by
standard news sources. Carefully characterize your slots in terms of thekinds of
entities that appear as slot-fillers. Your first step in this exercise should beto acquire
a reasonably sized corpus of stories that instantiate your template.

22.13 Given your corpus, develop an approach to annotating the relevant slots in
your corpus so that it can serve as a training corpus. Your approachshould involve
some hand-annotation, but should not be based solely on it.

22.14 Retrain your system and analyze how well it functions on your new do-
main.

22.15 Species identification is a critical issue for biomedical information extrac-
tion applications such as document routing and classification. But it is especially
crucial for realistic versions of the gene normalization problem.

Build a species identification system that works on the document level, using
the machine learning or rule-based method of your choice. As gold standard data,
use the BioCreative gene normalization data (biocreative.sourceforge.net).

22.16 Build, or borrow, a named entity recognition system that targets mentions
of genes and gene products in texts. As development data, use the BioCreative
gene mention corpus (biocreative.sourceforge.net).
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22.17 Build a gene normalization system that maps the output of your gene men-
tion recognition system to the appropriate database entry. Use the BioCreative gene
normalization data as your development and test data,be sure you don’t give your
system access to the species identification in the metadata.
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23
QUESTION ANSWERING
AND SUMMARIZATION

‘Alright’, said Deep Thought. ‘The Answer to the Great Question...’
‘Yes!’
‘Of Life The Universe and Everything...’ said Deep Thought.
‘Yes!’
‘Is...’
‘Yes...!!!...?’
‘Forty-two’, said Deep Thought, with infinite majesty and calm...

Douglas Adams,The Hitchhiker’s Guide to the Galaxy

I readWar and Peace. . . It’s about Russia. . .
Woody Allen,Without Feathers

Because so much text information is available generally on the Web, or in special-
ized collections such as PubMed, or even on the hard drives ofour laptops, the single
most important use of language processing these days is to help us query and extract
meaning from these large repositories. If we have a very structured idea of what we are
looking for, we can use the information extraction algorithms of the previous chapter.
But many times we have an information need that is best expressed more informally
in words or sentences, and we want to find either a specific answer fact, or a specific
document, or something in between.

In this chapter we introduce the tasks ofquestion answering(QA) andsumma-
rization , tasks which produce specific phrases, sentences, or short passages, often in
response to a user’s need for information expressed in a natural language query. In
studying these topics, we will also cover highlights from the field of information re-
trieval (IR ), the task of returning documents which are relevant to a particular natural
language query. IR is a complete field in its own right, and we will only be giving a
brief introduction to it here, but one that is essential for understand QA and summa-
rization.

In this chapter we focus on a central idea behind all of these subfields, the idea of
meeting a user’s information needs byextracting passages directly from documents or
from document collections like the Web.

Information retrieval (IR ) is an extremely broad field, encompassing a wide-
range of topics pertaining to the storage, analysis, and retrieval of all manner of media,
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including text, photographs, audio, and video (Baeza-Yates and Ribeiro-Neto, 1999).
Our concern in this chapter is solely with the storage and retrieval of text documents in
response to users’ word-based queries for information. In section 23.1 we present the
vector space model, some variant of which is used in most current systems, including
most web search engines.

Rather than make the user read through an entire document, we’d often prefer to
give a single concise short answer. Researchers have been trying to automate this
process ofquestion answeringsince the earliest days of computational linguistics
(Simmons, 1965).

The simplest form of question answering is dealing withfactoid questions. As
the name implies, the answers to factoid questions are simple facts that can be found in
short text strings. The following are canonical examples ofthis kind of question.

(23.1) Who founded Virgin Airlines?

(23.2) What is the average age of the onset of autism?

(23.3) Where is Apple Computer based?

Each of these questions can be answered directly with a text string that contain the
name of person, a temporal expression, or a location, respectively. Factoid questions,
therefore, are questions whose answers can be found in shortspans of text and corre-
spond to a specific, easily characterized, category, often anamed entity of the kind we
discussed in Ch. 22. These answers may be found on the Web, or alternatively within
some smaller text collection. For example a system might answer questions about a
company’s product line by searching for answers in documents on a particular corpo-
rate website or internal set of documents. Effective techniques for answering these
kinds of questions are described in Sec. 23.2.

Sometimes we are seeking information whose scope is greaterthan a single fac-
toid, but less than an entire document. In such cases we mightneed asummary of
a document or set of documents. The goal oftext summarization is to produce an
abridged version of a text which contains the important or relevant information. For
example we might want to generate anabstract of a scientific article, asummary of
email threads, aheadline for a news article, or generate the shortsnippets that webSNIPPETS

search engines like Google return to the user to describe each retrieved document. For
example, Fig. 23.1 shows some sample snippets from Google summarizing the first
four documents returned from the queryGerman Expressionism Brücke.

To produce these various kinds of summaries, we’ll introduce algorithms for sum-
marizing single documents, and those for producing summaries of multiple documents
by combining information from different textual sources.

Finally, we turn to a field that tries to go beyond factoid question answering by
borrowing techniques from summarization to try to answer more complex questions
like the following:

(23.4) Who is Celia Cruz?

(23.5) What is a Hajj?

(23.6) In children with an acute febrile illness, what is the efficacy of single-medication
therapy with acetaminophen or ibuprofen in reducing fever?
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Figure 23.1 The first 4 snippets from Google forGerman Expressionism Brücke.

Answers to questions such as these do not consist of simple named entity strings.
Rather they involve potentially lengthy coherent texts that knit together an array of
associated facts to produce a biography, a complete definition, a summary of current
events, or a comparison of clinic results on particular medical interventions. In addition
to the complexity and style differences in these answers, the facts that go into such
answers may be context, user, and time dependent.

Current methods answer these kinds ofcomplex questionsby piecing togetherCOMPLEX
QUESTIONS

relevant text segments that come from summarizing longer documents. For example
we might construct an answer from text segments extracted from a a corporate report,
a set of medical research journal articles, or a set of relevant news articles or web
pages. This idea of summarizing text in response to a user query is calledquery-based
summarization or focused summarization, and will be explored in Sec. 23.5.QUERYBASED

SUMMARIZATION

Finally, we reserve for Ch. 24 all discussion of the role thatquestions play in ex-
tended dialogues; this chapter focuses only on responding to a single query.

23.1 INFORMATION RETRIEVAL

Information retrieval (IR ) is a growing field that encompasses a wide range of topicsINFORMATION
RETRIEVAL

IR related to the storage and retrieval of all manner of media. The focus of this section is
with the storage of text documents and their subsequent retrieval in response to users’
requests for information. In this section our goal is just togive a sufficient overview
of information retrieval techniques to lay a foundation forthe following sections on
question answering and summarization. Readers with more interest specifically in in-
formation retrieval should see the references at the end of the chapter.

Most current information retrieval systems are based on a kind of extreme version
of compositional semantics in which the meaning of a document resides solely in the
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set of words it contains. To revisit the Mad Hatter’s quote from the beginning of Ch. 19,
in these systemsI see what I eatandI eat what I seemean precisely the same thing.
The ordering and constituency of the words that make up the sentences that make up
documents play no role in determining their meaning. Because they ignore syntactic
information, these approaches are often referred to asbag-of-wordsmodels.BAGOFWORDS

Before moving on, we need to introduce some new terminology.In information
retrieval, adocument refers generically to the unit of text indexed in the system andDOCUMENT

available for retrieval. Depending on the application, a document can refer to anything
from intuitive notions like newspaper articles, or encyclopedia entries, to smaller units
such as paragraphs and sentences. In web-based applications, it can refer to a web page,
a part of a page, or to an entire website. Acollection refers to a set of documents beingCOLLECTION

used to satisfy user requests. Aterm refers to a lexical item that occurs in a collection,TERM

but it may also include phrases. Finally, aquery represents a user’s information needQUERY

expressed as a set of terms.
The specific information retrieval task that we will consider in detail is known asad

hoc retrieval. In this task, it is assumed that an unaided user poses a queryto a retrievalAD HOC RETRIEVAL

system, which then returns a possibly ordered set of potentially useful documents. The
high level architecture is shown in Fig. 23.2.

Document

Document

Document

Document

DocumentDocument

Query 
Processing

Indexing

Search
(vector space or
probabilistic)

Document
Document
Document
Document
DocumentRanked 
Documents

Document

Query

Figure 23.2 The architecture of an ad hoc IR system.

23.1.1 The Vector Space Model

In the vector space modelof information retrieval, documents and queries are rep-VECTOR SPACE
MODEL

resented as vectors of features representing the terms (words) that occur within the
collection (Salton, 1971).

The value of each feature is called theterm weight and is usually a function of theTERM WEIGHT

term’s frequency in the document, along with other factors.
For example, in a fried chicken recipe we found on the Web the four termschicken,

fried, oil, andpepperoccur with term frequencies 8, 2, 7, and 4, respectively. So if we
just used simple term frequency as our weights, and assumingwe pretended only these
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4 words occurred in the collection and we put the features arein the above order, the
vector for this document (call itj) would be:

~d j = (8,2,7,4)

More generally, we represent a vector for a documentd j as

~d j = (w1, j ,w2, j ,w3, j , · · · ,wn, j )

where~d j denotes a particular document, and the vector contains a weight feature for
each of theN terms that occur in the collection as a whole;w2, j thus refers to the weight
that term 2 has in documentj.

We can also represent a query in the same way. For example, a query q for fried
chickenwould have the representation:

~q = (1,1,0,0)

More generally,
~q = (w1,q,w2,q,w3,q, · · · ,wn,q)

Note thatN, the number of dimensions in the vector, is the total number of terms
in the whole collection. This can be hundreds of thousands ofwords, even if (as is
often done) we don’t consider some function words in the set of possible terms. But of
course a query or even a long document can’t contain very manyof these hundreds of
thousands of terms. Thus most of the values of the query and document vectors will
be zero. Thus in practice we don’t actually store all the zeros (we use hashes and other
sparse representations).

Now consider a different document, a recipe for poached chicken; here the counts
are:

~dk = (6,0,0,0)

Intuitively we’d like the queryq fried chickento match documentd j (the fried
chicken recipe) rather than documentdk (the poached chicken recipe). A brief glance
at the feature suggests that this might be the case; both the query and the fried chicken
recipe have the wordsfried andchicken, while the poached chicken recipe is missing
the wordfried.

It is useful to view the features used to represent documentsand queries in this
model as dimensions in a multi-dimensional space, where thefeature weights serve
to locate documents in that space. When a user’s query is translated into a vector it
denotes a point in that space. Documents that are located close to the query can then
be judged as being more relevant than documents that are farther away.

Fig. 23.3 shows a graphical illustration, plotting the firsttwo dimensions (chicken
andfried) for all three vectors. Note that if we measure the similarity between vectors
by the angle between the vectors, thatq is more similar tod j than todk, because the
angle betweenq andd j is smaller.

In vector-based information retrieval we standardly use the cosinemetric that weCOSINE
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Figure 23.3 A graphical illustration of the vector model for information retrieval, show-
ing the first two dimensions (fried andchicken) assuming that we use raw frequency in the
document as the feature weights.

introduced in Ch. 20 rather than the actual angle. We measurethe distance between two
documents by thecosineof the angle between their vectors. When two documents are
identical they will receive a cosine of one; when they are orthogonal (share no common
terms) they will receive a cosine of zero. The equation for cosine is:

sim(~q, ~d j) =
∑N

i=1wi,q×wi, j
√

∑N
i=1w2

i,q×
√

∑N
i=1w2

i, j

(23.7)

Recall from Ch. 20 that another way to think of the cosine ias as thenormalized
dot product. That is, the cosine is the dot product between the two vectors divided by
the lengths of each of the two vectors. This is because the numerator of the cosine is
thedot product:DOT PRODUCT

dot-product(~x,~y) =~x·~y =
N

∑
i=1

xi ×ui(23.8)

while the denominator of the cosine contains terms for the lengths of the two vectors;
recall thatvector length is defined as:VECTOR LENGTH

|~x| =

√

N

∑
i=1

x2
i(23.9)

This characterization of documents and queries as vectors provides all the basic
parts for an ad hoc retrieval system. A document retrieval system can simply accept
a user’s query, create a vector representation for it, compare it against the vectors rep-
resenting all known documents, and sort the results. The result is a list of documents
rank ordered by their similarity to the query.
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A further note on representation; the characterization of documents as vectors of
term weights allows us to view the document collection as a whole as a (sparse) matrix
of weights, wherewi, j represents the weight of termi in documentj. This weight
matrix is typically called aterm-by-document matrix. Under this view, the columnsTERMBYDOCUMENT

MATRIX

of the matrix represent the documents in the collection, andthe rows represent the
terms. The term-by-document matrix for the two recipe documents above (again using
only the raw term frequency counts as the term weights) wouldbe:

A =









8 6
2 0
7 0
4 0









23.1.2 Term Weighting

In the examples above, we assumed that the term weights were set as the simple fre-
quency counts of the terms in the documents. This is a simplification of what we do in
practice. The method used to assign terms weights in the document and query vectors
has an enormous impact on the effectiveness of a retrieval system. Two factors have
proven to be critical in deriving effective term weights. Wehave already seen the first,
the term frequency, in its simplest form the raw frequency ofa term within a document
(Luhn, 1957). This reflects the intuition that terms that occur frequently within a doc-
ument may reflect its meaning more strongly than terms that occur less frequently and
should thus have higher weights.

The second factor is used to give a higher weight to words thatonly occur in a
few documents. Terms that are limited to a few documents are useful for discrim-
inating those documents from the rest of the collection, while terms that occur fre-
quently across the entire collection aren’t as helpful. documents. Theinverse doc-
ument frequencyor IDF term weight (Sparck Jones, 1972) is one way of assigningINVERSE DOCUMENT

FREQUENCY

IDF higher weights to these more discriminative words. IDF is defined via the fraction
N/ni , whereN is the total number of documents in the collection, andni is the num-
ber of documents in which termi occurs, The fewer documents a term occurs in, the
higher this weight. The lowest weight of 1 is assigned to terms that occur in all the
documents. Due to the large number of documents in many collections, this measure
is usually squashed with a log function. The resulting definition for inverse document
frequency (IDF) is thus:

idfi = log

(

N
ni

)

(23.10)

Combining term frequency with IDF results in a scheme known as tf-idf weighting:TFIDF

wi, j = tfi, j × idfi(23.11)

In tf-idf weighting, the weight of termi in the vector for documentj is the product of its
overall frequency inj with the log of its inverse document frequency in the collection
(sometimes the term frequency is logged as well). Tf-idf thus prefers words which
are frequent in the current documentj but rare overall in the collection. Let’s repeat
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the cosine formula for query-document comparison with tf-idf weights added. We’ll
modify the formula slightly, since as we noted earlier, mostvalues for any query or
document vector will be zero. This means that in practice we don’t compute the cosine
by iterating over all the (mostly zero) dimensions. Insteadwe only compute over the
words that are present, as suggested by the following equation for thetf-idf weighted
cosinebetween a queryq and a documentd:

sim(~q, ~d) =

∑
w∈q,d

tfw,qtfw,d(idfw)2

√

∑
qi∈q

(tfqi ,qidfqi
)2×

√

∑
di∈d

(tfdi ,didfdi
)2

(23.12)

With some minor variations, this tf-idf weighting scheme isused to assign term
weights to documents in nearly all vector space retrieval models. The tf-idf scheme
is also used in many other aspects of language processing; we’ll see it again when we
introducesummarization on page 31.

23.1.3 Term Selection and Creation

Thus far, we have been assuming that it is precisely the wordsthat occur in a collection
that are used to index the documents in the collection. Two common variations on this
assumption involve the use ofstemming, and astop list.

Stemming, as we discussed in Ch. 3, is the process of collapsing the morpholog-STEMMING

ical variants of a word together. For example, without stemming, the termsprocess,
processingandprocessedwill be treated as distinct items with separate term frequen-
cies in a term-by-document matrix; with stemming they will be conflated to the single
term processwith a single summed frequency count. The major advantage tousing
stemming is that it allows a particular query term to match documents containing any
of the morphological variants of the term. The Porter stemmer (Porter, 1980) described
in Ch. 3 is frequently used for retrieval from collections ofEnglish documents.

A problem with this approach is that it throws away useful distinctions. For ex-
ample, consider the use of the Porter stemmer on documents and queries containing
the wordsstocksandstockings. In this case, the Porter stemmer reduces these surface
forms to the single termstock. Of course, the result of this is that queries concern-
ing stock priceswill return documents aboutstockings, and queries aboutstockings
will find documents aboutstocks. Additionally we probably don’t want to stem, e.g.,
the wordIllustrator to illustrate, since the capitalized formIllustrator tends to refer
to the software package Most modern web search engines therefore need to use more
sophisticated methods for stemming.

A second common technique involves the use of stop lists, which address the issue
of what words should be allowed into the index. Astop list is simply a list of highSTOP LIST

frequency words that are eliminated from the representation of both documents and
queries. Two motivations are normally given for this strategy: high frequency, closed-
class terms are seen as carrying little semantic weight and are thus unlikely to help with
retrieval, and eliminating them can save considerable space in the inverted index files
used to map from terms to the documents that contain them. Thedownside of using
a stop list is that it makes it difficult to search for phrases that contain words in the
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stop list. For example, a common stop list presented in Frakes and Baeza-Yates (1992),
would reduce the phraseto be or not to beto the phrasenot.

23.1.4 Evaluating Information Retrieval Systems

The basic tools used to measure the performance of ranked retrieval system are the
precision andrecall measures we employed in earlier settings. Here we assume that
the returned items can be divided into two categories: thoserelevant to our purposes
and those that are not. Therefore, precision is the fractionof the returned documents
that are relevant, while recall is the fraction of all possible relevant documents that are
contained in the return set. More formally, let’s assume that we have been given a total
of T ranked documents in response to a given information request, a subset of these
documents,R, consists of relevant documents, and a disjoint subset,N, consists of the
remaining irrelevant documents, and finally let’s assume that there areU documents in
the collection as a whole that are relevant to this particular request. Given all this we
can define our precision and recall measures to be:

Precision=
|R|
|T|

(23.13)

Recall=
|R|
|U |

(23.14)

Unfortunately, these metrics are not quite sufficient to measure the performance of a
system thatranksthe documents it return. That is, if we are comparing the performance
of two ranked retrieval systems, we require a metric that will prefer the one that ranks
the relevant documents higher. Simple precision and recallas defined above are not
dependent on rank in any way; we need to adapt them to capture how well a system
does at putting relevant documents higher in the ranking. The two standard methods
in information retrieval for accomplishing this are based on plotting precision/recall
curves and on averaging precision measures in various ways.

Let’s consider each of these methods in turn using the data given in the table in
Fig. 23.4. This table provides rank-specific precision and recall values calculated as
we proceed down through a set of ranked items. That is, the precision numbers are
the fraction of relevant documents seen at a given rank, and recall is the fraction of
relevant documents found at the same rank. The recall measures in this example are
based on this query having 9 relevant documents in the collection as a whole. Note
that recall is non-decreasing as we proceed, when relevant items are encountered recall
increases and when non-relevant documents are found it remains unchanged. Precision
on the other hand hops up and down, increasing when relevant documents are found
and decreasing otherwise.

One common way to get a handle on this kind of data is to plot precision against
recall on a single graph using data gathered from across a setof queries. To do this
we’ll need a way to average the recall and precision values across a set of queries. The
standard way to do this is to plot averaged precision values at 11 fixed levels of recall
(0 to 100, in steps of 10). Of course, as is illustrated by our earlier table we’re not likely
to have datapoints at these exact levels for all (or any) of the queries in our evaluation
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Rank Judgment PrecisionRank RecallRank

1 R 1.0 .11
2 N .50 .11
3 R .66 .22
4 N .50 .22
5 R .60 .33
6 R .66 .44
7 N .57 .44
8 R .63 .55
9 N .55 .55
10 N .50 .55
11 R .55 .66
12 N .50 .66
13 N .46 .66
14 N .43 .66
15 R .47 .77
16 N .44 .77
17 N .44 .77
18 R .44 .88
19 N .42 .88
20 N .40 .88
21 N .38 .88
22 N .36 .88
23 N .35 .88
24 N .33 .88
25 R .36 1.0

Figure 23.4 Rank-specific precision and recall values calculated as we proceed down
through a set of ranked documents.

set. We’ll therefore useinterpolated precision values for the 11 recall values fromINTERPOLATED
PRECISION

the data points we do have. This is accomplished by choosing the maximum precision
value achieved at any level of recall at or above the one we’recalculating. In other
words,

IntPrecision(r) = max
i>=r

Precision(i)(23.15)

Note that this interpolation scheme not only provides us with the means to average
performance over a set of queries, but it also provides a sensible way to smooth over
the irregular precision values in the original data. This particular smoothing method is
designed to give systems the benefit of the doubt by assigningthe maximum precision
value achieved at higher levels of recall from the one being measured. The interpo-
lated data points for our earlier example are given in the following table and plotted in
Fig. 23.5.

Given curves such as this we can compare two systems or approaches by comparing
their curves. Clearly curves that are higher in precision across all recall values are
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Interpolated Precision Recall
1.0 0.0
1.0 .10
.66 .20
.66 .30
.66 .40
.63 .50
.55 .60
.47 .70
.44 .80
.36 .90
.36 1.0

Figure 23.5 Interpolated data points from Fig. 23.4.
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Figure 23.6 An 11 point interpolated precision-recall curve. Precision at each of the 11
standard recall levels is interpolated for each query from the maximum at any higher level
of recall. The original measured precision recall points are also shown.

preferred. However, these curves can also provide insight into the overall behavior of a
system. Systems that are higher in precision towards the left may favor precision over
recall, while systems that are more geared towards recall will be higher at higher levels
of recall (to the right).

A second popular way way to evaluate ranked retrieval systems is known asmean
average precision(MAP). In this approach, we again descend through the rankedlistMEAN AVERAGE

PRECISION
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of items and note the precision only at those points where a relevant item has been
encountered. For a single query, we average these individual precision measurements
over the return set up to some fixed cutoff. More formally, if we assume thatRr is the
set of relevant documents at or abover, then the average precision for a single query
is:

1
|Rr |

∑
d∈Rr

Precisionr(d)(23.16)

wherePrecisionr(d) is the precision measured at the rank where documentd was
found. For an ensemble of queries, we then average over theseaverages, giving us
our mean average precision measure. Applying this technique to the data in Fig. 23.5
yields a MAP measure of 0.6 for this single retrieval.

MAP has the advantage of providing a single crisp metric thatcan be used to com-
pare competing systems or approaches. Note, that MAP will tend to favor systems that
provide relevant documents at high ranks. Of course, this isn’t really a problem since
that is a big part of what we’re looking for in a retrieval system. But since the measure
essentially ignores recall, it can favor those systems thatare tuned to return small sets
of documents in which they are highly confident, at the expense of systems that attempt
to be more comprehensive by trying to attain higher levels ofrecall.

The U.S. government-sponsored TREC (Text REtrieval Conference) evaluations,
run annually since 1992, provide a rigorous testbed for the evaluation of a variety of
information retrieval tasks and techniques. TREC provideslarge document sets for
both training and testing, along with a uniform scoring system. Training materials con-
sist of sets of documents accompanied by sets of queries (called topics in TREC) and
relevance judgments. TREC subtasks over the years have included question answering,
IR in Chinese and Spanish, interactive IR, retrieval from speech and video, and others.
See Voorhees and Harman (2005). Details of all of the meetings can be found at the
TREC page on the National Institute of Standards and Technology website.

23.1.5 Homonymy, Polysemy, and Synonymy

Since the vector space model is based solely on the use of simple terms, it is use-
ful to consider the effect that various lexical semantic phenomena may have on the
model. Consider a query containing the wordcanine, a word that has senses meaning
something liketooth anddog. A query containingcaninewill be judged similar to
documents making use of either of these senses. However, given that users are prob-
ably only interested in one of these senses, the documents containing the other sense
will be judged non-relevant. Homonymy and polysemy, therefore, can have the effect
of reducing precisionby leading a system to return documents irrelevant to the user’s
information need.

Now consider a query consisting of the lexemedog. This query will be judged close
to documents that make frequent use of the termdog, but may fail to match documents
that use close synonyms likecanine, as well as documents that use hyponyms such as
Malamute. Synonymy and hyponymy, therefore, can have the effect ofreducing recall
by causing the retrieval system to miss relevant documents.
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Note that it is inaccurate to state flatly that polysemy reduces precision, and syn-
onymy reduces recall since, as we discuss on page 11, both measures are relative to a
fixed cutoff. As a result, every non-relevant document that rises above the cutoff due to
polysemy takes up a slot in the fixed size return set, and may thus push a relevant docu-
ment below threshold, thus reducing recall. Similarly, when a document is missed due
to synonymy, a slot is opened in the return set for a non-relevant document, potentially
reducing precision as well.

These issues lead naturally to the question of whether or notword sense disam-
biguation can help in information retrieval. The current evidence on this point is mixed,
with some experiments reporting a gain using disambiguation-like techniques (Schütze
and Pedersen, 1995), and others reporting either no gain, ora degradation in perfor-
mance (Krovetz and Croft, 1992; Sanderson, 1994; Voorhees,1998).

23.1.6 Improving User Queries

One of the most effective ways to improve retrieval performance is to find a way to
improve user queries. The techniques presented in this section have been shown to
varying degrees to be effective at this task.

The single most effective way to improve retrieval performance in the vector space
model is the use ofrelevance feedback(Rocchio, 1971). In this method, a userRELEVANCE

FEEDBACK

presents a query to the system and is presented with a small set of retrieved docu-
ments. The user is then asked to specify which of these documents appears relevant to
their need. The user’s original query is then reformulated based on the distribution of
terms in the relevant and non-relevant documents that the user examined. This refor-
mulated query is then passed to the system as anewquery with the new results being
shown to the user. Typically an enormous improvement is seenafter a single iteration
of this technique.

The formal basis for the implementation of this technique falls out directly from
some of the basic geometric intuitions of the vector model. In particular, we would
like to pushthe vector representing the user’s original query toward the documents that
have been found to be relevant, and away from the documents judged not relevant. This
can be accomplished by adding an averaged vector representing the relevant documents
to the original query, and subtracting an averaged vector representing the non-relevant
documents.

More formally, let’s assume that~qi represents the user’s original query,R is the
number of relevant documents returned from the original query, Sis the number of non-
relevant documents, and documents in the relevant and non-relevant sets are denoted
as~r and~s, respectively. In addition, assume thatβ andγ range from 0 to 1 and that
β + γ = 1. Given these assumptions, the following represents a standard relevance
feedback update formula:

~qi+1 =~qi +
β
R

R

∑
j=1

~r j −
γ
S

S

∑
k=1

~sk

The factorsβ andγ in this formula represent parameters that can be adjusted exper-
imentally. Intuitively,β represents how far the new vector should be pushed towards
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the relevant documents, andγ represents how far it should be pushed away from the
non-relevant ones. Salton and Buckley (1990) report good results withβ = .75 and
γ = .25.

We should note that evaluating systems that use relevance feedback is rather tricky.
In particular, an enormous improvement is often seen in the documents retrieved by
the first reformulated query. This should not be too surprising since it includes the
documents that the user told the system were relevant on the first round. The pre-
ferred way to avoid this inflation is to only compute recall and precision measures for
what is called theresidual collection, the original collection without any of the docu-RESIDUAL

COLLECTION

ments shown to the user on any previous round. This usually has the effect of driving
the system’s raw performance below that achieved with the first query, since the most
highly relevant documents have now been eliminated. Nevertheless, this is an effective
technique to use when comparing distinct relevance feedback mechanisms.

An alternative approach to query improvement focuses on terms that comprise the
query vector. Inquery expansion, the user’s original query is expanded by addingQUERY EXPANSION

terms that are synonymous with or related to the original terms. Query expansion is
thus a technique for improving recall, perhaps at the expense of precision. For example
the querySteve Jobscould be expanded by adding terms likeApple, Macintosh, and
personal computer.

The terms to be added to the query are taken from athesaurus. It is possible toTHESAURUS

use a hand-built resource like WordNet or UMLS as the thesaurus for query expansion,
when the domain is appropriate. But often these thesaurusesare not suitable for the
collection, and instead, we dothesaurus generation, generating a thesaurus automat-THESAURUS

GENERATION

ically from documents in the collection. We can do this by clustering the words in the
collection, a method known asterm clustering. Recall from our characterization ofTERM CLUSTERING

the term-by-document matrix that the columns in the matrix represent the documents
and the rows represent the terms. Thus, in thesaurus generation, the rows can be clus-
tered to form sets of synonyms, which can then be added to the user’s original query to
improve its recall. The distance metric for clustering can be simple cosine, or any of
the other distributional methods for word relatedness discussed in Ch. 20.

The thesaurus can be generated once from the document collection as a whole
(Crouch and Yang, 1992), or sets of synonym-like terms can begenerated dynamically
from the returned set for the original query (Attar and Fraenkel, 1977). Note that this
second approach entails far more effort, since in effect a small thesaurus is generated
for the documents returned for every query, rather than oncefor the entire collection.

23.2 FACTOID QUESTION ANSWERING

There are many situations where the user wants a particular piece of information rather
than an entire document or document set. We use the termquestion answeringfor the
task of returning a particular piece of information to the user in response to a question.
We call the taskfactoid question answeringif the information is a simple fact, and
particularly if this fact has to do with anamed entity like a person, organization, or
location.
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The task of a factoid question answering system is thus to answer questions by
finding, either from the Web or some other collection of documents, short text segments
that are likely to contain answers to questions, reformatting them, and presenting them
to the user. Fig. 23.7 shows some sample factoid questions together with their answers.

Question Answer
Where is the Louvre Museum located? in Paris, France
What’s the abbreviation for limited partnership? L.P.
What are the names of Odin’s ravens? Huginn and Muninn
What currency is used in China? the yuan
What kind of nuts are used in marzipan? almonds
What instrument does Max Roach play? drums
What’s the official language of Algeria? Arabic
What is the telephone number for the University of
Colorado, Boulder?

(303)492-1411

How many pounds are there in a stone? 14

Figure 23.7 Some sample factoid questions and their answers.

Since factoid question answering is based on information retrieval techniques to
find these segments, it is subject to the same difficulties as information retrieval. That
is, the fundamental problem in factoid question answering is the gap between the way
that questions are posed and the way that answers are expressed in a text. Consider the
following question/answer pair from the TREC question answering task:

(23.17) User Question:What company sells the most greeting cards?
(23.18) Potential Document Answer:Hallmark remains the largest maker of greeting cards.

Here the user uses the verbal phrasesells the mostwhile the document segment
uses a nominalthe largest maker. The solution to the possible mismatches between
question and answer form lies in the ability to robustly processbothquestions and can-
didate answer texts in such a way that a measure of similaritybetween the question
and putative answers can be performed. As we’ll see, this process involves many of the
techniques that we have introduced in earlier chapters including limited forms of mor-
phological analysis, part-of-speech tagging, syntactic parsing, semantic role labelling,
named-entity recognition, and information retrieval.

Because it is impractical to employ these relatively expensive NLP techniques like
parsing or role labeling on vast amounts of textual data, question answering systems
generally use information retrieval methods to first retrieve a smallish number of po-
tential documents. The most expensive techniques then usedin a second pass on these
smaller numbers of candidate relevant texts.

Fig. 23.8 shows the three phases of a modern factoid questionanswering system:
question processing, passage retrieval and ranking, and answer processing.

23.2.1 Question Processing

The goal of the question processing phase is to extract two things from the question: a
keywordquery suitable as input to an IR system and ananswer type, a specification
of the kind of entity that would constitute a reasonable answer to the question.
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Figure 23.8 The 3 stages of a generic question answering system: question processing, passage retrieval, and
answer processing..

Query Formulation

The process ofquery formulation is very similar to the processing done on other IR
queries. Our goal is to create from the question a list of keywords that forms an IR
query.

Exactly what query to form depends on the question answeringapplication. If
question answering is applied to the Web, we might simply create a keyword from
every word in the question, letting the web search engine automatically remove any
stopwords. Often we leave out the question word (where, when, etc). Alternatively,
keywords can be formed from only the terms found in the noun phrases in the ques-
tion, applying stopword lists to ignore function words and high-frequency, low-content
verbs.

When question answering is applied to smaller sets of documents, for example to
answer questions about corporate information pages, we still use an IR engine to search
our documents for us. But for this smaller set of documents wegenerally need to apply
query expansion. On the Web the answer to a question might appear in many different
forms, and so if we search with words from the question we’ll probably find an answer
written in the same form. In smaller sets of corporate pages,by contrast, an answer
might appear only once, and the exact wording might look nothing like the question.
Thus query expansion methods can add query terms hoping to match the particular
form of the answer as it appears.

Thus we might add to the query all morphological variants of the content words in
the question, as well as applying the thesaurus-based or other query expansion algo-
rithms discussed in the previous section to get a larger set of keywords for the query.
Many systems use WordNet as a thesaurus, while others rely onspecial-purpose the-
sauruses that are specifically hand-built for question-answering.

Another query formulation approach that is sometimes used when questioning the
Web is to apply a set ofquery reformulation rules to the query. The rules rephrase theQUERY

REFORMULATION

question to make it look like a substring of possible declarative answers. For example
the question“when was the laser invented?”would be reformulated asthe laser was
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invented; the question“where is the Valley of the Kings?”might be reformulated as
“the Valley of the Kings is located in”. We can apply multiple such rules to the query,
and pass all the resulting reformulated queries to the web search engine. Here are some
sample hand-written reformulation rules from Lin (2007):

(23.19) wh-worddid A verbB → . . . A verb+ed B
(23.20) Where is A→ A is located in

Question Classification

The second task in question processing is to classify the question by its expectedan-
swer type. For example a question like“Who founded Virgin Airlines”expects anANSWER TYPE

answer of typePERSON. A question like“What Canadian city has the largest popu-
lation?” expects an answer of typeCITY. This task is calledquestion classificationQUESTION

CLASSIFICATION

or answer type recognition. If we know the answer type for a question, we can avoidANSWER TYPE
RECOGNITION

looking at every sentence or noun phrase in the entire suite of documents for the an-
swer, instead focusing on, e.g., just people or cities. Knowing an answer type is also
important for presenting the answer. ADEFINITION question like“What is a prism”
might use a simple answer template like“A prism is. . . ” while an answer to aBIOG-
RAPHY question like“Who is Zhou Enlai?” might use a biography-specific template,
perhaps beginning with the persons nationality and proceeding to their dates of birth
and other biographical information.

As some of the above examples suggest, we might draw the set ofpossible answer
types for a question classifier from a set of named entities like thePERSON, LOCATION,
andORGANIZATION described in Ch. 22. Usually, however, a somewhat richer setof
answer types is used. These richer tagsets are often hierarchical, and so we usually
call them ananswer type taxonomyor a question ontology. Such taxonomies canANSWER TYPE

TAXONOMY

QUESTION
ONTOLOGY

be built semi-automatically and dynamically, for example from WordNet (Harabagiu
et al., 2000; Pasca, 2003), or they can be designed by hand.

Fig. 23.9 shows one such hand-built ontology, the hierarchical Li and Roth (2005)
tagset. In this tagset, each question can be labeled with a coarse-grained tag likeHU-
MAN , or a fine-grained tag likeHUMAN :DESCRIPTION, HUMAN :GROUP, HUMAN :IND,
and so on. Similar tags are used in other systems; the typeHUMAN :DESCRIPTION is
often called aBIOGRAPHY question, because the answer requires giving a brief biog-
raphy of the person, rather than just a name.

Question classifiers can be built by hand-writing rules, viasupervised machine
learning, or via some combination. The Webclopedia QA Typology, for example, con-
tains 276 hand-written rules associated with the approximately 180 answer types in the
typology (Hovy et al., 2002). A regular expression rule for detecting an answer type
like BIOGRAPHY (which assumes the question has been named-entity tagged) might
be:

(23.21) who{is | was| are| were} PERSON

Most modern question classifiers, however, are based on supervised machine learn-
ing techniques. These classifiers are trained on databases of questions that have been
hand-labeled with an answer type such as the corpus of Li and Roth (2002). Typical
features used for classification include the words in the questions, the part-of-speech
of each word, and named entities in the questions.
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Tag Example

ABBREVIATION
abb What’s the abbreviation for limited partnership?
exp What does the “c” stand for in the equation E=mc2?

DESCRIPTION
definition What are tannins ?
description What are the words to the Canadian National anthem?
manner How can you get rust stains out of clothing?
reason What caused the Titanic to sink ?

ENTITY
animal What are the names of Odin’s ravens?
body What part of your body contains the corpus callosum ?
color What colors make up a rainbow ?
creative In what book can I find the story of Aladdin?
currency What currency is used in China?
disease/medicine What does Salk vaccine prevent ?
event What war involved the battle of Chapultepec?
food What kind of nuts are used in marzipan?
instrument What instrument does Max Roach play?
lang What’s the official language of Algeria?
letter What letter appears on the cold-water tap in Spain?
other What is the name of King Arthur’s sword?
plant What are some fragrant white climbing roses?
product What is the fastest computer ?
religion What religion has the most members ?
sport What was the name of the ball game played by the Mayans?
substance What fuel do airplanes use?
symbol What is the chemical symbol for nitrogen ?
technique What is the best way to remove wallpaper?
term How do you say “ Grandma ” in Irish ?
vehicle What was the name of Captain Bligh’s ship ?
word What’s the singular of dice?

HUMAN
description Who was Confucius?
group What are the major companies that are part of Dow Jones ?
ind Who was the first Russian astronaut to do a spacewalk?
title What was Queen Victoria’s title regarding India?

LOCATION
city What’s the oldest capital city in the Americas ?
country What country borders the most others?
mountain What is the highest peak in Africa?
other What river runs through Liverpool?
state What states do not have state income tax?

NUMERIC
code What is the telephone number for the University of Colorado?
count About how many soldiers died in World War II?
date What is the date of Boxing Day?
distance How long was Mao’s 1930s Long March?
money How much did a McDonald’s hamburger cost in 1963?
order Where does Shanghai rank among world cities in population?
other What is the population of Mexico?
period What was the average life expectancy during the Stone Age?
percent
speed What is the speed of the Mississippi River?
temp How fast must a spacecraft travel to escape Earth’s gravity?
size What is the size of Argentina?
weight How many pounds are there in a stone?

Figure 23.9 Question typology from Li and Roth (2002, 2005). Example sentences are
from their corpus of 5500 labeled questions. A question can be labeled either with a coarse-
grained tag likeHUMAN or NUMERIC, or a fine-grained tag likeHUMAN :DESCRIPTION,
HUMAN :GROUP, HUMAN :IND, and so on.



DRAFT

Section 23.2. Factoid Question Answering 19

Often a single word in the question gives extra information about the answer type,
and its identity is used as a feature. This word is sometimes called the questionhead-
word or theanswer type word, and may be defined as the headword of the first NP
after the question’swh-word; headwords are indicated in boldface in the following
examples:

(23.22) Whichcity in China has the largest number of foreign financial companies.

(23.23) What is the stateflower of California?

Finally, it often helps to use semantic information about the words in the questions.
The WordNet synset id of the word can be used as a feature, as can the ids of the
hypernym and hyponyms of each word in the question.

In general question classification accuracies are relatively high on easy question
types likePERSON, LOCATION, andTIME questions; detectingREASONandDESCRIP-
TION questions can be much harder.

23.2.2 Passage Retrieval

The query that was created in the question processing phase is next used to query
an information retrieval system, either a general IR engineover a proprietary set of
indexed documents or a web search engine. The result of this document retrieval stage
is a set of documents.

Although the set of documents is generally ranked by relevance, the top-ranked
document is probably not the answer to the question. This is because documents are
not an appropriate unit to rank with respect to the goals of a question answering system.
A highly relevant and large document that does not prominently answer a question is
not an ideal candidate for further processing.

Therefore, the next stage is to extract a set of potential answer passages from the
retrieved set of documents. The definition of a passage is necessarily system dependent,
but the typical units include sections, paragraphs and sentences. For example, we might
run a paragraph segmentation algorithm of the type discussed in Ch. 21 on all the
returned documents and treat each paragraph as a segment.

We next performpassage retrieval. In this stage we first filter out passages in thePASSAGE RETRIEVAL

returned documents that don’t contain potential answers, and then rank the rest accord-
ing to how likely they are to contain an answer to the question. The first step in this
process is to run a named entity or answer-type classification on the retrieved passages.
The answer type that we determined from the question tells usthe possible answer
types (extended named entities) we expect to see in the answer. We can therefore filter
out documents that don’t contain any entities of the right type.

The remaining passages are then ranked; either via hand-crafted rules or supervised
training with machine learning techniques. In either case,the ranking is based on a
relatively small set of features that can be easily and and efficiently extracted from a
potentially large number of answer passages. Among the morecommon features are:

• The number ofnamed entitiesof the right type in the passage

• The number ofquestion keywordsin the passage

• The longest exact sequence of question keywords that occursin the passage
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• The rank of the document from which the passage was extracted
• Theproximity of the keywords from the original query to each other:

For each passage identify the shortest span that covers the keywords contained
in that passage. Prefer smaller spans that include more keywords (Pasca, 2003;
Monz, 2004).

• TheN-gram overlap between the passage and the question:
Count theN-grams in the question and theN-grams in the answer passages.
Prefer the passages with higherN-gram overlap with the question (Brill et al.,
2002).

For question answering from the Web, instead of extracting passages from all the
returned documents, we can rely on the web search to do passage extraction for us. We
do this by usingsnippetsproduced by the web search engine as the returned passages.
For example, Fig. 23.10 shows some snippets for the first 5 document returned from
the Google search engine for the queryWhen was movable type metal printing invented
in Korea?

23.2.3 Answer Processing

The final stage of question answering is to extract a specific answer from the passage,
so as to be able to present the user with an answer like300 million to the question
“What is the current population of the United States”.

Two classes of algorithms have been applied to the answer extraction task, one
based onanswer-type pattern extractionand one based onN-gram tiling .

In thepattern extraction methods for answer processing, we use information about
the expected answer type together with regular expression patterns. For example, for
questions with aHUMAN answer type we run the answer type or named entity tagger on
the candidate passage or sentence, and return whatever entity is labeled with typeHU-
MAN . Thus in the following examples, the underlined named entities are extracted from
the candidate answer passages as the answer to theHUMAN andDISTANCE-QUANTITY

questions:

“Who is the prime minister of India”
Manmohan Singh, Prime Minister of India, had told left leaders that the
deal would not be renegotiated.

“How tall is Mt. Everest?
The official height of Mount Everest is 29035 feet

Unfortunately, the answers to some questions, such asDEFINITION questions, don’t
tend to be of a particular named entity type. For some questions, then, instead of using
answer types, we use handwritten regular expression patterns to help extract the answer.
These patterns are also useful in cases where a passage contains multiple examples of
the same named entity type. Fig. 23.11 shows some patterns from Pasca (2003) for the
question phrase (QP) and answer phrase (AP) of definition questions.

The patterns are specific to each question type, and can either be written by hand
or learned automatically.

The automatic pattern learning method of Ravichandran and Hovy (2002), Echihabi
et al. (2005), for example, makes use of the pattern-based methods for relation extrac-
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Figure 23.10 Five snippets from Google in response to the queryWhen was movable
type metal printing invented in Korea?

Pattern Question Answer
<AP> such as<QP> What is autism? ”, developmental disorderssuch as autism”
<QP> (an<AP>) What is a caldera? ”the Long Valley caldera, a volcanic crater19

miles long”

Figure 23.11 Some answer extraction patterns for definition questions (Pasca, 2003).

tion we introduced in Ch. 20 and Ch. 22 (Brin, 1998; Agichteinand Gravano, 2000).
The goal of the pattern learning method is to learn a relationbetween a particular an-
swer type such asYEAR-OF-BIRTH, and a particular aspect of the question, in this case
the name of the person whose birth year we want. We are thus trying to learn patterns
which are good cues for a relation between two phrases (PERSON-NAME/YEAR-OF-
BIRTH, or TERM-TO-BE-DEFINED/DEFINITION, etc). This task is thus very similar to
the task of learning hyponym/hyponym relations between WordNet synsets introduced
in Ch. 20 , or learning ACE relations between words from Ch. 22. Here is a sketch of
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the algorithm as applied to question-answer relation extraction:

1. For a given relation between two terms (i.e. person-name→year-of-birth), we
start with a hand-built list of correct pairs (e.g., “gandhi:1869”, “mozart:1756”,
etc).

2. Now query the Web with instances of these pairs (e.g., ”gandhi” and ”1869”, etc)
and examine the top X returned documents.

3. Break each document into sentences, and keep only sentences containing both
terms (e.g.,PERSON-NAME andBIRTH-YEAR).

4. Extract a regular expression pattern representing the words and punctuation that
occur between and around the two terms.

5. Keep all patterns that are sufficiently high-precision.

In Ch. 20 and Ch. 22 we discussed various ways to measure accuracy of the pat-
terns. A method used in question-answer pattern matching isto keep patterns which are
high-precision. Precision is measured by performing a query with only the question
terms, but not the answer terms (i.e. query with just “gandhi” or “mozart”). We then
run the resulting patterns on the sentences from the document, and extract a birth-date.
Since we know the correct birth-date, we can compute the percentage of times this
pattern produced a correct birthdate. This percentage is the precision of the pattern.

For theYEAR-OF-BIRTH answer type, this method learns patterns like the follow-
ing:

<NAME> (<BD>-<DD>)
<NAME> (<BD>-<DD>),
<NAME> was born on <BD>

These two methods, named entity detection and question-answer pattern extrac-
tion, are still not sufficient for answer extraction. Not every relation is signaled by
unambiguous surrounding words or punctuation, and often multiple instances of the
same named-entity type occur in the answer passages. The most successful answer-
extraction method is thus to combine all these methods, using them together with other
information as features in a classifier that ranks candidateanswers. We extract poten-
tial answers using named entities or patterns or even just looking at every sentence
returned from passage retrieval, and rank them using a classifier with features like the
following:

Answer type match: True if the candidate answer contains a phrase with the correct
answer type.

Pattern match: The identity of a pattern that matches the candidate answer.

Number of matched question keywords:How many question keywords are con-
tained in the candidate answer.

Keyword distance: The distance between the candidate answer and query keywords
(measured in average number of words, or as the number of keywords that occur
in the same syntactic phrase as the candidate answer.

Novelty factor: True if at least one word in the candidate answer is novel, i.e. not in
the query.
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Apposition features: True if the candidate answer is an appositive to a phrase con-
taining many question terms. Can be approximated by the number of question
terms separated from the candidate answer through at most three words and one
comma Pasca (2003).

Punctuation location: True if the candidate answer is immediately followed by a
comma, period, quotation marks, semicolon, or exclamationmark.

Sequences of question terms:The length of the longest sequence of question terms
that occurs in the candidate answer.

An alternative approach to answer extraction, used solely in web search, is based on
N-gram tiling , sometimes called theredundancy-based approach(Brill et al., 2002;NGRAM TILING

Lin, 2007). This simplified method begins with the snippets returned from the web
search engine, produced by a reformulated query. In the firststep of the method,N-
gram mining, every unigram, bigram, and trigram occurring in the snippet is extractedNGRAM MINING

and weighted. The weight is a function of the number of snippets theN-gram occurred
in, and the weight of the query reformulation pattern that returned it. In theN-gram
filtering step,N-grams are scored by how well they match the predicted answertype.NGRAM FILTERING

These scores are computed by hand-written filters built for each answer type. Finally,
an N-gram tiling algorithm concatenates overlappingN-gram fragments into longer
answers. A standard greedy method is to start with the highest-scoring candidate and
try to tile each other candidate with this candidate. The best scoring concatenation is
added to the set of candidates, the lower scoring candidate is removed, and the process
continues until a single answer is built.

For any of these answer extraction methods, the exact answerphrase can just be
presented to the user by itself. In practice, however, usersare rarely satisfied with an
unadorned number or noun as an answer; they prefer to see the answer accompanied
by enough passage information to substantiate the answer. Thus we often give the user
an entire passage with the exact answer inside it highlighted or boldfaced.

23.2.4 Evaluation of Factoid Answers

A wide variety of techniques have been employed to evaluate question answering sys-
tems. By far the most influential evaluation framework has been provided by the TREC
Q/A track first introduced in 1999.

The primary measure used in TREC is anintrinsic or in vitro evaluation metric
known asmean reciprocal rank, or MRR . As with the ad hoc information retrievalMEAN RECIPROCAL

RANK

MRR task described in Sec. 23.1, MRR assumes a test set of questions that have been human-
labeled with correct answers. MRR also assumes that systemsare returning a short
ranked list of answers, or passages containing answers. Each question is then scored
based on the reciprocal of therank of the first correct answer. For example if the sys-
tem returned 5 answers but the first 3 are wrong and hence the highest-ranked correct
answer is ranked 4, the reciprocal rank score for that question would be1

4. Questions
with return sets that that do not contain any correct answersare assigned a zero. The
score of a system is then the average of the score for each question in the set. More for-
mally, for an evaluation of a system returningM ranked answers for test set consisting
of N questions, the MRR is defined as:
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MRR =
∑N

i=1
1

ranki

N
(23.24)

23.3 SUMMARIZATION

The algorithms we have described so far in this chapter present the user an entire doc-
ument (information retrieval), or a short factoid answer phrase (factoid question an-
swering). But sometimes the user wants something that lies in between these extremes:
something like asummary of a document or set of documents.

Text summarization is the process of distilling the most important informationTEXT
SUMMARIZATION

from a text to produce an abridged version for a particular task and user(definition
adapted from Mani and Maybury (1999)). Important kinds of summaries that are the
focus of current research include:

• outlinesof any document
• abstractsof a scientific article
• headlinesof a news article
• snippetssummarizing a web page on a search engine results page
• action items or other summariesof a (spoken) business meeting
• summariesof email threads
• compressed sentencesfor producing simplified or compressed text
• answersto complex questions, constructed by summarizing multipledocuments

These kinds of summarization goals are often characterizedby their position on
two dimensions:

• single documentversusmultiple document summarization
• genericsummarization versusquery-focusedsummarization

In single document summarizationwe are given a single document and produceSINGLE DOCUMENT
SUMMARIZATION

a summary. Single document summarization is thus used in situations like producing
a headline or an outline, where the final goal is to characterize the content of a single
document.

In multiple document summarization, the input is a group of documents, and our
MULTIPLE

DOCUMENT
SUMMARIZATION

goal is to produce a condensation of the content of the entiregroup. We might use
multiple document summarization when we are summarizing a series of news stories
on the same event, or whenever we have web content on the same topic that we’d like
to synthesize and condense.

A generic summary is one in which we don’t consider a particular user or aGENERIC SUMMARY

particular information need; the summary simply gives the important information in
the document(s). By contrast, inquery-focused summarization, also calledfocusedQUERYFOCUSED

SUMMARIZATION

summarization, topic-based summarizationanduser-focused summarization, theFOCUSED
SUMMARIZATION

summary is produced in response to a user query. We can think of query-focused sum-
marization as a kind of longer, non-factoid answer to a user question.

In the remainder of this section we give a brief overview of the architecture of
automatic text summarization systems; the following sections then give details.



DRAFT
Section 23.3. Summarization 25

One crucial architectural dimension for text summarizers is whether they are pro-
ducing anabstractor anextract. The simplest kind of summary, anextract, is formedEXTRACT

by selecting (extracting) phrases or sentences from the document to be summarized
and pasting them together. By contrast, anabstract uses different words to describeABSTRACT

the contents of the document. We’ll illustrate the difference between an extract and an
abstract using the well-known Gettysburg address, a famousspeech by Abraham Lin-
coln, shown in Fig. 23.12.1 Fig. 23.13 shows an extractive summary from the speech
followed by an abstract of the speech.

Fourscore and seven years ago our fathers brought forth on this continent a new
nation, conceived in liberty, and dedicated to the proposition that all men are created
equal. Now we are engaged in a great civil war, testing whether that nation, or
any nation so conceived and so dedicated, can long endure. Weare met on a great
battle- field of that war. We have come to dedicate a portion ofthat field as a final
resting-place for those who here gave their lives that this nation might live. It is
altogether fitting and proper that we should do this. But, in alarger sense, we cannot
dedicate...we cannot consecrate...we cannot hallow... this ground. The brave men,
living and dead, who struggled here, have consecrated it farabove our poor power
to add or detract. The world will little note nor long remember what we say here,
but it can never forget what they did here. It is for us, the living, rather, to be
dedicated here to the unfinished work which they who fought here have thus far so
nobly advanced. It is rather for us to be here dedicated to thegreat task remaining
before us...that from these honored dead we take increased devotion to that cause for
which they gave the last full measure of devotion; that we here highly resolve that
these dead shall not have died in vain; that this nation, under God, shall have a new
birth of freedom; and that government of the people, by the people, for the people,
shall not perish from the earth.

Figure 23.12 The Gettysburg Address. Abraham Lincoln, 1863.

Most current text summarizers are extractive, since extraction is much easier than
abstracting; the transition to more sophisticated abstractive summarization is a key goal
of recent research.

Text summarization systems and, as it turns out,natural language generationsys-
tems as well, are generally described by their solutions to the following three problems:

1. Content Selection: What information to select from the document(s) we are
summarizing. We usually make the simplifying assumption that the granularity
of extraction is the sentence or clause. Content selection thus mainly consists of
choosing which sentences or clauses to extract into the summary.

2. Information Ordering: How to order and structure the extracted units.

3. Sentence Realization:What kind of clean up to perform on the extracted units
so they are fluent in their new context.

1 In general one probably wouldn’t need a summary of such a short speech, but a short text makes it easier
to see how the extract maps to the original for pedagogical purposes. For an amusing alternative application
of modern technology to the Gettysburg Address, see Norvig (2005).
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Extract from the Gettysburg Address:

Four score and seven years ago our fathers brought forth uponthis continent a new
nation, conceived in liberty, and dedicated to the proposition that all men are created
equal. Now we are engaged in a great civil war, testing whether that nation can long
endure. We are met on a great battlefield of that war. We have come to dedicate a
portion of that field. But the brave men, living and dead, who struggled here, have
consecrated it far above our poor power to add or detract. From these honored dead
we take increased devotion to that cause for which they gave the last full measure
of devotion — that government of the people, by the people forthe people shall not
perish from the earth.

Abstract of the Gettysburg Address:
This speech by Abraham Lincoln commemorates soldiers who laid down their lives
in the Battle of Gettysburg. It reminds the troops that it is the future of freedom in
America that they are fighting for.

Figure 23.13 An extract versus an abstract from the Gettysburg Address (abstract from
Mani (2001)).

In the next sections we’ll show these components in three summarization tasks:sin-
gle documentsummarization,multiple document summarization, andquery-focused
summarization.

23.3.1 Summarizing Single Documents

Let’s first consider the task of building an extractive summary for a single document.
Assuming that the units being extracted are at the level of the sentence, the three sum-
marization stages for this task are:

1. Content Selection:Choose sentences to extract from the document
2. Information Ordering: Choose an order to place these sentences in the sum-

mary
3. Sentence Realization:Clean up the sentences, for example by removing non-

essential phrases from each sentence, or fusing multiple sentences into a single
sentence, or by fixing problems in coherence.

Content Selection

Sentence 

Segmentation

Information 

Ordering

Document
Sentence

Extraction

All sentences

from documents

Extracted 

sentences
SummarySentence 

Realization

Sentence 

Simplification

Figure 23.14 The basic architecture of a generic single document summarizer.

We’ll first describe basic summarization techniques with only one of these compo-
nents:content selection. Indeed, many single document summarizers have no infor-
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mation ordering component, simply ordering the extracted sentences in the order they
appeared in the original document. In addition, we’ll assume for now that sentences
are not combined or cleaned up after they are extracted, although we’ll briefly mention
later how this is done.

Unsupervised Content Selection

The content selectiontask of extracting sentences is often treated as a classificationCONTENT
SELECTION

task. The goal of the classifier is to label each sentence in a document with a binary
label: importantversusunimportant(or extract-worthyversusnot extractworthy). We
begin with some unsupervised algorithms for sentence classification and then turn to
supervised algorithms in the next section.

The simplest unsupervised algorithm, based on an intuitionthat dates back to the
early summarizer of (Luhn, 1958), is to select sentences that have moresalient or
informative words. Sentences that contain more informative words tend to be more
extract-worthy. Saliency is usually defined by computing the topic signature, a setTOPIC SIGNATURE

of salient or signature terms, each of whose saliency scores is greater than someSIGNATURE TERMS

thresholdθ.
Saliency could be measured in terms of simple word frequency, but frequency has

the problem that a word might have a high probability in English in general but not be
particularly topical to a particular document. Therefore weighting schemes liketf-idf
or log-likelihood ratio are more often used.

Recall from page 8 that the tf-idf scheme gives a high weight to words that appear
frequently in the current document, but rarely in the overall document collection, sug-
gesting that the word is particularly relevant to this document. For each termi that
occurs in the sentence to be evaluated, we compute its count in the current documentj
tf i, j , and multiply by the inverse document frequency over the whole collection idfi:

weight(wi) = tf i, j × idfi(23.25)

A better performing method for finding informative words islog likelihood ratioLOG LIKELIHOOD
RATIO

(LLR). The log likelihood ratio for a word, generally calledλ(w), is the ratio between
the probability of observingw both in the input and in the background corpus assuming
equal probabilities in both corpora, and the probability ofobservingw in both assuming
different probabilities forw in the input and the background corpus. See Dunning
(1993), Moore (2004)and Manning and Schütze (1999) for details on log likelihood
and how it is calculated.

It turns out for log likelihood ratio that the quantity−2log(λ) is asymptotically well
approximated by theχ2 distribution, which means that a word appears in the input sig-
nificantly more often than in the background corpus (atα = 0.001) if−2log(λ)> 10.8.
Lin and Hovy (2000) first suggested that this made log likelihood ratio particularly ap-
propriate for selecting a topic signature for summarization. Thus the word weight with
log likelihood ratio is generally defined as follows:

weight(wi) =

{

1 if −2log(λ(wi)) > 10
0 otherwise.

(23.26)
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Equation (23.26) is used to set a weight of 1 or 0 for each word in the sentence.
The score for a sentencesi is then the average weight of its non-stop words:

weight(si) = ∑
w∈si

weight(w)

|{w|w∈ si}|
(23.27)

The summarization algorithms computes this weight for every sentence, and then
ranks all sentences by their score. The extracted summary consists of the top ranked
sentences.

The family of algorithms that this thresholded LLR algorithm belongs to is called
centroid-based summarizationbecause we can view the set of signature terms as a
pseudo-sentence which is the ‘centroid’ of all the sentences in the document and we
are looking for sentences which are as close as possible to this centroid sentence.

A common alternative to the log likelihood ratio/centroid method is to use a dif-
ferent model of sentencecentrality . These other centrality based methods resembleCENTRALITY

the centroid method described above, in that their goal is torank the input sentences
in terms of how central they are in representing the information present in the docu-
ment. But rather than just ranking sentences by whether theycontain salient words,
centrality based methods compute distances between each candidate sentence and each
other sentence and choose sentences that are on average closer to other sentences. To
compute centrality, we can represent each sentence as a bag-of-words vector of length
N as described in Ch. 20. For each pair of sentencesx andy, we compute the tf-idf
weighted cosine as described in Equation (23.12) above.

Each of thek sentences in the input is then assigned a centrality score which is its
average cosine with all other sentences:

centrality(x) =
1
K ∑

y
tf-idf-cosine(x,y)(23.28)

Sentences are ranked by this centrality score, and the sentence which has the highest
average cosine across all pairs, i.e. is most like other sentences, is chosen as the most
‘representative’ or ‘topical’ of all the sentences in the input.

It is also possible to extend this centrality score to use more complex graph-based
measures of centrality like PageRank (Erkan and Radev, 2004).

Unsupervised Summarization based on Rhetorical Parsing

The sentence extraction algorithm we introduced above for content extraction relied
solely on a single shallow feature, word saliency, ignoringpossible higher-level cues
such as discourse information. In this section we briefly summarize a way to get more
sophisticated discourse knowledge into the summarizationtask.

The summarization algorithm we’ll describe makes use ofcoherence relations
such as the RST (rhetorical structure theory) relations described in Ch. 21. Recall
that RST relations are often expressed in terms of asatellite and anucleus; nucleus
sentence are more likely to be appropriate for a summary. Forexample, consider the
following two paragraphs taken from the Scientific Americanmagazine text that we
introduced in Fig.??:
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With its distant orbit – 50 percent farther from the sun than Earth – and
slim atmospheric blanket, Mars experiences frigid weatherconditions. Sur-
face temperatures typically average about -70 degrees Fahrenheit at the
equator, and can dip to -123 degrees C near the poles.

Only the midday sun at tropical latitudes is warm enough to thaw ice
on occasion, but any liquid water formed in this way would evaporate al-
most instantly because of the low atmospheric pressure. Although the at-
mosphere holds a small amount of water, and water-ice cloudssometimes
develop, most Martian weather involves blowing dust or carbon dioxide.

The first two discourse units in this passage are related by the RSTJUSTIFICATION

relation, with the first discourse unit justifying the second unit, as shown in Fig. 23.15.
The second unit (“Mars experiences frigid weather conditions”) is thus the nucleus,
and captures better what this part of the document is about.

With its distant orbit - 50 percent farther from 

the sun than Earth - and slim atmospheric blanket,

Mars experiences frigid weather conditions

JUSTIFICATION

Figure 23.15 The justification relation between two discourse units, a satellite (on the
left) and a nucleus (on the right).

We can use this intuition for summarization by first applyinga discourse parser of
the type discussed in Ch. 21 to compute the coherence relations between each discourse
unit. Once a sentence has been parsed into a coherence relation graph or parse tree,
we can use the intuition that the nuclear units are importantfor summarization by
recursively extracting the salient units of a text.

Consider the coherence parse tree in Fig. 23.16. The salience of each node in the
tree can be defined recursively as follows:

• Base case: The salient unit of a leaf node is the leaf node itself
• Recursive case: The salient units of an intermediate node are the union of the

salient units of its immediatenuclearchildren

By this definition, discourse unit (2) is the most salient unit of the entire text (since
the root node spanning units 1-8 has the node spanning units 1-6 as its nucleus, and
unit 2 is the nucleus of the node spanning units 1-6.)

If we rank each discourse unit by the height of the nodes that it is the nucleus of,
we can assign a partial ordering of salience to units; the algorithm of Marcu (1995)
assigns the following partial ordering to this discourse:

2 > 8 > 3 > 1,4,5,7 > 6(23.29)

See Marcu (1995, 2000) for the details of exactly how this partial order is computed,
and Teufel and Moens (2002) for another method for using rhetorical structure in sum-
marization.
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Elaboration
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Elaboration

3
Elaboration
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Example
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most Martian weather 
involves blowing dust 
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(8)
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of water, and water-ice 

clouds sometimes develop
(7)

Surface temperatures 
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degrees Fahrenheit) } at the 
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degrees C near the poles.

(3)

4,5
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(4)
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(5)

With its distant orbit 
{ -50 percent farther 
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because of the low 
atmospheric pressure.

(6)

Figure 23.16 The discourse tree for the text on page 29. Boldface links connect nodes to their nuclei children;
dotted lines to the satellite children. After Marcu (1995).

Supervised Content Selection

While the use of topic signatures for unsupervised content selection is an extremely
effective method, topic signatures is only a single cue for finding extractworthy sen-
tences. Many other cues exist, including the alternative saliency methods discussed
above like centrality and PageRank mathods, as well as othercues like the position of
the sentence in the document (sentences at the very beginning or end of the document
tend to be more important), the length of each sentence, and so on. We’d like a method
that can weigh and combine all of these cues.

The best principled method for weighing and combining evidence is supervised
machine learning. For supervised machine learning, we’ll need a training set of doc-
uments paired with human-created summary extracts, such asthe Ziff-Davis corpus
(Marcu, 1999). Since these areextracts, each sentence in the summary is, by defini-
tion, taken from the document. That means we can assign a label to every sentence in
the document;1 if it appears in the extract,0 if it doesn’t. To build our classifier, then,
we just need to choose features to extract which are predictive of being a good sentence
to appear in a summary. Some of the features commonly used in sentence classification
are shown in Fig. 23.17.

Each sentence in our training document thus has a label (0 if the sentence is not in
the training summary for that document, 1 if it is) and set of extracted feature values
like those in Fig. 23.17. We can then train our classifier to estimate these labels for
unseen data; for example a probabilistic classifier like naive Bayes or MaxEnt would
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position The position of the sentence in the document. For example Hovy and
Lin (1999) found that the single most extract-worthy sentence in most
newspaper articles is the title sentence. In the Ziff-Daviscorpus they
examined, the next most informative was the first sentence ofparagraph
2 (P1S1), followed by the first sentence of paragraph 3 (P3S1); thus
the list of ordinal sentence positions starting from the most informative
was: T1, P2S1, P3S1, P4S1, P1S1, P2S2,...
Position, like almost all summarization features, is heavily
genre-dependent. In Wall Street Journal articles, they found
the most important information appeared in the following sen-
tences: T1, P1S1, P1S2,...

cue phrases Sentences containing phrases likein summary, in conclusion, or this paperare
more likely to be extract-worthy. These cue phrases are verydependent on the
genre. For example in British House of Lords legal summaries, the phraseit
seems to me thatis a useful cue phrase. (Hachey and Grover, 2005).

word
informativeness Sentences that contain more terms from thetopic signature, as described in the

previous section, are more extractworthy.
sentence
length

Very short sentences are rarely appropriate for extracting. We usually capture
this fact by using a binary feature based on a cutoff (true if the sentence has
more than, say, 5 words).

cohesion Recall from Ch. 21 that alexical chain is a series of related words that occurs
throughout a discourse. Sentences which contain more termsfrom a lexical
chain are often extractworthy because they are indicative of a continuing topic.
(Barzilay and Elhadad, 1997). This kind of cohesion can alsobe computed
by graph-based methods (Mani and Bloedorn, 1999). The PageRank graph-
based measures of sentence centrality discussed above can also be viewed as a
coherence metric (Erkan and Radev, 2004).

Figure 23.17 Some features commonly used in supervised classifiers for determining whether a document
sentence should be extracted into a summary;

be computing the probability that a particular sentences is extractworthy given a set
of featuresf1... fn; then we can just extract any sentences for which this probability is
greater than 0.5:

P(extractworthy(s)| f1, f2, f3, ..., fn)(23.30)

There is one problem with the algorithm as we’ve described it: it requires that we
have a training summary for each document which consists solely of extracted sen-
tences. If we could weaken this restriction, we could apply the algorithm to a much
wider variety of summary-document pairs, such as conference papers or journal arti-
cles and their abstracts. Luckily it turns out that when humans write summaries, even
with the goal of writing abstractive summaries, they very often use phrases and sen-
tences from the document to compose the summary. But they don’t useonlyextracted
sentences; they often combine two sentences into one, or change some of the words in
the sentences, or write completely new abstractive sentences. Here is an example of an
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extracted sentence from a human summary that, although modified in the final human
summary, was clearly a document sentence that should be labeled as extractworthy:

(23.31) Human summary: This paper identifies the desirable features of an ideal multisensor
gas monitor and lists the different models currently available.

(23.32) Original document sentence: The present part lists the desirable features and the
different models of portable, multisensor gas monitors currently available.

Thus an important preliminary stage is toalign each training document with its
summary, with the goal of finding which sentences in the document were (completely
or mostly) included in the summary. A simple algorithm foralignment is to find theALIGNMENT

source document and abstract sentences with the longest common subsequences of
non-stopwords; alternatively minimum edit distance can becomputed, or more sophis-
ticated knowledge sources can be used, such as WordNet. Recent work has focused on
more complex alignment algorithms such as the use of HMMs (Jing, 2002; Daumé III
and Marcu, 2005, inter alia).

Given such alignment algorithms, supervised methods for content selection can
make use of parallel corpora of documents and human abstractive summaries, such as
academic papers with their abstracts (Teufel and Moens, 2002).

Sentence Simplification

Once a set of sentences has been extracted and ordered, the final step in single-document
summarization issentence realization. One component of sentence realization issen-
tence compressionor sentence simplification. The following examples, taken by JingSENTENCE

COMPRESSION

SENTENCE
SIMPLIFICATION

(2000) from a human summary, show that the human summarizer chose to eliminate
some of the adjective modifiers and subordinate clauses whenexpressing the extracted
sentence in the summary:

(23.33) Original sentence:Whenit arrivessometime newyearin newTV sets, the V-chip
will give parents anewandpotentially revolutionary device to block out programs
they don’t want their children to see.

(23.34) Simplified sentence by humans:The V-chip will give parents a device to block out
programs they don’t want their children to see.

The simplest algorithms for sentence simplification use rules to select parts of the
sentence to prune or keep, often by running a parser or partial parser over the sen-
tences. Some representative rules from Zajic et al. (2007),Conroy et al. (2006), and
Vanderwende et al. (2007a) remove the following:

appositives Rajam,28, anartist who wasliv ing at the time in Philadelphia,
found the inspiration in the back of city magazines.

attribution clauses Rebels agreed to talks with government officials,international
observerssaidTuesday.

PPs without
named entities

The commercial fishing restrictions in Washington will not be
lifted [SBAR unless the salmon population 329 increases [PPto
a sustainablenumber]

initial adverbials “For example”, “On the other hand”, “As a matter of fact”, ”At
this point”

More sophisticated models of sentence compression are based on supervised ma-
chine learning, in which a parallel corpus of documents together with their human
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summaries is used to compute the probability that particular words or parse nodes will
be pruned. See the end of the chapter for pointers to this extensive recent literature.

23.4 MULTI -DOCUMENT SUMMARIZATION

When we apply summarization techniques to groups of documents rather than a single
document we call the goalmulti-document summarization. Multi-document summa-MULTIDOCUMENT

SUMMARIZATION

rization is particularly appropriate for web-based applications, for example for building
summaries of a particular event in the news by combining information from different
news stories, or finding answers to complex questions by including components from
extracted from multiple documents.

While multi-document summarization is far from a solved problem, even the cur-
rent technology can be useful for information-finding tasks. McKeown et al. (2005),
for example, gave human experimental participants documents together with a human
summary, an automatically generated summary, or no summary, and had the partic-
ipants perform time-restricted fact-gathering tasks. Theparticipants had to answer
three related questions about an event in the news; subjectswho read the automatic
summaries gave higher-quality answers to the questions.

Multi-document summarization algorithms are based on the same three steps we’ve
seen before. In many cases we assume that we start with a cluster of documents that
we’d like to summarize, and we must then performcontent selection, information or-
dering, andsentence realization, as described in the next three sections and sketched
in Fig. 23.18

Content Selection

Sentence 
Segmentation

Information 

Ordering

Summary

Document
Document
Document
Document
Document
Input Docs

Sentence 
Simplification

Sentence
Extraction

All sentences
from documents

All sentences
plus simplified 
versions

Extracted 
sentences

Sentence 

Realization

Figure 23.18 The basic architecture of a multi-document summarizer.

23.4.1 Content Selection in Multi-Document Summarization

In single document summarization we used both supervised and unsupervised methods
for content selection. For multiple document summarization supervised training sets
are less available, and we focus more on unsupervised methods.

The major difference between the tasks of single document and multiple document
summarization is the greater amount ofredundancywhen we start with multiple doc-
uments. A group of documents can have significant overlap in words, phrases, and
concepts, in addition to information that might be unique toeach article. While we
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want each sentence in the summary to be about the topic, we don’t want the summary
to consist of a set of identical sentences.

For this reason, algorithms for multi-document summarization focus on ways to
avoid redundancy when selected sentences for the summary. When adding a new sen-
tence to a list of extracted sentences we need some way to makesure the sentence
doesn’t overlap too much with the already-extracted sentences.

A simple method of avoiding redundancy is to explicitly include a redundancy fac-
tor in the scoring for choosing a sentence to extract. The redundancy factor is based on
the similarity between a candidate sentence and the sentences that have already been
extracted into the summary; a sentence is penalized if it is too similar to the summary.
For example theMMR or Maximal Marginal Relevance scoring system CarbonellMMR

MAXIMAL MARGINAL
RELEVANCE and Goldstein (1998), Goldstein et al. (2000) includes the following penalization term

for representing the similarity between a sentences and the set of sentences already
extracted for the summarySummary, whereλ is a weight that can be tuned and Sim is
some similarity function:

MMR penalization factor(s) = λmaxsi∈SummarySim(s,si)(23.35)

An alternative to MMR-based method is to instead apply a clustering algorithm to
all the sentences in the documents to be summarized to produce a number of clusters of
related sentences and then to select a single (centroid) sentence from each cluster into
the summary.

By adding MMR or clustering methods for avoiding redundancy, we can also do
sentence simplification or compression at the content selection stage rather than at the
sentence realization stage. A common way to fit simplification into the architecture is
to run various sentence simplification rules (Sec. 23.3.1) on each sentence in the input
corpus. The result will be multiple versions of the input sentence, each version with
different amounts of simplification. For example, the following sentence:

Former Democratic National Committee finance director Richard Sullivan
faced more pointed questioning from Republicans during hissecond day
on the witness stand in the Senate’s fund-raising investigation.

might produce different shortened versions:

• Richard Sullivan faced pointed questioning.
• Richard Sullivan faced pointed questioning from Republicans
• Richard Sullivan faced pointed questioning from Republicans during day on stand in Sen-

ate fundraising investigation
• Richard Sullivan faced pointed questioning from Republicans in Senate fundraising in-

vestigation

This expanded corpus is now used as the input to content extraction. Redundancy
methods such as clustering or MMR will choose only the (optimally long) single ver-
sion of each original sentence.

23.4.2 Information Ordering in Multi-Document Summarizat ion

The second stage of an extractive summarizer is the orderingor structuring of informa-
tion, where we must decide how to concatenate the extracted sentences into a coherent
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order. Recall that in single document summarization, we canjust use the original ar-
ticle ordering for these sentences. This isn’t appropriatefor most multiple document
applications, although we can certainly apply it if many or all of the extracted sentences
happen to come from a single article.

For sentences extracted from news stories, one technique isto use the dates asso-
ciated with the story, a strategy known aschronological ordering. It turns out thatCHRONOLOGICAL

ORDERING

pure chronological ordering can produce summaries which lack cohesion; this prob-
lem can be addressed by ordering slightly larger chunks of sentences rather than single
sentences; see Barzilay et al. (2002).

Perhaps the most important factor for information ordering, however, iscoherence.
Recall from Ch. 21 the various devices that contribute to thecoherence of a discourse.
One is having sensible coherence relations between the sentences; thus we could pre-
fer orderings in summaries that resulting in sensible coherence relations between the
sentences. Another aspect of coherence has to do with cohesion and lexical chains; we
could for example prefer orderings which have more local cohesion. A final aspect of
coherence is coreference; a coherence discourse is one in which entities are mentioned
in coherent patterns. We could prefer orderings with coherent entity mention patterns.

All of these kinds of coherence have been used for information ordering. For ex-
ample we can uselexical cohesionas an ordering heuristic by ordering each sentence
next to sentences containing similar words. This can done bydefining the standard
tf-idf cosine distance between each pair of sentences and choosing the overall order-
ing that minimizes the average distance between neighboring sentences Conroy et al.
(2006), or by building models of predictable word sequencesacross sentences (Soricut
and Marcu, 2006).

Coreference-based coherence algorithms have also made useof the intuitions of
Centering. Recall that the Centering algorithm was based on the idea that each dis-
course segment has a salient entity, thefocus. Centering theory proposed that certain
syntactic realizations of the focus (i.e. as subject or object) and certain transitions be-
tween these realizations (e.g., if the same entity is the subject of adjacent sentences)
created a more coherent discourse. Thus we can prefer orderings in which the transition
between entity mentions is a preferred one.

For example in the entity-based information approach of Barzilay and Lapata (2005,
2007), a training set of summaries is parsed and labeled for coreference. The resulting
sequence of entity realizations can be automatically extracted and represented into an
entity grid . Fig. 23.19 shows a simplified version of a parsed summary andthe ex-ENTITY GRID

tracted grid. A probabilistic model of particular entity transitions (i.e.{S,O,X,−} can
then be trained from the entity grid. For example the transitions{X,O,S,S} for the
head wordMicrosoftexemplify the fact that new entities in a discourse are oftenintro-
duced first in oblique or object position and then only later appear in subject position.
See Barzilay and Lapata (2007) for details.

A general way to view all of these methods is as assigning a coherence score to
a sequence of sentences via a local coherence score between pairs or sequences of
sentences; a single general transition score between sentences could then combine lex-
ical coherence and entity-based coherence. Once we have such a scoring function,
choosing an ordering which optimizes all these local pairwise distances is known to
be quite difficult. The task of finding the optimal ordering ofa set of sentences given
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a set of pairwise distances between the sentences is equivalent to very hard problems
like Cyclic Ordering and the Traveling Salesman Problem.2 Sentence ordering is thus
equivalent to the difficult class of problems known asNP-complete. While difficult
to solve exactly, there are a number of good approximation methods for solving NP-
complete problems that have been applied to the informationordering task. See Althaus
et al. (2004), Knight (1999), Cohen et al. (1999), Brew (1992) for the relevant proofs
and approximation techniques.

[The Justice Department]S is conducting an [anti-trust trial]O against [Microsoft Corp.]X 

[The case]S resolves around [evidence]O of  [Microsoft]S aggressively 

pressuring  [Netscape]O  into merging [browser software]O

[Microsoft]O is accused of trying to forcefully buy into [markets]X where

[its own products]S are not competitive enough to unseat [established brands]O

[Microsoft]S claims [its tactics]S are commonplace and good economically.
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Figure 23.19 A summary (showing entities in subject (S), object (O) or oblique (X) position), and the entity
grid that is extracted from it. Adapted from Barzilay and Lapata (2005).

In the models described above, the information ordering task is completely sepa-
rate from content extraction. An alternative approach is tolearn the two tasks jointly,
resulting in a model that both selects sentences and orders them. For example in the
HMM model of Barzilay and Lee (2004), the hidden states correspond to document
content topics and the observations to sentences. For example for newspaper articles
on earthquakes, the hidden states (topics) might bestrength of earthquake, location,
rescue efforts, andcasualties. They apply clustering and HMM induction to induce
these hidden states and the transitions between them. For example, here are three sen-
tences from thelocationcluster they induce:

(23.36) The Athens seismological institute said the temblor’s epicenter was located 380 kilometers (238
miles) south of the capital.

(23.37) Seismologists in Pakistan’s Northwest Frontier Province said the temblor’s epicenter was about
250 kilometers (155 miles) north of the provincial capital Peshawar.

(23.38) The temblor was centered 60 kilometers (35 miles) northwestof the provincial capital of
Kunming, about 2,200 kilometers (1,300 miles) southwest ofBeijing, a bureau seismologist
said.

The learned structure of the HMM then implicitly represent information ordering
facts likemention ‘casualties’ prior to ‘rescue efforts’via the HMM transition proba-
bilities.

In summary, we’ve seen information ordering based onchronological order, based
on coherence, and an ordering that is learned automatically from the data. In the next
section on query-focused summarization we’ll introduce a final method in which infor-
mation ordering can be specified according to an ordering template which is predefined
advance for different query types.

2 The Traveling Salesman Problem: given a set of cities and thepairwise distances between them, find the
shortest path that visits each city exactly once.
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Sentence Realization

While discourse coherence can be factored in during sentence ordering, the resulting
sentences may still have coherence problems. For example, as we saw in Ch. 21, when
a referent appears multiple times in a coreference chain in adiscourse, the longer or
more descriptive noun phrases occur before shorter, reduced, or pronominal forms.
But the ordering we choose for the extracted sentences may not respect this coherence
preference.

For example the boldfaced names in the original summary in Fig. 23.20 appear in
an incoherent order; the full nameU.S. President George W. Bushoccurs only after
the shortened formBush has been introduced.

One possible way to address this problem in the sentence realization stage is to
apply a coreference resolution algorithm to the output, extracting names and applying
some simple cleanup rewrite rules like the following:

(23.39) Use thefull name at the first mention, and just thelast nameat subsequent mentions.

(23.40) Use amodified form for the first mention, but remove appositives or premodifiers
from any subsequent mentions.

The rewritten summary in Fig. 23.20 shows how such rules would apply; in general
such methods would depend on high-accuracy coreference resolution.

Original summary:
Presidential advisers do not blameO’Neill , but they’ve long recognized that a
shakeup of the economic team would help indicateBush was doing everything he
could to improve matters.U.S. President George W. Bushpushed outTreasury
Secretary Paul O’Neill and top economic adviser Lawrence Lindsey on Friday,
launching the first shake - up of his administration to tacklethe ailing economy
before the 2004 election campaign.

Rewritten summary:
Presidential advisers do not blameTreasury Secretary Paul O’Neill, but they’ve
long recognized that a shakeup of the economic team would help indicateU.S. Pres-
ident George W. Bushwas doing everything he could to improve matters.Bush
pushed outO’Neill and White House economic adviser Lawrence Lindsey on Fri-
day, launching the first shake-up of his administration to tackle the ailing economy
before the 2004 election campaign.

Figure 23.20 Rewriting references, from Nenkova and McKeown (2003)

Recent research has also focused on a finer granularity for realization than the ex-
tracted sentence, by usingsentence fusionalgorithms to combine phrases or clausesSENTENCE FUSION

from different sentences into one new sentence. The sentence fusion algorithm of
Barzilay and McKeown (2005) parses each sentence, uses multiple-sequence align-
ment of the parses to find areas of common information, buildsa fusion lattice with
overlapping information, and creates a fused sentence by linearizing a string of words
from the lattice.



DRAFT

38 Chapter 23. Question Answering and Summarization

23.5 BETWEENQUESTIONANSWERING ANDSUMMARIZATION : QUERY-
FOCUSEDSUMMARIZATION

As noted in at the beginning of this chapter, most interesting questions are not factoid
questions. User needs require longer, more informative answers than a single phrase
can provide. For example, while aDEFINITION question might be answered by a short
phrase like “Autism isa developmental disorder” or “ A caldera isa volcanic crater”,
a user might want more information, as in the following definition of water spinach:

Water spinach(ipomoea aquatica) is a semi-aquatic leafy green plant char-
acterized by long hollow stems and spear-shaped or heart-shaped leaves
which is widely grown throughout Asia as a leaf vegetable. The leaves
and stems are often eaten stir-fried as greens with salt or salty sauces, or in
soups. Other common names includemorning glory vegetable, kangkong
(Malay),rau muong(Vietnamese),ong choi(Cantonese), andkong xin cai
(Mandarin). It is not related to spinach, but is closely related to sweet
potato and convolvulus.

Complex questions can also be asked in domains like medicine, such as this ques-
tion about a particular drug intervention:

(23.41) In children with an acute febrile illness, what is the efficacy of single-medication
therapy with acetaminophen or ibuprofen in reducing fever?

For this medical question, we’d like to be able to extract an answer of the following
type, perhaps giving the document id(s) that the extract came from, and some estimate
of our confidence in the result:

Ibuprofen provided greater temperature decrement and longer duration of
antipyresis than acetaminophen when the two drugs were administered in
approximately equal doses. (PubMedID: 1621668, Evidence Strength: A)

Questions can be even more complex, such as this one from the Document Understand-
ing Conference annual summarization competition:

(23.42) Where have poachers endangered wildlife, what wildlife hasbeen endangered and
what steps have been taken to prevent poaching?

Where a factoid answer might be found in a single phrase in a single document or
web page, these kinds of complex questions are likely to require much longer answers
which are synthesized from many documents or pages.

For this reason, summarization techniques are often used tobuild answers to these
kinds of complex questions. But unlike the summarization algorithms introduced
above, the summaries produced for complex question answering must be relevant to
some user question. When a document is summarized for the purpose of answering
some user query or information need, we call the goalquery-focused summarizationQUERYFOCUSED

SUMMARIZATION

or sometimes justfocused summarization. (The termstopic-based summarizationFOCUSED
SUMMARIZATION

anduser-focused summarizationare also used.) A query-focused summary is thus
really a kind of longer, non-factoid answer to a user question or information need.

One kind of query-focused summary is asnippet, the kind that web search enginesSNIPPET
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like Google return to the user to describe each retrieved document. Snippets are query-
focused summaries of a single document. But since for complex queries we will want
to aggregate information from multiple documents, we’ll need to summarize multiple
documents.

Indeed, the simplest way to do query-focused summarizationis to slightly modify
the algorithms for multiple document summarization that weintroduced in the previous
section to make use of the query. For example, when ranking sentences from all the
returned documents in the content selection phase, we can require that any extracted
sentence must contain at least one word overlapping with thequery. Or we can just
add the cosine distance from the query as one of the relevancefeatures in sentence
extraction. We can characterize such a method of query-focused summarization as a
bottom-up, domain-independent method.

An alternative way to do query-focused summarization is to make additional use
of top-down or information-extraction techniques, building specific content selection
algorithms for different types of complex questions. Thus we could specifically build a
query-focused summarizer for the kinds of advanced questions introduced above, like
definition questions, biography questions, certain medical questions. In each case, we
use our top-down expectations for what makes a good definition, biography, or medical
answer to guide what kinds of sentences we extract.

For example, adefinition of a term often includes information about the term’s
genusandspecies. The genus is the hypernym or superordinate of the word; thusaGENUS

SPECIES sentence likeThe Hajj is a type of ritualis a genus sentence. The species gives impor-
tant additional properties of the term that differentiate the term from other hyponyms
of the genus; an example is“The annual hajj begins in the twelfth month of the Islamic
year”. Other kinds of information that can occur in a definition include synonyms,
etymology, subtypes, and so on.

In order to build extractive answers for definition questions, we’ll need to make sure
we extract sentences with the genus information, the species information, and other
generally informative sentences. Similarly, a goodbiography of a person contains
information such as the person’sbirth/death , fame factor, education, nationality
and so on; we’ll need to extract sentences with each of these kinds of information. A
medical answer that summarizes the results of a study on applying a drug to a medical
problem would need to contain information like theproblem (the medical condition),
the intervention (the drug or procedure), and theoutcome(the result of the study).

Fig. 23.21 shows some example predicates for definition, biography, and medical
intervention questions.

In each case we we use theinformation extraction methods of Ch. 22 to find
specific sentences for genus and species (for definitions), or dates, nationality, and ed-
ucation (for biographies), or problems, interventions andoutcomes (for medical ques-
tions). We can then use standard domain-independent content selection algorithms to
find other good sentences to add on to these.

A typical architecture consists of the four steps shown in Fig. 23.22 from the def-
inition extraction system of Blair-Goldensohn et al. (2004). The input is a definition
questionT, the numberN of documents to retrieve, and the lengthL of the answer (in
sentences).
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Definition
genus The Hajj is a type of ritual

species the annual hajj begins in the twelfth month of the

Islamic year

synonym The Hajj, or Pilgrimage to Mecca, is the central

duty of Islam

subtype Qiran, Tamattu’, and Ifrad are three different

types of Hajj

Biography
dates was assassinated on April 4, 1968

nationality was born in Atlanta, Georgia

education entered Boston University as a doctoral student

Drug efficacy
population 37 otherwise healthy children aged 2 to 12 years

problem acute, intercurrent, febrile illness

intervention acetaminophen (10 mg/kg)

outcome ibuprofen provided greater temperature decrement

and longer duration of antipyresis than

acetaminophen when the two drugs were administered

in approximately equal doses

Figure 23.21 Examples of some different types of information that must beextracted
in order to produce answer to certain kinds of complex questions.

Document 
Retrieval

11 Web documents
1127 total 
sentences

Predicate 
Identification

Data-Driven
 Analysis

383 Non-Specific Definitional sentences

Sentence clusters, 
Importance ordering

Definition
Creation

9 Genus-Species Sentences
The Hajj, or pilgrimage to Makkah (Mecca), is the central duty of Islam.
The Hajj is a milestone event in a Muslim's life.
The hajj is one of five pillars that make up the foundation of Islam.
...

The Hajj, or pilgrimage to Makkah [Mecca], is the central duty of Islam. More than two million Muslims are expected to take 
the Hajj this year. Muslims must perform the hajj at least once in their lifetime if physically and financially able. The Hajj is a 
milestone event in a Muslim's life. The annual hajj begins in the twelfth month of the Islamic year (which is lunar, not solar, 
so that hajj and Ramadan fall sometimes in summer, sometimes in winter). The Hajj is a week-long pilgrimage that begins 
in the 12th month of the Islamic lunar calendar. Another ceremony, which was not connected with the rites of the Ka'ba 
before the rise of Islam, is the Hajj, the annual pilgrimage to 'Arafat, about two miles east of Mecca, toward Mina…

"What is the Hajj?"
N = 20   L = 8

Figure 23.22 Architecture of a query-focused summarizer for definition questions (Blair-Goldensohn et al.,
2004).

The first step in any IE-based complex question answering system is information
retrieval. In this case a handwritten set of patterns is usedto extract the term to be
defined from the queryT (Hajj) and generate a series of queries that are sent to an IR
engine. Similarly, in a biography system it would be the namethat would be extracted
and passed to the IR engine. The returned documents are broken up into sentences.

In the second stage, we apply classifiers to label each sentence with an appropriate
set of classes for the domain. For definition questions, Blair-Goldensohn et al. (2004)
used of four classes:genus, species, other definitional, or other. The third class,
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other definitional, is used to select other sentences that might be added into the sum-
mary. These classifiers can be based on any of the informationextraction techniques
introduced in Ch. 22, including hand-written rules, or supervised machine learning
techniques.

In the third stage, we can use the methods described in the section on generic (non-
query-focused) multiple domain summarization content selection to add additional sen-
tences to our answer that might not fall into a specific information extraction type. For
example for definition questions, all the sentences that areclassified asother defini-
tional are examined, and a set of relevant sentences is selected from them. This selec-
tion can be done by the centroid method, in which we form a TF-IDF vector for each
sentence, find the centroid of all the vectors, and then choose theK sentences clos-
est to the centroid. Alternatively we can use a method for avoiding redundancy, like
clustering the vectors and choosing the best sentence from each cluster.

Because query-focused summarizers of this type or domain-specific, we can use
domain-specific methods for information ordering as well, such as using a fixed hand-
built template. For biography questions we might use a template like the following:

(23.43) <NAME> is <WHY FAMOUS>. She was born on<BIRTHDATE> in
<BIRTHLOCATION>. She<EDUCATION>. <DESCRIPTIVE SENTENCE>.
<DESCRIPTIVE SENTENCE>.

The various sentences or phrases selected in the content selection phase can then
be fit into this template. These templates can also be somewhat more abstract. For
example, for definitions, we could place a genus-species sentence first, followed by
remaining sentences ordered by their saliency scores.

23.6 SUMMARIZATION EVALUATION

As is true for other speech and language processing areas like machine translation,
there are a wide variety of evaluation metrics for summarization, metrics requiring
human annotation, as well as completely automatic metrics.3

As we have seen for other tasks, we can evaluate a system viaextrinsic (task-based)
or intrinsic (task-independent) methods. We described a kind of extrinsic evaluation of
multi-document summarization in Sec. 23.4, in which subjects were asked to perform
time-restricted fact-gathering tasks, and were given fulldocuments together with either
no summaries, human summaries, or automatically generatedsummaries to read. The
subjects had to answer three related questions about an event in the news. For query-
focused single-document summarization (like the task of generating websnippets), we
can measure how different summarization algorithms affecthuman performance at the
task of deciding if a document is relevant/not-relevant to aquery by looking solely at
the summary.

The most common intrinsic summarization evaluation metricis an automatic method
calledROUGE, Recall-Oriented Understudy for Gisting Evaluation (Lin and Hovy,ROUGE

3 We focus here on evaluation of entire summarization algorithms and ignore evaluation of subcomponents
such as information ordering, although see for example (Lapata, 2006) on the use of Kendall’sτ, a metric of



DRAFT

42 Chapter 23. Question Answering and Summarization

2003; Lin, 2004). ROUGE is inspired by the BLEU metric used for evaluating machine
translation output, and like BLEU, automatically scores a machine-generated candi-
date summary by measuring the amount ofN-gram overlap between the candidate and
human-generated summaries (the references).

Recall that BLEU is computed by averaging the number of overlappingN-grams
of different length between the hypothesis and reference translations. In ROUGE, by
contrast, the length of theN-gram is fixed;ROUGE-1 uses unigram overlap, whileROUGE1

ROUGE-2 uses bigram overlap. We’ll choose to define ROUGE-2; the definitions ofROUGE2

all the other ROUGE-N metrics follows. ROUGE-2 is a measure of the bigram recall
between the candidate summary and the set of human referencesummaries:

ROUGE2 =

∑
S∈{ReferenceSummaries}

∑
bigram∈S

Countmatch(bigram)

∑
S∈{ReferenceSummaries}

∑
bigram∈S

Count(bigram)
(23.44)

The function Countmatch(bigram) returns the maximum number of bigrams that
co-occur in the candidate summary and the set of reference summaries. ROUGE-1 is
the same but counting unigrams instead of bigrams.

Note that ROUGE is a recall-oriented measure, where BLEU is aprecision-oriented
measure. This is because the denominator of (23.44) is the total sum of the number of
bigrams in the reference summaries. By contrast, in BLEU thedenominator is the
total sum of the number ofN-grams in the candidates. Thus ROUGE is measuring
something like how many of the human reference summary bigrams are covered by
the candidate summary, where BLEU is measuring something like how many of the
candidate translation bigrams occurred in the human reference translations.

Variants of ROUGE includeROUGE-L , which measure thelongest common sub-ROUGEL

sequencebetween the reference and candidate summaries, andROUGE-SandROUGE-ROUGES

SU which measure the number ofskip bigrams between the reference and candidateROUGESU

SKIP BIGRAMS summaries. A skip bigram is a pair of words in their sentence order, but allowing for
any number of other words to appear between the pair.

While ROUGE is the most commonly applied automatic baseline, it is not as ap-
plicable to summarization as similar metrics like BLEU are to machine translation.
This is because human summarizers seem to disagree stronglyabout which sentences
to include in a summary, making even the overlap of humans with each other very low.

This difference in which sentences humans choose to extracthas motivated human
evaluation methods which attempt to focus more on meaning. One metric, thePyra-
mid Method, is a way of measuring how many units of meaning are shared betweenPYRAMID METHOD

the candidate and reference summaries, and also weights theunits of meaning by im-
portance; units of meaning which occur in more of the human summaries are weighted
more highly. The units of meaning are calledSummary Content Units (SCU), whichSUMMARY CONTENT

UNITS

are sub-sentential semantic units which roughly correspond to propositions or coherent
pieces of propositions.

In the Pyramid Method, humans label the Summary Content Units in each reference
and candidate summary, and then an overlap measure is computed.

rank correlation, for information ordering.
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Let’s see an example from Nenkova et al. (2007) of how two SCUsare labeled
in sentences from six human abstracts. We’ll first show sentences from the human
summaries indexed by a letter (corresponding to one of the 6 human summaries) and a
number (the position of the sentence in the human summary):

A1. The industrial espionage case involving GM and VW began with the hiring of
JoseIgnacio Lopez,an employeeof GM subsidiary Adam Opel,by VW as a
production director.

B3. However,he left GM for VW under circumstances, which along with ensuing
events, were described by a German judge as “potentially thebiggest-ever case
of industrial espionage”.

C6. He left GM for VW in March 1993.

D6. The issue stems from the allegedrecruitmentof GM’s eccentric and visionary
Basque-born procurement chiefJoseIgnacio Lopez de Arriortura and seven of
Lopez’s business colleagues.

E1. On March 16, 1993, with Japanese car import quotas to Europe expiring in two
years, renowned cost-cutter,Agnacio LopezDe Arriortura, left his job as head
of purchasingat GeneralMotor’s Opel, Germany,to becomeVolkswagen’s Pur-
chasing and Production director.

F3. In March 1993, Lopez and seven otherGM executivesmovedto VW overnight.

The annotators first identify similar sentences, like thoseabove, and then label
SCUs. The underlined and italicized spans of words in the above sentences result
in the following two SCUs, each one with a weight corresponding to the number of
summaries it appears in (6 for the first SCU, and 3 for the second):

SCU1(w=6): Lopez left GM for VW
A1. the hiring of Jose Ignacio Lopez, an employee of GM . . . by VW
B3. he left GM for VW
C6. He left GM for VW
D6. recruitment of GMs . . . Jose Ignacio Lopez
E1. Agnacio Lopez De Arriortura, left his job . . . at General Motors Opel
. . . to become Volkswagens . . . director
F3. Lopez . . . GM . . . moved to VW

SCU2(w=3) Lopez changes employers in March 1993
C6. in March, 1993
E1. On March 16, 1993
F3. In March 1993

Once the annotation is done, the informativeness of a given summary can be mea-
sured as the ratio of the sum of the weights of its SCUs to the weight of an optimal
summary with the same number of SCUs. See the end of the chapter for more details
and pointers to the literature.

The standard baselines for evaluating summaries are therandom sentencesbase-RANDOM
SENTENCES

line and theleading sentencesbaseline. Assuming we are evaluating summaries ofLEADING
SENTENCES

lengthN sentences, the random baseline just choosesN random sentences, while the
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leading baseline chooses the firstN sentences. The leading sentences method, in par-
ticular, is quite a strong baseline and many proposed summarization algorithms fail to
beat it.

23.7 SUMMARY

• The dominant models of information retrieval represent themeanings of docu-
ments and queries as bags of words.

• Thevector space modelviews documents and queries as vectors in a large multi-
dimensional space. In this model, the similarity between documents and queries,
or other documents, can be measured by the cosine of the anglebetween the
vectors.

• The main components of a factoid question answering system are thequestion
classificationmodule to determine the named-entity type of the answer, apas-
sage retrievalmodule to identify relevant passages, and an answer processing
module to extract and format the final answer.

• Factoid question answers can be evaluated viamean reciprocal rank (MRR ).

• Summarization can beabstractive or extractive; most current algorithms are
extractive.

• Three components ofsummarization algorithms includecontent selection, in-
formation ordering , andsentence realization.

• Current single document summarization algorithms focus mainly on sentence
extraction, relying on features likeposition in the discourse,word informa-
tiveness, cue phrases, andsentence length.

• Multiple document summarization algorithms often performsentence simplifi-
cation on document sentences.

• Redundancy avoidanceis important in multiple document summarization; it is
often implemented by adding a redundancy penalization termlike MMR into
sentence extraction.

• Information ordering algorithms in multi-document summarization are often
based on maintainingcoherence.

• Query-focused summarizationcan be done using slight modifications togeneric
summarization algorithms, or by using information-extraction methods.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Luhn (1957) is generally credited with first advancing the notion of fully automatic
indexing of documents based on their contents. Over the years Salton’s SMART project
(Salton, 1971) at Cornell developed or evaluated many of themost important notions
in information retrieval including the vector model, term weighting schemes, relevance
feedback, and the use of cosine as a similarity metric. The notion of using inverse
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document frequency in term weighting is due to Sparck Jones (1972). The original
notion of relevance feedback is due to Rocchio (1971).

An alternative to the vector model that we have not covered isthe probabilistic
model originally shown effective by Robinson and Sparck Jones (1976). See CrestaniPROBABILISTIC

MODEL

et al. (1998) and Chapter 11 of Manning et al. (2008) on probabilistic models in infor-
mation retrieval.

Manning et al. (2008) is a comprehensive modern text on information retrieval.
Good but slightly older texts include Baeza-Yates and Ribeiro-Neto (1999) and Frakes
and Baeza-Yates (1992); older classic texts include Saltonand McGill (1983) and van
Rijsbergen (1975). Many of the classic papers in the field canbe found in Sparck Jones
and Willett (1997). Current work is published in the annual proceedings of the ACM
Special Interest Group on Information Retrieval (SIGIR). The US National Institute of
Standards and Technology (NIST) has run an annual evaluation project for text infor-
mation retrieval and extraction called the Text REtrieval Conference (TREC) since the
early 1990s; the conference proceedings from TREC contain results from these stan-
dardized evaluations. The primary journals in the field are theJournal of the American
Society of Information Sciences, ACM Transactions on Information Systems, Informa-
tion Processing and Management, andInformation Retrieval.

Question answering was one of the earliest tasks for NLP systems in the 1960’s and
1970’s (Green et al., 1961; Simmons, 1965; Woods et al., 1972; Lehnert, 1977), but the
field lay dormant for a few decades until the need for queryingthe Web brought the task
back into focus. The U.S. government-sponsored TREC (Text REtrieval Conference)
QA track began in 1999 and a wide variety of factoid and non-factoid systems have
been competing in annual evaluations since then. See the references in the chapter and
Strzalkowski and Harabagiu (2006) for a collection of recent research papers.

Research on text summarization began with the work of Luhn (1958) on extractive
methods for the automatic generation of abstracts, focusing on surface features like
term frequency, and the later work of Edmunson (1969) incorporating positional fea-
tures as well. Term-based features were also used in the early application of automatic
summarization at Chemical Abstracts Service (Pollock and Zamora, 1975). The 1970s
and 1980s saw a number of approaches grounded in AI methodology such as scripts
DeJong (1982), semantic networks Reimer and Hahn (1988), orcombinations of AI
and statistical methods Rau et al. (1989).

The work of Kupiec et al. (1995) on training a sentence classifier with supervised
machine learning led to many statistical methods for sentence extraction. Around the
turn of the century, the growth of the Web led naturally to interest in multi-document
summarization and query-focused summarization.

There have naturally been a wide variety of algorithms for the main components
of summarizers. The simple unsupervised log-linear content selection algorithm we
describe is simplified from theSumBasicalgorithm of Nenkova and VanderwendeSUMBASIC

(2005), Vanderwende et al. (2007b) and thecentroid algorithm of Radev et al. (2000)CENTROID

and Radev et al. (2001). A number of algorithms for information ordering have used
entity coherence, including Kibble and Power (2000), Lapata (2003), Karamanis and
Manurung (2002), Karamanis (2003), Barzilay and Lapata (2005, 2007). Algorithms
for combining multiple cues for coherence and searching forthe optimal ordering in-
clude Althaus et al. (2004), based on linear programming, the genetic algorithms of
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Mellish et al. (1998) and Karamanis and Manurung (2002), andthe Soricut and Marcu
(2006) algorithm, which uses A∗ search based on IDL-expressions. Karamanis (2007)
showed that adding coherence based on rhetorical relationsto entity coherence didn’t
improve sentence ordering. See Lapata (2006, 2003), Karamanis et al. (2004), Kara-
manis (2006) on methods for evaluating information ordering.

Sentence compression is a very popular area of research. Early algorithms fo-
cused on the use of syntactic knowledge for eliminating lessimportant words or phrases
Grefenstette (1998), Mani et al. (1999), Jing (2000). Recent research has focused on
using supervised machine learning, in which a parallel corpus of documents together
with their human summaries is used to compute the probability that particular words
or parse nodes will be pruned. Methods include the use of maximum entropy Rie-
zler et al. (2003), the noisy channel model and synchronous context-free grammars
(Galley and McKeown, 2007; Knight and Marcu, 2000; Turner and Charniak, 2005;
Daumé III and Marcu, 2002), Integer Linear Programming Clarke and Lapata (2007),
and large-margin learning McDonald (2006). These methods rely on various features,
especially including syntactic or parse knowledge Jing (2000), Dorr et al. (2003), Sid-
dharthan et al. (2004), Galley and McKeown (2007), Zajic et al. (2007), Conroy et al.
(2006), Vanderwende et al. (2007a), but also including coherence information Clarke
and Lapata (2007). Alternative recent methods are able to function without these kinds
of parallel document/summary corpora (Hori and Furui, 2004; Turner and Charniak,
2005; Clarke and Lapata, 2006).

See Daumé III and Marcu (2006) for a recent Bayesian model ofquery-focused
summarization.

For more information on summarization evaluation, see Nenkova et al. (2007), Pas-
sonneau et al. (2005), and Passonneau (2006) for details on the Pyramid method, van
Halteren and Teufel (2003) and Teufel and van Halteren (2004) on related semantic-
coverage evaluation methods, and Lin and Demner-Fushman (2005) on the link be-
tween evaluations for summarization and question answering. A NIST program start-
ing in 2001, the Document Understanding Conference (DUC), has sponsored an an-
nual evaluation of summarization algorithms. These have included single document,
multiple document, and query-focused summarization; proceedings from the annual
workshop are available online.

Mani and Maybury (1999) is the definitive collection of classic papers on summa-
rization. Sparck Jones (2007) is a good recent survey, and Mani (2001) is the standard
textbook.

The task ofparaphrase detectionis an important task related to improving recallPARAPHRASE
DETECTION

in question answering and avoiding redundancy in summarization, and also very rel-
evant for tasks like textual entailment. See Lin and Pantel (2001), Barzilay and Lee
(2003), Pang et al. (2003), Dolan et al. (2004), Quirk et al. (2004) for representative
papers on techniques for detecting paraphrases.

Another task related to information retrieval and summarization is thetext cate-
gorization task, which is to assign a new document to one of a pre-existing set ofTEXT

CATEGORIZATION

document classes. The standard approach is to use supervised machine learning to
train classifiers on a set of documents that have been labeledwith the correct class. A
very important application of text categorization is forspam detection.SPAM DETECTION
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EXERCISES

23.1 Do some error analysis on web-based question answering. Choose 10 questions
and type them all into two different search engines. Analyzethe errors (e.g., what
kinds of questions could neither system answer; which kindsof questions did one work
better on; was there a type of question that could be answeredjust from the snippets,
etc).

23.2 Read Brill et al. (2002) and reimplement a simple version of the AskMSR sys-
tem.
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24
DIALOGUE AND
CONVERSATIONAL
AGENTS

C: I want you to tell me the names of the fellows on the St.
Louis team.

A: I’m telling you. Who’s on first, What’s on second, I
Don’t Know is on third.

C: You know the fellows’ names?
A: Yes.
C: Well, then, who’s playing first?
A: Yes.
C: I mean the fellow’s name on first.
A: Who.
C: The guy on first base.
A: Who is on first.
C: Well what are you askin’mefor?
A: I’m not asking you – I’m telling you. Who is on first.

Who’s on First– Bud Abbott and Lou Costello’s version
of an old burlesque standard.

The literature of the fantastic abounds in inanimate objects magically endowed with
sentience and the gift of speech. From Ovid’s statue of Pygmalion to Mary Shelley’s
Frankenstein, Cao Xue Qin’s Divine Luminescent Stone-in-Waiting to Snow White’s
mirror, there is something deeply touching about creating something and then having
a chat with it. Legend has it that after finishing his sculpture of Moses, Michelangelo
thought it so lifelike that he tapped it on the knee and commanded it to speak. Perhaps
this shouldn’t be surprising. Language itself has always been the mark of humanity
and sentience, andconversationor dialogue is the most fundamental and speciallyCONVERSATION

DIALOGUE privileged arena of language. It is certainly the first kind of language we learn as
children, and for most of us, it is the kind of language we mostcommonly indulge in,
whether we are ordering curry for lunch or buying spinach, participating in business
meetings or talking with our families, booking airline flights or complaining about the
weather.

This chapter introduces the fundamental structures and algorithms in conversa-
tional agents. Conversational agents most often communicate via speech rather than



DRAFT

2 Chapter 24. Dialogue and Conversational Agents

text, and so they are also known asspoken dialogue systems, or spoken language
systems. These programs communicate with users in spoken natural language in order
to make travel arrangements, answer questions about weather or sports, route telephone
calls, act as a general telephone assistant, or perform evenmore sophisticated tasks.

Many of these tasks involve telephony, and also involve mobile situations where a
large screen and keyboard may not be available (Cohen and Oviatt, 1994). Applications
relating to the domain of travel are thus very common. Indeedtravel planning and
management has been a key concern of dialogue systems since the early influential
GUS system for planning airline travel (Bobrow et al., 1977). More recently, a number
of spoken language systems for booking airline flights were built under the Air Traffic
Information System (ATIS) (Hemphill et al., 1990) and Communicator (Walker, 2001)
programs. We will use this travel domain as an example throughout the chapter (as
we used it to discuss grammar rules for parsing ATIS sentences in Ch. 12). Fig. 24.1
shows a sample dialogue from a Communicator system, taken from Xu and Rudnicky
(2000).

S1: Hello. You’ve reached the [Communicator]. Tell me your full name
U2: hi i’d like to fly to seattle tuesday morning
S3: Traveling to Seattle on Tuesday, August eleventh in the morning. Your full name?
U4: [John Doe]
S5: Hello, [John], I’m glad to hear from you again. You can nowask me for help.
S6: OK. Let’s see I have a United flight departing Pittsburgh at ten forty five a.m. arriving

into Seattle at one fifty seven p.m. Is that OK?
U7: Yes
S8: Will you return to Pittsburgh from Seattle?
U9: no i will go to Los Angeles
S10: Traveling to Los Angeles. on what date
U11: Sorry can we go back to talk about the previous leg again
S12: For the first leg, you are on a United flight 1446 departingPittsburgh at ten forty five

A.M. tomorrow, arriving in Seattle at one fifty seven P.M. Do you want to take that?
U13: actually i want to leave on wednesday
S14: a flight on wednesday.
S15: I have a flight departing Pittsburgh at ten forty five a.m., arrives Seattle at one fifty

seven p.m. Is that OK?
U16: Yes

Figure 24.1 The travel domain: a fragment from a successful conversation between a
user (U) and the Communicator system (S) of Xu and Rudnicky (2000).

Another promising domain is automatic call routing. A call routing system directs
incoming calls in a telephone call center, transferring thecall to the appropriate human.
Call routing dialogue systems generally begin by asking theuser open-ended questions
like How may I help you?(Gorin et al., 1997), orHow may I direct your call?(Chu-
Carroll and Carpenter, 1999). Fig. 24.2 shows sample conversations from the AT&T
How May I Help You (HMIHY) system (Gorin et al., 1997).

A somewhat different domain, which is very far from the telephony area, is auto-
matic tutoring systems. Fig. 24.3 shows part of a dialogue from the ITSPOKE dialogue
system (Litman and Silliman, 2004), which uses the Why2-Atlas text-based tutoring
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S: How may I help you?
U: can you tell me how much it is to tokyo?
S: You want to know the cost of a call?
U: yes that’s right
S: Please hold on for rate information.
S: How may I help you?
U: what’s the area code for chicago?
S: You want an area code.
U: (silence)
S: The area code for Chicago is 312.

Figure 24.2 The call routing domain: two conversations between a user (U) and the
AT&T How May I Help You (HMIHY) system (S) (Gorin et al., 1997).

system as its tutoring backend (VanLehn et al., 2002).

S: I didn’t understand. What force acts on all objects withinclose proximity to earth?
U: uh the force of gravity
S: Fine. Besides the Earth’s gravitational force, are thereany other forces acting on the

person, keys, and elevator after the release?
U: no
S: Yep. Thus, keep in mind that after the release, the only force on the person, keys, and

elevator is the force of gravity. If gravity is the only forceacting on an object, will it
be moving or staying still?

U: it will be moving
S: Fine. Not only are the person, keys, and elevator moving, they have only gravitational

forces on them. When an object is falling and has only gravitational force on it, it is
said to be in what?

U: freefall

Figure 24.3 The tutoring domain: part of an conversation between a student user (U)
and the ITSPOKE system (S) of Litman and Silliman (2004).

Sec. 24.1 starts out with a summary of facts about human conversation, includ-
ing the idea of turns and utterances, speech acts, grounding, dialogue structure, and
conversational implicature. The next few sections introduce the components of spo-
ken language systems and some evaluation metrics. We then turn in Sec. 24.5 and
Sec. 24.6 to the more sophisticated information-state and Markov decision processes
models of conversational agents, and we conclude with some advanced topics like the
BDI (belief-desire-intention) paradigm.

24.1 PROPERTIES OFHUMAN CONVERSATIONS

Conversation between humans is an intricate and complex joint activity. Because of the
limitations of our current technologies, conversations between humans and machines
are vastly simpler and more constrained than these human conversations. Nonethe-
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less, before we attempt to design a conversational agent to converse with humans, it is
crucial to understand something about how humans converse with each other.

In this section we discuss some properties of human-human conversation that dis-
tinguish it from the kinds of (text-based) discourses we have seen so far. The main
difference is that conversation is a kind ofjoint activity between two (or more) in-
terlocutors. This basic fact has a number of ramifications; conversations are built up
out of consecutiveturns, each turn consists ofjoint action of the speaker and hearer,
and the hearer make special inferences calledconversational implicaturesabout the
speaker’s intended meaning.

24.1.1 Turns and Turn-Taking

Dialogue is characterized byturn-taking ; Speaker A says something, then speaker B,TURNTAKING

then speaker A, and so on. If having a turn (or “taking the floor”) is a resource to be
allocated, what is the process by which turns are allocated?How do speakers know
when it is the proper time to contribute their turn?

It turns out that conversation and language itself are structured in such a way as
to deal efficiently with this resource allocation problem. One source of evidence for
this is the timing of the utterances in normal human conversations. While speakers
can overlap each other while talking, it turns out that on average the total amount of
overlap is remarkably small; perhaps less than 5% (Levinson, 1983). If speakers aren’t
overlapping, do they figure out when to talk by waiting for a pause after the other
speaker finishes? This is also very rare. The amount of time between turns is quite
small, generally less than a few hundred milliseconds even in multi-party discourse.
Since it may take more than this few hundred milliseconds forthe next speaker to plan
the motor routines for producing their utterance, this means that speakers begin motor
planning for their next utterance before the previous speaker has finished. For this to
be possible, natural conversation must be set up in such a waythat (most of the time)
people can quickly figure outwho should talk next, and exactlywhen they should talk.
This kind of turn-taking behavior is generally studied in the field of Conversation
Analysis (CA). In a key conversation-analytic paper, Sacks et al. (1974)argued thatCONVERSATION

ANALYSIS

turn-taking behavior, at least in American English, is governed by a set of turn-taking
rules. These rules apply at atransition-relevance place, or TRP; places where the
structure of the language allows speaker shift to occur. Here is a version of the turn-
taking rules simplified from Sacks et al. (1974):

(24.1) Turn-taking Rule. At each TRP of each turn:

a. If during this turn the current speaker has selected A as the next speaker then A
must speak next.

b. If the current speaker does not select the next speaker, any other speaker may
take the next turn.

c. If no one else takes the next turn, the current speaker may take the next turn.

There are a number of important implications of rule (24.1) for dialogue model-
ing. First, subrule (24.1a) implies that there are some utterances by which the speaker
specifically selects who the next speaker will be. The most obvious of these are ques-
tions, in which the speaker selects another speaker to answer the question. Two-part
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structures likeQUESTION-ANSWER are calledadjacency pairs (Schegloff, 1968) orADJACENCY PAIRS

dialogic pair (Harris, 2005). Other adjacency pairs includeGREETING followed byDIALOGIC PAIR

GREETING, COMPLIMENT followed byDOWNPLAYER, REQUESTfollowed byGRANT.
We will see that these pairs and the dialogue expectations they set up will play an im-
portant role in dialogue modeling.

Subrule (24.1a) also has an implication for the interpretation of silence. While
silence can occur after any turn, silence in between the two parts of an adjacency pair
is significant silence. For example Levinson (1983) notes this example from AtkinsonSIGNIFICANT

SILENCE

and Drew (1979); pause lengths are marked in parentheses (inseconds):

(24.2) A: Is there something bothering you or not?
(1.0)

A: Yes or no?
(1.5)

A: Eh?
B: No.

Since A has just asked B a question, the silence is interpreted as a refusal to respond,
or perhaps adispreferred response (a response, like saying “no” to a request, which isDISPREFERRED

stigmatized). By contrast, silence in other places, for example a lapse after a speaker
finishes a turn, is not generally interpretable in this way. These facts are relevant for
user interface design in spoken dialogue systems; users aredisturbed by the pauses in
dialogue systems caused by slow speech recognizers (Yankelovich et al., 1995).

Another implication of (24.1) is that transitions between speakers don’t occur just
anywhere; thetransition-relevance placeswhere they tend to occur are generally at
utterance boundaries. Recall from Ch. 12 that spoken utterances differ from writtenUTTERANCE

sentences in a number of ways. They tend to be shorter, are more likely to be single
clauses or even just single words, the subjects are usually pronouns rather than full
lexical noun phrases, and they include filled pauses and repairs. A hearer must take all
this (and other cues like prosody) into account to know whereto begin talking.

24.1.2 Language as Action: Speech Acts

The previous section showed that conversation consists of asequence of turns, each
of which consists of one or more utterance. A key insight intoconversation due to
Wittgenstein (1953) but worked out more fully by Austin (1962) is that an utterance in
a dialogue is a kind ofaction being performed by the speaker.

The idea that an utterance is a kind of action is particularlyclear inperformativePERFORMATIVE

sentences like the following:

(24.3) I name this ship theTitanic.

(24.4) I second that motion.

(24.5) I bet you five dollars it will snow tomorrow.

When uttered by the proper authority, for example, (24.3) has the effect of changing
the state of the world (causing the ship to have the nameTitanic) just as any action can
change the state of the world. Verbs likenameor secondwhich perform this kind of
action are called performative verbs, and Austin called these kinds of actionsspeech
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acts. What makes Austin’s work so far-reaching is that speech acts are not confinedSPEECH ACTS

to this small class of performative verbs. Austin’s claim isthat the utterance of any
sentence in a real speech situation constitutes three kindsof acts:

• locutionary act: the utterance of a sentence with a particular meaning.

• illocutionary act: the act of asking, answering, promising, etc., in uttering a
sentence.

• perlocutionary act: the (often intentional) production of certain effects upon
the feelings, thoughts, or actions of the addressee in uttering a sentence.

For example, Austin explains that the utterance of example (24.6) might have theillo-
cutionary force of protesting and the perlocutionary effect of stopping theaddresseeILLOCUTIONARYFORCE

from doing something, or annoying the addressee.

(24.6) You can’t do that.

The termspeech actis generally used to describe illocutionary acts rather than
either of the other two types of acts. Searle (1975b), in modifying a taxonomy of
Austin’s, suggests that all speech acts can be classified into one of five major classes:

• Assertives: committing the speaker to something’s being the case (suggesting,
putting forward, swearing, boasting, concluding).

• Directives: attempts by the speaker to get the addressee to do something (asking,
ordering, requesting, inviting, advising, begging).

• Commissives:committing the speaker to some future course of action (promis-
ing, planning, vowing, betting, opposing).

• Expressives:expressing the psychological state of the speaker about a state of
affairsthanking, apologizing, welcoming, deploring.

• Declarations: bringing about a different state of the world via the utterance
(including many of the performative examples above;I resign, You’re fired.)

24.1.3 Language as Joint Action: Grounding

The previous section suggested that each turn or utterance could be viewed as an ac-
tion by a speaker. But dialogue is not a series of unrelated independent acts. Instead,
dialogue is a collective act performed by the speaker and thehearer. One implication
of joint action is that, unlike in monologue, the speaker andhearer must constantly
establishcommon ground (Stalnaker, 1978), the set of things that are mutually be-COMMON GROUND

lieved by both speakers. The need to achieve common ground means that the hearer
mustground the speaker’s utterances, making it clear that the hearer has understoodGROUND

the speaker’s meaning and intention.
As Clark (1996) points out, people need closure or groundingfor non-linguistic ac-

tions as well. For example, why does a well-designed elevator button light up when it’s
pressed? Because this indicates to the would-be elevator traveler that she has success-
fully called the elevator. Clark phrases this need for closure as follows (after (Norman,
1988)):

Principle of closure. Agents performing an action require evidence, sufficient
for current purposes, that they have succeeded in performing it.
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Grounding is also important when the hearer needs to indicate that the speaker has
not succeeded in performing an action. If the hearer has problems in understanding,
she must indicate these problems to the speaker, again so that mutual understanding
can eventually be achieved.

How is closure achieved? Clark and Schaefer (1989) introduce the idea that each
joint linguistic act orcontribution has two phases, calledpresentation andaccep-CONTRIBUTION

tance. In the first phase, a speaker presents the hearer with an utterance, performing
a sort of speech act. In the acceptance phase, the hearer has to ground the utterance,
indicating to the speaker whether understanding was achieved.

What methods can the hearer (call her B) use to ground the speaker A’s utterance?
Clark and Schaefer (1989) discuss five main types of methods,ordered from weakest
to strongest:

1. Continued attention: B shows she is continuing to attend and therefore remains
satisfied with A’s presentation.

2. Relevant next contribution: B starts in on the next relevant contribution.

3. Acknowledgement:B nods or says a continuer likeuh-huh, yeah, or the like, or
anassessmentlike that’s great.

4. Demonstration: B demonstrates all or part of what she has understood A to
mean, for example byreformulating (paraphrasing) A’s utterance, or bycollab-REFORMULATING

orative completionof A’s utterance.COLLABORATIVE
COMPLETION

5. Display: B displays verbatim all or part of A’s presentation.

Let’s look for examples of these in a human-human dialogue example. We’ll be re-
turning to this example throughout the chapter; in order to design a more sophisticated
machine dialogue agent, it helps to look at how a human agent performs similar tasks.
Fig. 24.4 shows part of a dialogue between a human travel agent and a human client.

C1: . . . I need to travel in May.
A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A2: And you’re flying into what city?
C3: Seattle.
A3: And what time would you like to leave Pittsburgh?
C4: Uh hmm I don’t think there’s many options for non-stop.
A4: Right. There’s three non-stops today.
C5: What are they?
A5: The first one departs PGH at 10:00am arrives Seattle at 12:05their time. The

second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C6: OK I’ll take the 5ish flight on the night before on the 11th.
A6: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm,U.S. Air flight

115.
C7: OK.

Figure 24.4 Part of a conversation between a travel agent (A) and client (C).
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Utterance A1, in which the agent repeatsin May, repeated below in boldface, shows
the strongest form of grounding, in which the hearer displays their understanding by
repeating verbatim part of the speakers words:

C1: . . . I need to travelin May .
A1: And, what dayin May did you want to travel?

This particular fragment doesn’t have an example of anacknowledgement, but
there’s an example in another fragment:

C: He wants to fly from Boston
A: Mm hmm
C: to Baltimore Washington International

The wordmm-hmmhere is acontinuer, also often called abackchannelor anCONTINUER

BACKCHANNEL acknowledgement token. A continuer is a (short) optional utterance which acknowl-
edges the content of the utterance of the other, and which doesn’t require an acknowl-
edgement by the other (Yngve, 1970; Jefferson, 1984; Schegloff, 1982; Ward and
Tsukahara, 2000).

In Clark and Schaefer’s third method, the speaker starts in on their relevant next
contribution. We see a number of examples of this in the sample dialogue above, for
example where the speaker asks a question and the hearer answers it. We mentioned
theseadjacency pairsabove; other examples includePROPOSALfollowed byACCEP-
TANCE or REJECTION, APOLOGY followed byACCEPTANCE/REJECTION, SUMMONS

followed byANSWER, and so on.
In a more subtle but very important kind of grounding act, thespeaker can combine

this method with the previous one. For example notice that whenever the client answers
a question, the agent begins the next question withAnd. TheAndindicates to the client
that the agent has successfully understood the answer to thelast question:

And, what day in May did you want to travel?
...
And you’re flying into what city?
...
And what time would you like to leave Pittsburgh?

As we will see in Sec. 24.5, the notions of grounding and contributions can be
combined with speech acts to give a more sophisticated modelof joint action in con-
versation; these more sophisticated models are calleddialogue acts.

Grounding is just as crucial in human-machine conversationas it is in human con-
versation. The examples below, from Cohen et al. (2004), suggest how unnatural it
sounds when a machine doesn’t ground properly. The use ofOkay makes (24.7) a
much more natural response than (24.8) to ground a user’s rejection:

(24.7) System: Did you want to review some more of your personal profile?
Caller: No.
System:Okay,what’s next?

(24.8) System: Did you want to review some more of your personal profile?
Caller: No.
System: What’s next?
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Indeed, this kind of lack of grounding can cause errors. Stifelman et al. (1993)
and Yankelovich et al. (1995) found that humans get confusedwhen a conversational
system system doesn’t give explicit acknowledgements.

24.1.4 Conversational Structure

We have already seen how conversation is structured by adjacency pairs and contribu-
tions. Here we’ll briefly discuss one aspect of theoverall organization of a conversa-
tion: conversational openings. The openings of telephone conversations, for example,
tend to have a 4-part structure (Clark, 1994; Schegloff, 1968, 1979):

Stage 1:Enter a conversation, with summons-response adjacency pair

Stage 2:Identification

Stage 3:Establish joint willingness to converse
Stage 4:The first topic is raised, usually by the caller.

These four stages appear in the opening of this short task-oriented conversation
from Clark (1994).

Stage Speaker & Utterance
1 A1: (rings B’s telephone)
1,2 B1: Benjamin Holloway
2 A1: this is Professor Dwight’s secretary, from Polymania College
2,3 B1: ooh yes –
4 A1: uh:m . about the: lexicology *seminar*
4 B1: *yes*

It is common for the person who answers the phone to speak first(since the caller’s
ring functions as the first part of the adjacency pair) but forthe caller to bring up the
first topic, as the caller did above concerning the “lexicology seminar”. This fact that
the caller usually brings up the first topic causes confusionwhen the answerer brings
up the first topic instead; here’s an example of this from the British directory enquiry
service from Clark (1994):

Customer: (rings)
Operator: Directory Enquiries, for which town please?
Customer: Could you give me the phone number of um: Mrs. um: Smithson?
Operator: Yes, which town is this at please?
Customer: Huddleston.
Operator: Yes. And the name again?
Customer: Mrs. Smithson.

In the conversation above, the operator brings up the topic (for which town please?)
in her first sentence, confusing the caller, who ignores thistopic and brings up her own.
This fact that callers expect to bring up the topic explains why conversational agents
for call routing or directory information often use very open prompts likeHow may
I help you? or How may I direct your call?rather than a directive prompt likeFor
which town please?. Open prompts allow the caller to state their own topic, reducing
recognition errors caused by customer confusion.
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Conversation has many other kinds of structure, including the intricate nature of
conversational closings and the wide use of presequences. We will discuss structure
based oncoherencein Sec. 24.7.

24.1.5 Conversational Implicature

We have seen that conversation is a kind of joint activity, inwhich speakers produce
turns according to a systematic framework, and that the contributions made by these
turns include a presentation phase of performing a kind of action, and an acceptance
phase of grounding the previous actions of the interlocutor. So far we have only talked
about what might be called the ‘infrastructure’ of conversation. But we have so far said
nothing about the actual information that gets communicated from speaker to hearer in
dialogue.

While Ch. 17 showed how we can compute meanings from sentences, it turns out
that in conversation, the meaning of a contribution is oftenquite a bit extended from the
compositional meaning that might be assigned from the wordsalone. This is because
inference plays a crucial role in conversation. The interpretation of an utterance relies
on more than just the literal meaning of the sentences. Consider the client’s response
C2 from the sample conversation in Fig. 24.4, repeated here:

A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.

Notice that the client does not in fact answer the question. The client merely states
that he has a meeting at a certain time. The semantics for thissentence produced by
a semantic interpreter will simply mention this meeting. What is it that licenses the
agent to infer that the client is mentioning this meeting so as to inform the agent of the
travel dates?

Now consider another utterance from the sample conversation, this one by the
agent:

A4: . . . There’s three non-stops today.

Now this statement would still be true if there were seven non-stops today, since
if there are seven of something, there are by definition also three. But what the agent
means here is that there are threeand not more than threenon-stops today. How is
the client to infer that the agent meansonly three non-stops?

These two cases have something in common; in both cases the speaker seems to ex-
pect the hearer to draw certain inferences; in other words, the speaker is communicating
more information than seems to be present in the uttered words. These kind of exam-
ples were pointed out by Grice (1975, 1978) as part of his theory of conversational
implicature . Implicature means a particular class of licensed inferences. Grice pro-IMPLICATURE

posed that what enables hearers to draw these inferences is that conversation is guided
by a set ofmaxims, general heuristics which play a guiding role in the interpretationMAXIMS

of conversational utterances. He proposed the following four maxims:

• Maxim of Quantity: Be exactly as informative as is required:QUANTITY

1. Make your contribution as informative as is required (forthe current pur-
poses of the exchange).
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2. Do not make your contribution more informative than is required.

• Maxim of Quality: Try to make your contribution one that is true:QUALITY

1. Do not say what you believe to be false.
2. Do not say that for which you lack adequate evidence.

• Maxim of Relevance:Be relevant.RELEVANCE

• Maxim of Manner: Be perspicuous:MANNER

1. Avoid obscurity of expression.
2. Avoid ambiguity.
3. Be brief (avoid unnecessary prolixity).
4. Be orderly.

It is the Maxim of Quantity (specifically Quantity 1) that allows the hearer to know
that three non-stopsdid not meanseven non-stops. This is because the hearer assumes
the speaker is following the maxims, and thus if the speaker meant seven non-stops
she would have said seven non-stops (“as informative as is required”). The Maxim
of Relevance is what allows the agent to know that the client wants to travel by the
12th. The agent assumes the client is following the maxims, and hence would only
have mentioned the meeting if it was relevant at this point inthe dialogue. The most
natural inference that would make the meeting relevant is the inference that the client
meant the agent to understand that his departure time was before the meeting time.

24.2 BASIC DIALOGUE SYSTEMS

We’ve now seen a bit about how human dialogue works, althoughas we’ll see, not ev-
ery aspect of human-human conversation is modeled in human-machine conversation.
Let’s therefore turn now to the spoken dialogue systems usedin commercial applica-
tions today.

Fig. 24.5 shows a typical architecture for a dialogue system. It has six components.
The speech recognition and understanding components extract meaning from the input,
while the generation and TTS components map from meaning to speech. The dialogue
manager controls the whole process, along with a task manager which has knowledge
about the task domain (such as air travel). We’ll go through each of these compo-
nents in the next sections. Then we’ll explore more sophisticated research systems in
following sections.

24.2.1 ASR component

The ASR (automatic speech recognition) component takes audio input, generally from
a telephone, or from a PDA or desktop microphone, and returnsa transcribed string of
words, as discussed in chapter Ch. 9.

Various aspects of the ASR system may be optimized specifically for use in con-
versational agents. For example, the large vocabulary speech recognizers we discussed
in Ch. 9 for dictation or transcription focused on transcribing any sentence on any topic
using any English word. But for domain-dependent dialogue systems it is of little use



DRAFT

12 Chapter 24. Dialogue and Conversational Agents

Speech
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Natural Language
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Dialogue
Manager

Task
Manager

Natural Language
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Text-to-Speech 
Synthesis

Figure 24.5 Simplified architecture of the components of a conversational agent.

to be able to transcribe such a wide variety of sentences. Thesentences that the speech
recognizer needs to be able to transcribe need are just thosethat can be understood by
the natural language understanding component. For this reason commercial dialogue
systems generally use non-probabilistic language models based on finite-state gram-
mars. These grammars are generally hand-written, and specify all possible responses
that the system understands. We’ll see an example of such a hand-written grammar
for a VoiceXML system in Sec. 24.3. Such grammars-based language models can also
be compiled automatically from, e.g., unification grammarsused for natural language
understanding (Rayner et al., 2006).

Because what the user says to the system is related to what thesystem has just said,
language models in conversational agent are usuallydialogue-state dependent. For ex-
ample, if the system has just asked the user “What city are youdeparting from?”, the
ASR language model can be constrained to only consist of citynames, or perhaps sen-
tences of the form ‘I want to (leave|depart) from [CITYNAME]’. These dialogue-state-
specific language models often consist of hand-written finite-state (or even context-
free) grammars as discussed above, one for each dialogue state.

In some systems, the understanding component is more powerful, and the set of
sentences the system can understand is larger. In such cases, instead of a finite-state
grammar, we can use anN-gram language model whose probabilities are similarly
conditioned on the dialogue state.

Whether we use a finite-state, context-free, or anN-gram language model, we call
such a dialogue-state dependent language model arestrictive grammar . When theRESTRICTIVE

GRAMMAR

system wants to constrain the user to respond to the system’slast utterance, it can use
a restrictive grammar. When the system wants to allow the user more options, it might
mix this state-specific language model with a more general language model. As we
will see, the choice between these strategies can be tuned based on how muchinitiative
the user is allowed.

Speech recognition in dialogue, as well as in many other applications like dictation,
has the advantage that the identity of the speaker remains constant across many utter-
ances. This means that speaker adaptation techniques like MLLR and VTLN (Ch. 9)
can be applied to improve recognition as the system hears more and more speech from
the user.

Embedding an ASR engine in a dialogue system also requires that an ASR en-
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gine to have realtime response, since users are unwilling toaccept long pauses before
responses. Dialogue systems also generally require that anASR system return aconfi-
dencevalue for a sentence, which can then be used for example for deciding whether
to ask the user to confirm a response.

24.2.2 NLU component

The NLU (natural language understanding) component of dialogue systems must pro-
duce a semantic representation which is appropriate for thedialogue task. Many speech-
based dialogue systems, since as far back as the GUS system (Bobrow et al., 1977), are
based on the frame-and-slot semantics discussed in Chapter15. A travel system, for
example, which has the goal of helping a user find an appropriate flight, would have a
frame with slots for information about the flight; thus a sentence likeShow me morn-
ing flights from Boston to San Francisco on Tuesdaymight correspond to the following
filled-out frame (from Miller et al. (1994)):

SHOW:

FLIGHTS:

ORIGIN:

CITY: Boston

DATE:

DAY-OF-WEEK: Tuesday

TIME:

PART-OF-DAY: morning

DEST:

CITY: San Francisco

How does the NLU component generate this semantic representation? Some dia-
logue systems use general-purpose unification grammars with semantic attachments,
such as the Core Language Engine introduced in Ch. 18. A parser produces a sentence
meaning, from which the slot-fillers are extracted (Lewin etal., 1999).

Other dialogue systems rely on simpler domain-specific semantic analyzers, such
assemantic grammars. A semantic grammar is a CFG in which the actual node names
in the parse tree correspond to the semantic entities which are being expressed, as in
the following grammar fragments:

SHOW → show me| i want | can i see|...
DEPART TIME RANGE → (after|around|before) HOUR|

morning| afternoon| evening
HOUR → one|two|three|four...|twelve (AMPM)
FLIGHTS → (a) flight | flights
AMPM → am | pm
ORIGIN → from CITY
DESTINATION → to CITY
CITY → Boston| San Francisco| Denver| Washington

These grammars take the form of context-free grammars or recursive transition
networks (Issar and Ward, 1993; Ward and Issar, 1994), and hence can be parsed by
any standard CFG parsing algorithm, such as the CKY or Earleyalgorithms introduced
in Ch. 13. The result of the CFG or RTN parse is a hierarchical labeling of the input
string with semantic node labels:
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SHOW FLIGHTS ORIGIN DESTINATION DEPART_DATE DEPART_TIME
to CITY

Show me flights from boston to san francisco on tuesday morni ng

Since semantic grammar nodes like ORIGIN correspond to the slots in the frame,
the slot-fillers can be read almost directly off the resulting parse above. It remains only
to put the fillers into some sort of canonical form (for example dates can benormalizedNORMALIZED

into a DD:MM:YY form, times can be put into 24-hour time, etc).
The semantic grammar approach is very widely used, but is unable to deal with am-

biguity, and requires hand-written grammars that can be expensive and slow to create.

S

Q-SUBJECT

WHAT

What

STREET

street

BE-QUESTION

LINK

is

SUBJECT

ARTICLE

the

A-PLACE

A-HOTEL

HOTEL-NAME

Hyatt

PRED-ADJUNCT

ON-STREET

ON

on

A-STREET

Q-SUBJECT

Figure 24.6 A parse of a sentence in the TINA semantic grammar, after Seneff (1995).

Ambiguity can be addressed by adding probabilities to the grammar; one such
probabilistic semantic grammar system is the TINA system (Seneff, 1995) shown in
Fig. 24.6; note the mix of syntactic and semantic node names.The grammar rules in
TINA are written by hand, but parse tree node probabilities are trained by a modified
version of the SCFG method described in Ch. 14.

An alternative to semantic grammars that is probabilistic and also avoids hand-
coding of grammars is the semantic HMM model of Pieraccini etal. (1991). The
hidden states of this HMM are semantic slot labels, while theobserved words are the
fillers of the slots. Fig. 24.7 shows how a sequence of hidden states, corresponding to
slot names, could be decoded from (or could generate) a sequence of observed words.
Note that the model includes a hidden state called DUMMY which is used to generate
words which do not fill any slots in the frame.

The goal of the HMM model is to compute the labeling of semantic rolesC =
c1,c2, ...,ci (C for ‘cases’ or ‘concepts’) that has the highest probability P(C|W) given
some wordsW = w1,w2, ...,wn. As usual, we use Bayes Rule as follows:

argmax
C

P(C|W) = argmax
C

P(W|C)P(C)

P(W

= argmax
C

P(W|C)P(C)(24.9)
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Show me flights that go from Boston to San Francisco

ORIGINSHOW DUMMYFLIGHTS DEST

Figure 24.7 The Pieraccini et al. (1991) HMM model of semantics for filling slots
in frame-based dialogue systems. Each hidden state can generate a sequence of words;
such a model, in which a single hidden state can correspond tomultiple observations, is
technically called asemi-HMM .

=
N

∏
i=2

P(wi |wi−1...w1,C)P(w1|C)
M

∏
i=2

P(ci |ci−1...c1)(24.10)

The Pieraccini et al. (1991) model makes a simplification that the concepts (the
hidden states) are generated by a Markov process (a conceptM-gram model), and that
the observation probabilities for each state are generatedby a state-dependent (concept-
dependent) wordN-gram word model:

P(wi |wi−1, ...,w1,C) = P(wi |wi−1, ...,wi−N+1,ci)(24.11)

P(ci |ci−1, ...,c1) = P(ci |ci−1, ...,ci−M+1)(24.12)

Based on this simplifying assumption, the final equations used in the HMM model
are as follows:

argmax
C

P(C|W) =
N

∏
i=2

P(wi |wi−1...wi−N+1,ci)
M

∏
i=2

P(ci |ci−1...ci−M+1)(24.13)

These probabilities can be trained on a labeled training corpus, in which each
sentence is hand-labeled with the concepts/slot-names associated with each string of
words. The best sequence of concepts for a sentence, and the alignment of concepts to
word sequences, can be computed by the standard Viterbi decoding algorithm.

In summary, the resulting HMM model is a generative model with two components.
The P(C) component represents the choice of what meaning to express;it assigns a
prior over sequences of semantic slots, computed by a concept N-gram. P(W|C) rep-
resents the choice of what words to use to express that meaning; the likelihood of a
particular string of words being generated from a given slot. It is computed by a word
N-gram conditioned on the semantic slot. This model is very similar to the HMM
model fornamed entity detection we saw in Ch. 22. Technically, HMM models like
this, in which each hidden state correspond to multiple output observations, are called
semi-HMMs. In a classic HMM, by contrast, each hidden state corresponds to a singleSEMIHMMS

output observation.
Many other kinds of statistical models have been proposed for the semantic un-

derstanding component of dialogue systems. These include the Hidden Understanding
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Model (HUM), which adds hierarchical structure to the HMM tocombine the advan-
tages of the semantic grammar and semantic HMM approaches (Miller et al., 1994,
1996, 2000), or the decision-list method of Rayner and Hockey (2003).

24.2.3 Generation and TTS components

The generation component of a conversational agent choosesthe concepts to express to
the user, plans out how to express these concepts in words, and assigns any necessary
prosody to the words. The TTS component then takes these words and their prosodic
annotations and synthesizes a waveform, as described in Ch.8.

The generation task can be separated into two tasks:what to say, andhow to say it.
Thecontent plannermodule addresses the first task, decides what content to express to
the user, whether to ask a question, present an answer, and soon. The content planning
component of dialogue systems is generally merged with the dialogue manager, and
we will return to it below.

The language generationmodule addresses the second task, choosing the syntac-
tic structures and words needed to express the meaning. Language generation modules
are implemented in one of two ways. In the simplest and most common method, all
or most of the words in the sentence to be uttered to the user are prespecified by the
dialogue designer. This method is known as template-based generation, and the sen-
tences created by these templates are often calledprompts. While most of the wordsPROMPTS

in the template are fixed, templates can include some variables which are filled in by
the generator, as in the following:

What time do you want to leave CITY-ORIG?
Will you return to CITY-ORIG from CITY-DEST?

A second method for language generation relies on techniques from the fieldnat-
ural language generation. Here the dialogue manager builds a representation of the
meaning of the utterance to be expressed, and passes this meaning representation to
a full generator. Such generators generally have three components, a sentence plan-
ner, surface realizer, and prosody assigner. A sketch of this architecture is shown in
Fig. 24.8. See Reiter and Dale (2000) for further information on natural language gen-
eration systems and their use in dialogue.

Content
Planner

Sentence
Planner

Surface
Realizer

Prosody
Assigner

What to say How to Say it

to Speech
 Synthesizer

Figure 24.8 Architecture of a natural language generation system for a dialogue system,
after Walker and Rambow (2002).

In the hand-designed prompts that are common in current systems, there are a num-
ber of important conversational and discourse constraintsthat must be implemented.
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Like any discourse, a conversation needs to be coherent (Ch.21). For example,
as Cohen et al. (2004) show, the use of discourse markers and pronouns in the hand-
built system prompts makes the dialogue in (24.15) more natural than the dialogue in
(24.14):

(24.14) Please say the data.
...
Please say the start time.
...
Please say the duration.
...
Please say the subject.

(24.15) First, tell me the date.
...
Next, I’ll need the time it starts.
...
Thanks.<pause> Now, how long is it supposed to last?
...
Last of all, I just need a brief description...

Another important case of discourse coherence occurs when particular prompts
may need to be said to the user repeatedly. In these cases, it is standard in dialogue sys-
tems to usetapered prompts, prompts which get incrementally shorter. The followingTAPERED PROMPTS

example from Cohen et al. (2004) shows a series of (hand-designed) tapered prompts:

(24.16) System: Now, what’s the first company to add to your watch list?
Caller: Cisco
System: What’s the next company name? (Or, you can say, “Finished.”)
Caller: IBM
System: Tell me the next company name, or say, “Finished.”
Caller: Intel
System: Next one?
Caller: America Online.
System: Next?
Caller: ...

Other constraints on generation are more specific to spoken dialogue, and refer
to facts about human memory and attentional processes. For example, when humans
are prompted to give a particular response, it taxes their memory less if the suggested
response is the last thing they hear. Thus as Cohen et al. (2004) point out, the prompt
“To hear the list again, say ‘Repeat list’” is easier for users than “Say ‘Repeat list’ to
hear the list again.”

Similarly, presentation of long lists of query results (e.g., potential flights, or movies)
can tax users. Thus most dialogue systems have content planning rules to deal with this.
In the Mercury system for travel planning described in Seneff (2002), for example, a
content planning rule specifies that if there are more than three flights to describe to
the user, the system will just list the available airlines and describe explicitly only the
earliest flight.
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24.2.4 Dialogue Manager

The final component of a dialogue system is the dialogue manager, which controls the
architecture and structure of the dialogue. The dialogue manager takes input from the
ASR/NLU components, maintains some sort of state, interfaces with the task manager,
and passes output to the NLG/TTS modules.

We saw a very simple dialogue manager in Chapter 2’s ELIZA, whose architecture
was a simple read-substitute-print loop. The system read ina sentence, applied a series
of text transformations to the sentence, and then printed itout. No state was kept; the
transformation rules were only aware of the current input sentence. In addition to its
ability to interact with a task manager, a modern dialogue manager is very different
than ELIZA’s manager in both the amount of state that the manager keeps about the
conversation, and the ability of the manager to model structures of dialogue above the
level of a single response.

Four kinds of dialogue management architectures are most common. The simplest
and most commercially developed architectures, finite-state and frame-based, are dis-
cussed in this section. Later sections discuss the more powerful information-state dia-
logue managers, including a probabilistic version of information-state managers based
on Markov Decision Processes, and finally the more classic plan-based architectures.

What city are you leaving from?

Do you want to go from
 <FROM> to <TO> on <DATE>?

Yes

Where are you going?

What date do you want to leave?

Is it a one-way trip?

What date do you want to return?

Do you want to go from <FROM> to <TO> 
on <DATE> returning on <RETURN>?

No

No Yes

Yes
No

Book the flight

Figure 24.9 A simple finite-state automaton architecture for a dialoguemanager.

The simplest dialogue manager architecture is a finite-state manager. For example,
imagine a trivial airline travel system whose job was to ask the user for a departure city,
a destination city, a time, and whether the trip was round-trip or not. Fig. 24.9 shows
a sample dialogue manager for such a system. The states of theFSA correspond to
questions that the dialogue manager asks the user, and the arcs correspond to actions to
take depending on what the user responds. This system completely controls the conver-
sation with the user. It asks the user a series of questions, ignoring (or misinterpreting)
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anything the user says that is not a direct answer to the system’s question, and then
going on to the next question.

Systems that control the conversation in this way are calledsystem initiative orSYSTEM INITIATIVE

single initiative systems. We say that the speaker that is in control of the conversationSINGLE INITIATIVE

has theinitiative ; in normal human-human dialogue, initiative shifts back and forthINITIATIVE

between the participants (Walker and Whittaker, 1990).1 The limited single-initiative
finite-state dialogue manager architecture has the advantage that the system always
knows what question the user is answering. This means the system can prepare the
speech recognition engine with a specific language model tuned to answers for this
question. Knowing what the user is going to be talking about also makes the task of
the natural language understanding engine easier. Most finite-state systems also al-
low allow universal commands. Universals are commands that can be said anywhereUNIVERSAL

in the dialogue; every dialogue state recognizes the universal commands in addition
to the answer to the question that the system just asked. Common universals include
help, which gives the user a (possibly state-specific) help message,start over (or main
menu), which returns the user to some specified main start state, and some sort of com-
mand to correct the system’s understanding of the users laststatement (San-Segundo
et al., 2001). System-initiative finite-state dialogue managers with universals may be
sufficient for very simple tasks such as entering a credit card number, or a name and
password, on the phone.

Pure system-initiative finite-state dialogue manager architectures are probably too
restricted, however, even for the relatively uncomplicated task of a spoken dialogue
travel agent system. The problem is that pure system-initiative systems require that the
user answer exactly the question that the system asked. But this can make a dialogue
awkward and annoying. Users often need to be able to say something that is not exactly
the answer to a single question from the system. For example,in a travel planning
situation, users often want to express their travel goals with complex sentences that
may answer more than one question at a time, as in Communicator example (24.17)
repeated from Fig. 24.1, or ATIS example (24.18).

(24.17) Hi I’d like to fly to Seattle Tuesday morning

(24.18) I want a flight from Milwaukee to Orlando one way leaving afterfive p.m. on
Wednesday.

A finite state dialogue system, as typically implemented, can’t handle these kinds of
utterances since it requires that the user answer each question as it is asked. Of course
it is theoretically possible to create a finite state architecture which has a separate state
for each possible subset of questions that the user’s statement could be answering, but
this would require a vast explosion in the number of states, making this a difficult
architecture to conceptualize.

Therefore, most systems avoid the pure system-initiative finite-state approach and
use an architecture that allowsmixed initiative , in which conversational initiative canMIXED INITIATIVE

shift between the system and user at various points in the dialogue.

1 Single initiative systems can also be controlled by the user, in which case they are calleduser initiative
systems. Pure user initiative systems are generally used for stateless database querying systems, where the
user asks single questions of the system, which the system converts into SQL database queries, and returns
the results from some database.
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One common mixed initiative dialogue architecture relies on the structure of the
frame itself to guide the dialogue. Theseframe-basedor form-baseddialogue man-FRAMEBASED

FORMBASED agers asks the user questions to fill slots in the frame, but allow the user to guide the
dialogue by giving information that fills other slots in the frame. Each slot may be
associated with a question to ask the user, of the following type:

Slot Question
ORIGIN CITY “From what city are you leaving?”
DESTINATION CITY “Where are you going?”
DEPARTURE TIME “When would you like to leave?”
ARRIVAL TIME “When do you want to arrive?”

A frame-based dialogue manager thus needs to ask questions of the user, filling
any slot that the user specifies, until it has enough information to perform a data base
query, and then return the result to the user. If the user happens to answer two or
three questions at a time, the system has to fill in these slotsand then remember not
to ask the user the associated questions for the slots. Not every slot need have an
associated question, since the dialogue designer may not want the user deluged with
questions. Nonetheless, the system must be able to fill theseslots if the user happens
to specify them. This kind of form-filling dialogue manager thus does away with the
strict constraints that the finite-state manager imposes onthe order that the user can
specify information.

While some domains may be representable with a single frame,others, like the
travel domain, seem to require the ability to deal with multiple frames. In order to han-
dle possible user questions, we might need frames with general route information (for
questions likeWhich airlines fly from Boston to San Francisco?), information about
airfare practices (for questions likeDo I have to stay a specific number of days to get a
decent airfare?) or about car or hotel reservations. Since users may switch from frame
to frame, the system must be able to disambiguate which slot of which frame a given
input is supposed to fill, and then switch dialogue control tothat frame.

Because of this need to dynamically switch control, frame-based systems are often
implemented asproduction rule systems. Different types of inputs cause different
productions to fire, each of which can flexibly fill in different frames. The production
rules can then switch control based on factors such as the user’s input and some simple
dialogue history like the last question that the system asked. The Mercury flight reser-
vation system (Seneff and Polifroni, 2000; Seneff, 2002) uses a large ‘dialogue control
table’ to store 200-350 rules, covering request for help, rules to determine if the user is
referring to a flight in a list (”I’ll take that nine a.m. flight”), and rules to decide which
flights to describe to the user first.

Now that we’ve seen the frame-based architecture, let’s return to our discussion of
conversational initiative. It’s possible in the same agentto allow system-initiative, user-
initiative, and mixed-initiative interactions. We said earlier that initiative refers to who
has control of the conversation at any point. The phrasemixed initiative is generally
used in two ways. It can mean that the system or the user could arbitrarily take or give
up the initiative in various ways (Walker and Whittaker, 1990; Chu-Carroll and Brown,
1997). This kind of mixed initiative is difficult to achieve in current dialogue systems.
In form-based dialogue system, the term mixed initiative isused for a more limited kind
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of shift, operationalized based on a combination of prompt type (open versus directive)
and the type of grammar used in the ASR. Anopen prompt is one in which the systemOPEN PROMPT

gives the user very few constraints, allowing the user to respond however they please,
as in:

How may I help you?

A directive prompt is one which explicitly instructs the user how to respond:DIRECTIVE PROMPT

Sayyesif you accept the call; otherwise, sayno.

In Sec. 24.2.1 we defined arestrictive grammar as a language model which strongly
constrains the ASR system, only recognizing proper responses to a given prompt.

Prompt Type
Grammar Open Directive
Restrictive Doesn’t make sense System Initiative
Non-Restrictive User Initiative Mixed Initiative

Figure 24.10 Operational definition of initiative, following Singh et al. (2002).

In Fig. 24.10 we then give the definition of initiative used inform-based dialogue
systems, following Singh et al. (2002) and others. Here a system initiative interaction
uses a directive prompt and a restrictive grammar; the user is told how to respond, and
the ASR system is constrained to only recognize the responses that are prompted for.
In user initiative, the user is given an open prompt, and the grammar must recognize
any kind of response, since the user could say anything. Finally, in a mixed initiative
interaction, the system gives the user a directive prompt with particular suggestions for
response, but the non-restrictive grammar allows the user to respond outside the scope
of the prompt.

Defining initiative as a property of the prompt and grammar type in this way allows
systems to dynamically change their initiative type for different users and interactions.
Novice users, or users with high speech recognition error, might be better served by
more system initiative. Expert users, or those who happen tospeak more recognizably,
might do well with mixed or user initiative interactions. Wewill see in Sec. 24.6 how
machine learning techniques can be used to choose initiative.

24.2.5 Dialogue Manager Error Handling: Confirmation/Rejection

In a dialogue system, mishearings are a particularly important class of problems, be-
cause speech recognition has such a high error rate. It is therefore important for di-
alogue systems to make sure that they have achieved the correct interpretation of the
user’s input. This is generally done by two methods:confirming understandings with
the user, andrejecting utterances that the system is likely to have misunderstood.

Various strategies can be employed for confirmation with theuser. A system us-
ing theexplicit confirmation strategy asks the user a direct question to confirm theirEXPLICIT

CONFIRMATION

understanding. Here are two examples of explicit confirmations from travel planning
systems. The (boldface) confirmation questions are both yes-no questions, one using a
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single sentence, the other presenting a declarative sentence followed by a tag question
(a short question phrase like “right?” or “isn’t it?”):

S: Which city do you want to leave from?
U: Baltimore.
S: Do you want to leave from Baltimore?
U: Yes.
U: I’d like to fly from Denver Colorado to New York City on September

twenty first in the morning on United Airlines
S: Let’s see then. I have you going from Denver Colorado to New York

on September twenty first. Is that correct?
U: Yes

A system using theimplicit confirmation strategy, rather than asking a direct ques-IMPLICIT
CONFIRMATION

tion, uses thedemonstrationor displaygrounding strategies described above, confirm-
ing to the user by repeating back what the system understood the user to have said:

U: I want to travel to Berlin
S: When do you want to travel to Berlin?
U2: Hi I’d like to fly to Seattle Tuesday Morning
A3: Traveling to Seattle on Tuesday, August eleventh in the morning.

Your full name?

Explicit and implicit confirmation have complementary strengths. Explicit confir-
mation makes it easier for users to correct the system’s misrecognitions since the user
can just answer ‘no’ to the confirmation question. But explicit confirmation is awkward
and increases the length of the conversation (Danieli and Gerbino, 1995; Walker et al.,
1998). The explicit confirmation dialogue fragments above sound non-natural and def-
initely non-human; implicit confirmation is much more conversationally natural.

Confirmation is just one kind of conversational action that asystem has to express
lack of understanding. Another option isrejection. An ASR system rejects an utter-REJECTION

ance by giving the user a prompt likeI’m sorry, I didn’t understand that.
Sometimes utterances are rejected multiple times. This might mean that the user

is using language that the system is unable to follow. Thus when an utterance is re-
jected, systems often follow a strategy ofprogressive promptingor escalating detailPROGRESSIVE

PROMPTING

(Yankelovich et al., 1995; Weinschenk and Barker, 2000) as in this example from Co-
hen et al. (2004):

System: When would you like to leave?
Caller: Well, um, I need to be in New York in time for the first World Series

game.
System: <reject>. Sorry, I didn’t get that. Please say the month and day

you’d like to leave.
Caller: I wanna go on October fifteenth.

In this example, instead of just repeating ‘When would you like to leave?’, the re-
jection prompt gives the caller more guidance about how to formulate an utterance the
system will understand. Theseyou-can-sayhelp messages are important in helping im-
prove systems understanding performance (Bohus and Rudnicky, 2005). If the caller’s
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utterance gets rejected yet again, the prompt can reflect this (‘I still didn’t get that’),
and give the caller even more guidance.

An alternative strategy for error handling israpid reprompting , in which the sys-RAPID
REPROMPTING

tem rejects an utterance just by saying “I’m sorry?” or “Whatwas that?”. Only if the
caller’s utterance is rejected a second time does the systemstart applying progressive
prompting. Cohen et al. (2004) summarizes experiments showing that users greatly
prefer rapid reprompting as a first-level error prompt.

24.3 VOICEXML

VoiceXML is the Voice Extensible Markup Language, an XML-based dialogue designVOICEXML

language released by the W3C, and the most commonly used of the various speech
markup languages (such as SALT). The goal of VoiceXML (orvxml) is to create simpleVXML

audio dialogues of the type we have been describing, making use of ASR and TTS,
and dealing with very simple mixed-initiative in a frame-based architecture. While
VoiceXML is more common in the commercial rather than academic setting, it is a
good way for the student to get a hands-on grasp of dialogue system design issues.

<form>
<field name="transporttype">

<prompt>
Please choose airline, hotel, or rental car.

</prompt>
<grammar type="application/x=nuance-gsl">

[airline hotel "rental car"]
</grammar>

</field>
<block>

<prompt>
You have chosen <value expr="transporttype">.

</prompt>
</block>

</form>

Figure 24.11 A minimal VoiceXML script for a form with a single field. User is
prompted, and the response is then repeated back.

A VoiceXML document contains a set of dialogues, each of which can be aformor
amenu. We will limit ourselves to introducing forms; seehttp://www.voicexml.
org/ for more information on VoiceXML in general. The VoiceXML document in
Fig. 24.11 defines a form with a single field named ‘transporttype’. The field has an
attached prompt,Please choose airline, hotel, or rental car, which can be passed to
the TTS system. It also has a grammar (language model) which is passed to the speech
recognition engine to specify which words the recognizer isallowed to recognize. In
the example in Fig. 24.11, the grammar consists of a disjunction of the three words
airline, hotel, andrental car.

A <form> generally consists of a sequence of<field> s, together with a few
other commands. Each field has a name (the name of the field in Fig. 24.11 istransporttype )
which is also the name of the variable where the user’s response will be stored. The
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prompt associated with the field is specified via the<prompt> command. The gram-
mar associated with the field is specified via the<grammar> command. VoiceXML
supports various ways of specifying a grammar, including XML Speech Grammar,
ABNF, and commercial standards, like Nuance GSL. We will be using the Nuance
GSL format in the following examples.

The VoiceXML interpreter walks through a form in document order, repeatedly
selecting each item in the form. If there are multiple fields,the interpreter will visit
each one in order. The interpretation order can be changed invarious ways, as we will
see later. The example in Fig. 24.12 shows a form with three fields, for specifying the
origin, destination, and flight date of an airline flight.

The prologue of the example shows two global defaults for error handling. If
the user doesn’t answer after a prompt (i.e., silence exceeds a timeout threshold), the
VoiceXML interpreter will play the<noinput> prompt. If the user says something,
but it doesn’t match the grammar for that field, the VoiceXML interpreter will play
the<nomatch> prompt. After any failure of this type, it is normal to re-askthe user
the question that failed to get a response. Since these routines can be called from any
field, and hence the exact prompt will be different every time, VoiceXML provides a
<reprompt\> command, which will repeat the prompt for whatever field caused the
error.

The three fields of this form show another feature of VoiceXML, the<filled>
tag. The<filled> tag for a field is executed by the interpreter as soon as the field
has been filled by the user. Here, this feature is used to give the user a confirmation of
their input.

The last field,departdate , shows another feature of VoiceXML, thetype at-
tribute. VoiceXML 2.0 specifies seven built-in grammar types,boolean , currency ,
date , digits , number , phone , andtime . Since the type of this field isdate ,
a data-specific language model (grammar) will be automatically passed to the speech
recognizer, so we don’t need to specify the grammar here explicitly.

Fig. 24.13 gives a final example which shows mixed initiative. In a mixed initiative
dialogue, users can choose not to answer the question that was asked by the system.
For example, they might answer a different question, or use along sentence to fill in
multiple slots at once. This means that the VoiceXML interpreter can no longer just
evaluate each field of the form in order; it needs to skip fieldswhose values are set.
This is done by aguard condition, a test that keeps a field from being visited. The
default guard condition for a field tests to see if the field’s form item variable has a
value, and if so the field is not interpreted.

Fig. 24.13 also shows a much more complex use of a grammar. This grammar is a
CFG grammar with two rewrite rules, namedFlight andCity . The Nuance GSL
grammar formalism uses parentheses () to mean concatenation and square brackets []
to mean disjunction. Thus a rule like (24.19) means thatWantsentence can be ex-
panded asi want to fly or i want to go , andAirports can be expanded
assan francisco or denver .

(24.19) Wantsentence (i want to [fly go])
Airports [(san francisco) denver]

Grammar rules can refer to other grammar rules recursively,and so in the grammar
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<noinput>
I’m sorry, I didn’t hear you. <reprompt/>
</noinput>

<nomatch>
I’m sorry, I didn’t understand that. <reprompt/>
</nomatch>

<form>
<block> Welcome to the air travel consultant. </block>
<field name="origin">

<prompt> Which city do you want to leave from? </prompt>
<grammar type="application/x=nuance-gsl">

[(san francisco) denver (new york) barcelona]
</grammar>
<filled>

<prompt> OK, from <value expr="origin"> </prompt>
</filled>

</field>
<field name="destination">

<prompt> And which city do you want to go to? </prompt>
<grammar type="application/x=nuance-gsl">

[(san francisco) denver (new york) barcelona]
</grammar>
<filled>

<prompt> OK, to <value expr="destination"> </prompt>
</filled>

</field>
<field name="departdate" type="date">

<prompt> And what date do you want to leave? </prompt>
<filled>

<prompt> OK, on <value expr="departdate"> </prompt>
</filled>

</field>
<block>

<prompt> OK, I have you are departing from <value expr="orig in">
to <value expr="destination"> on <value expr="departdate ">

</prompt>
send the info to book a flight...

</block>
</form>

Figure 24.12 A VoiceXML script for a form with 3 fields, which confirms each field
and handles thenoinput andnomatch situations.

in Fig. 24.13 we see the grammar forFlight referring to the rule forCity .
VoiceXML grammars take the form of CFG grammars with optional semantic

attachments. The semantic attachments are generally either a text string (such as
"denver, colorado" ) or a slot and a filler. We can see an example of the for-
mer in the semantic attachments for theCity rule (thereturn statements at the end
of each line), which pass up the city and state name. The semantic attachments for the
Flight rule shows the latter case, where the slot (<origin> or <destination>
or both) is filled with the value passed up in the variablex from theCity rule.

Because Fig. 24.13 is a mixed initiative grammar, the grammar has to be applicable
to any of the fields. This is done by making the expansion forFlight a disjunction;
note that it allows the user to specify only the origin city, only the destination city, or
both.
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<noinput> I’m sorry, I didn’t hear you. <reprompt/> </noinp ut>

<nomatch> I’m sorry, I didn’t understand that. <reprompt/> </nomatch>

<form>
<grammar type="application/x=nuance-gsl">

<![ CDATA[
Flight ( ?[

(i [wanna (want to)] [fly go])
(i’d like to [fly go])
([(i wanna)(i’d like a)] flight)

]
[

( [from leaving departing] City:x) {<origin $x>}
( [(?going to)(arriving in)] City:x) {<destination $x>}
( [from leaving departing] City:x

[(?going to)(arriving in)] City:y) {<origin $x> <destinat ion $y>}
]
?please

)
City [ [(san francisco) (s f o)] {return( "san francisco, cal ifornia")}

[(denver) (d e n)] {return( "denver, colorado")}
[(seattle) (s t x)] {return( "seattle, washington")}

]
]]> </grammar>

<initial name="init">
<prompt> Welcome to the air travel consultant. What are your travel plans? </prompt>

</initial>

<field name="origin">
<prompt> Which city do you want to leave from? </prompt>
<filled>

<prompt> OK, from <value expr="origin"> </prompt>
</filled>

</field>
<field name="destination">

<prompt> And which city do you want to go to? </prompt>
<filled>

<prompt> OK, to <value expr="destination"> </prompt>
</filled>

</field>
<block>

<prompt> OK, I have you are departing from <value expr="orig in">
to <value expr="destination">. </prompt>

send the info to book a flight...
</block>

</form>

Figure 24.13 A mixed initiative VoiceXML dialogue. The grammar allows sentences
which specify the origin or destination cities or both. Usercan respond to the initial prompt
by specifying origin city, destination city, or both.

24.4 DIALOGUE SYSTEM DESIGN AND EVALUATION

24.4.1 Designing Dialogue Systems

How does a dialogue system developer choose dialogue strategies, architectures, prompts,
error messages, and so on? This process is often calledVUI (Voice User Interface)VUI

design. Theuser-centered designprinciples of Gould and Lewis (1985) are:
1. Study the user and task:Understand the potential users and the nature of the

task, via interviews with users and investigation of similar systems, and study of related
human-human dialogues.
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2. Build simulations and prototypes:In Wizard-of-Oz systems(WOZ) or PNAM-WIZARDOFOZ

BIC (Pay No Attention to the Man BehInd the Curtain) systems,the users interact with
what they think is a software system, but is in fact a human operator (“wizard”) be-
hind some disguising interface software (e.g. Gould et al.,1983; Good et al., 1984;
Fraser and Gilbert, 1991). The name comes from the children’s bookThe Wizard of
Oz (Baum, 1900), in which the Wizard turned out to be just a simulation controlled
by a man behind a curtain. A WOZ system can be used to test out anarchitecture
before implementation; only the interface software and databases need to be in place.
The wizard’s linguistic output can be be disguised by a text-to-speech system, or via
text-only interactions. It is difficult for the wizard to exactly simulate the errors, limi-
tations, or time constraints of a real system; results of WOZstudies are thus somewhat
idealized, but still can provide a useful first idea of the domain issues.

3. Iteratively test the design on users:An iterative design cycle with embed-
ded user testing is essential in system design (Nielsen, 1992; Cole et al., 1994, 1997;
Yankelovich et al., 1995; Landauer, 1995). For example Stifelman et al. (1993) built
a system that originally required the user to press a key to interrupt the system. They
found in user testing that users instead tried to interrupt the system (barge-in), sug-BARGEIN

gesting a redesign of the system to recognize overlapped speech. The iterative method
is also very important for designing prompts which cause theuser to respond in under-
standable or normative ways: Kamm (1994) and Cole et al. (1993) found thatdirective
prompts (“Sayyesif you accept the call, otherwise, sayno”) or the use of constrainedDIRECTIVE PROMPTS

forms (Oviatt et al., 1993) produced better results than open prompts like “Will you
accept the call?”. Simulations can also be used at this stage; user simulations that in-
teract with a dialogue system can help test the interface forbrittleness or errors (Chung,
2004).

See Cohen et al. (2004), Harris (2005) for more details on conversational interface
design.

24.4.2 Dialogue System Evaluation

As the previous section suggested, user testing and evaluation is crucial in dialogue
system design. Computing auser satisfaction ratingcan be done by having users
interact with a dialogue system to perform a task, and then having them complete
a questionnaire (Shriberg et al., 1992; Polifroni et al., 1992; Stifelman et al., 1993;
Yankelovich et al., 1995; Möller, 2002). For example Fig. 24.14 shows multiple-choice
questions adapted from Walker et al. (2001); responses are mapped into the range of 1
to 5, and then averaged over all questions to get a total user satisfaction rating.

It is often economically infeasible to run complete user satisfaction studies after
every change in a system. For this reason it is often useful tohave performance evalua-
tion heuristics which correlate well with human satisfaction. A number of such factors
and heuristics have been studied. One method that has been used to classify these fac-
tors is based on the idea that an optimal dialogue system is one which allows a user to
accomplish their goals (maximizing task success) with the least problems (minimizing
costs). Then we can study metrics which correlate with thesetwo criteria.
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TTS Performance Was the system easy to understand ?
ASR Performance Did the system understand what you said?
Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?
System Response How often was the system sluggish and slow to reply to you?
Expected Behavior Did the system work the way you expected it to?
Future Use Do you think you’d use the system in the future?

Figure 24.14 User satisfaction survey, adapted from Walker et al. (2001).

Task Completion Success: Task success can be measured by evaluating the correct-
ness of the total solution. For a frame-based architecture,this might be the percentage
of slots that were filled with the correct values, or the percentage of subtasks that were
completed (Polifroni et al., 1992). Since different dialogue systems may be applied
to different tasks, it is hard to compare them on this metric,so Walker et al. (1997)
suggested using the Kappa coefficient,κ, to compute a completion score which is nor-
malized for chance agreement and better enables cross-system comparison.

Efficiency Cost: Efficiency costs are measures of the system’s efficiency at helping
users. This can be measured via the total elapsed time for thedialogue in seconds,
the number of total turns or of system turns, or the total number of queries (Polifroni
et al., 1992). Other metrics include the number of system non-responses, and the “turn
correction ratio”: the number of system or user turns that were used solely to correct
errors, divided by the total number of turns (Danieli and Gerbino, 1995; Hirschman
and Pao, 1993).

Quality Cost: Quality cost measures other aspects of the interaction thataffect users’
perception of the system. One such measure is the number of times the ASR system
failed to return any sentence, or the number of ASR rejectionprompts. Similar met-
rics include the number of times the user had tobarge-in (interrupt the system), orBARGEIN

the number of time-out prompts played when the user didn’t respond quickly enough.
Other quality metrics focus on how well the system understood and responded to the
user. This can include the inappropriateness (verbose or ambiguous) of the system’s
questions, answers, and error messages (Zue et al., 1989), or the correctness of each
question, answer, or error message (Zue et al., 1989; Polifroni et al., 1992). A very
important quality cost isconcept accuracyor concept error rate, which measures theCONCEPT

ACCURACY

percentage of semantic concepts that the NLU component returns correctly. For frame-
based architectures this can be measured by counting the percentage of slots that are
filled with the correct meaning. For example if the sentence ‘I want to arrive in Austin
at 5:00’ is misrecognized to have the semantics ”DEST-CITY:Boston, Time: 5:00” the
concept accuracy would be 50% (one of two slots are wrong).

How should these success and cost metrics be combined and weighted? One ap-
proach is the PARADISE algorithm (PARAdigm for DIalogue System Evaluation),
which applies multiple regression to this problem. The algorithm first assigns each
dialogue a user satisfaction rating using questionnaires like the one in Fig. 24.14. A
set of cost and success factors like those above is then treated as a set of independent
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MAXIMIZE USER SATISFACTION

MAXIMIZE TASK SUCCESS MINIMIZE COSTS

EFFICIENCY MEASURES QUALITY MEASURES

Figure 24.15 PARADISE’s structure of objectives for spoken dialogue performance.
After Walker et al. (2001).

factors; multiple regression is used to train a weight for each factor, measuring its im-
portance in accounting for user satisfaction. Fig. 24.15 shows the particular model of
performance that the PARADISE experiments have assumed. Each box is related to
a set of factors that we summarized on the previous page. The resulting metric can
be used to compare quite different dialogue strategies; evaluations using methods like
PARADISE have suggested that task completion and concept accuracy are may be the
most important predictors of user satisfaction; see Walkeret al. (1997) and Walker et al.
(2001, 2002).

A wide variety of other evaluation metrics and taxonomies have been proposed for
describing the quality of spoken dialogue systems (Fraser,1992; Möller, 2002, 2004,
inter alia).

24.5 INFORMATION-STATE & D IALOGUE ACTS

The basic frame-based dialogue systems we have introduced so far are only capable
of limited domain-specific conversations. This is because the semantic interpretation
and generation processes in frame-based dialogue systems are based only on what is
needed to fill slots. In order to be be usable for more than justform-filling applications,
a conversational agent needs to be able to do things like decide when the user has
asked a question, made a proposal, or rejected a suggestion,and needs to be able to
ground a users utterance, ask clarification questions, and suggest plans. This suggests
that a conversational agent needs sophisticated models of interpretation and generation
in terms of speech acts and grounding, and a more sophisticated representation of the
dialogue context than just a list of slots.

In this section we sketch a more advanced architecture for dialogue management
which allows for these more sophisticated components. Thismodel is generally called
theinformation-state architecture (Traum and Larsson, 2003, 2000), although we willINFORMATIONSTATE

use the term loosely to include architectures such as Allen et al. (2001). A probabilis-
tic architecture which can be seen as an extension of the information-state approach,
theMarkov decision processmodel, will be described in the next section. The term
information-state architecture is really a cover term for a number of quite different
efforts toward more sophisticated agents; we’ll assume here a structure consisting of 5
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components:

• the information state (the ‘discourse context’ or ‘mental model’)
• a dialogue act interpreter (or “interpretation engine”)
• a dialogue act generator (or “generation engine”)
• a set of update rules, which update the information state as dialogue acts are

interpreted, and which include rules to generate dialogue acts.
• a control structure to select which update rules to apply

The terminformation state is intended to be very abstract, and might include
things like the discourse context and the common ground of the two speakers, the be-
liefs or intentions of the speakers, user models, and so on. Crucially, information state
is intended to be a more complex notion than the static statesin a finite-state dialogue
manager; the current state includes the values of many variables, the discourse context,
and other elements that are not easily modeled by a state-number in a finite network.

Dialogue acts are an extension of speech acts which integrate ideas from grounding
theory, and will be defined more fully fully in the next subsection. The interpretation
engine takes speech as input and figures out sentential semantics and an appropriate
dialogue act. The dialogue act generator takes dialogue acts and sentential semantics
as input and produces text/speech as output.

Finally, the update rules modify the information state withthe information from the
dialogue acts. These update rules are a generalization of the production rules used in
frame-based dialogue systems described above (Seneff and Polifroni, 2000,inter alia).
A subset of update rules, calledselection rules, are used to generate dialogue acts.
For example, an update rule might say that when the interpretation engine recognizes
an assertion, that the information state should be updated with the information in the
assertion, and an obligation to perform a grounding act needs to be added to the infor-
mation state. When a question is recognized, an update rule might specify the need to
answer the question. We can refer to the combination of the update rules and control
structure as theBehavioral Agent(Allen et al., 2001), as suggested in Fig. 24.16.

Natural Language Understanding

Dialogue Act Interpreter

Natural Language Generation

Behavioral Agent
   -update rules
   -control

Dialogue Act Generator

Speech

Information State

   -discourse context
   -beliefs
   -goals
   -user model
   -task context

Speech

Figure 24.16 A version of the information-state approach to dialogue architecture.

While the intuition of the information-state model is quitesimple, the details can
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be quite complex. The information state might involve rich discourse models such as
Discourse Representation Theory or sophisticated models of the user’s belief, desire,
and intention (which we will return to in Sec. 24.7). Insteadof describing a particular
implementation here, we will focus in the next few sections on the dialogue act inter-
pretation and generation engines, and a probabilistic information-state architecture via
Markov decision processes.

24.5.1 Dialogue Acts

As we implied above, the speech acts as originally defined by Austin don’t model key
features of conversation such as grounding, contributions, adjacency pairs and so on.
In order to capture these conversational phenomena, we use an extension of speech
acts calleddialogue acts(Bunt, 1994) (ordialogue movesor conversational movesDIALOGUE ACT

MOVES (Power, 1979; Carletta et al., 1997b). A dialogue act extends speech acts with internal
structure related specifically to these other conversational functions (Allen and Core,
1997; Bunt, 2000).

A wide variety of dialogue act tagsets have been proposed. Fig. 24.17 shows a
very domain-specific tagset for the Verbmobil two-party scheduling domain, in which
speakers were asked to plan a meeting at some future date. Notice that it has many very
domain-specific tags, such as SUGGEST, used for when someone proposes a particular
date to meet, and ACCEPTand REJECT, used to accept or reject a proposal for a date.
Thus it has elements both from the presentation and acceptance phases of the Clark
contributions discussed on page 7.

Tag Example

THANK Thanks
GREET Hello Dan
INTRODUCE It’s me again
BYE Allright bye
REQUEST-COMMENT How does that look?
SUGGEST from thirteenth through seventeenth June
REJECT No Friday I’m booked all day
ACCEPT Saturday sounds fine,
REQUEST-SUGGEST What is a good day of the week for you?
INIT I wanted to make an appointment with you
GIVE REASON Because I have meetings all afternoon
FEEDBACK Okay
DELIBERATE Let me check my calendar here
CONFIRM Okay, that would be wonderful
CLARIFY Okay, do you mean Tuesday the 23rd?
DIGRESS [we could meet for lunch] and eat lots of ice cream
MOTIVATE We should go to visit our subsidiary in Munich
GARBAGE Oops, I-

Figure 24.17 The 18 high-level dialogue acts used in Verbmobil-1, abstracted over a
total of 43 more specific dialogue acts. Examples are from Jekat et al. (1995).

There are a number of more general and domain-independent dialogue act tagsets.
In the DAMSL (Dialogue Act Markup in Several Layers) architecture inspired by the
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Act type Sample Acts
turn-taking take-turn, keep-turn, release-turn, assign-turn
grounding acknowledge, repair, continue
core speech acts inform, wh-question, accept, request, offer
argumentation elaborate, summarize, question-answer, clarify

Figure 24.18 Conversation act types, from Traum and Hinkelman (1992).

work of Clark and Schaefer (1989) and Allwood et al. (1992), Allwood (1995) each
utterance is tagged for two functions,forward looking functions like speech act func-
tions, and thebackward looking function, like grounding and answering, which ‘look
back’ to the interlocutor’s previous utterance (Allen and Core, 1997; Walker et al.,
1996; Carletta et al., 1997a; Core et al., 1999).

Traum and Hinkelman (1992) proposed that the core speech acts and grounding
acts that constitute dialogue acts could fit into an even richer hierarchy ofconversation
acts. Fig. 24.18 shows the four levels of act types they propose, with the two middleCONVERSATION

ACTS

levels corresponding to DAMSL dialogue acts (grounding andcore speech acts). The
two new levels include turn-taking acts andargumentationrelation, a conversational
version of the coherence relations of Ch. 21.

The acts form a hierarchy, in that performance of an act at a higher level (for exam-
ple a core speech act) entails performance of a lower level act (taking a turn). We will
see the use of conversational acts in generation later on in this section, and will return
to the question of coherence and dialogue structure in Sec. 24.7.

24.5.2 Interpreting Dialogue Acts

How can we do dialogue act interpretation, deciding whethera given input is aQUES-
TION, a STATEMENT, a SUGGEST(directive), or anACKNOWLEDGEMENT? Perhaps
we can just rely on surface syntax? We saw in Ch. 12 that yes-no-questions in English
haveaux-inversion (the auxiliary verb precedes the subject) statements have declara-
tive syntax (no aux-inversion), and commands have no syntactic subject:

(24.20) YES-NO-QUESTION Will breakfast be served on USAir 1557?
STATEMENT I don’t care about lunch
COMMAND Show me flights from Milwaukee to Orlando.

Alas, as is clear from Abbott and Costello’s famousWho’s on Firstroutine at the be-
ginning of the chapter, the mapping from surface form to illocutionary act is complex.
For example, the following ATIS utterance looks like aYES-NO-QUESTION meaning
something likeAre you capable of giving me a list of. . . ?:

(24.21) Can you give me a list of the flights from Atlanta to Boston?

In fact, however, this person was not interested in whether the system wascapable
of giving a list; this utterance was a polite form of aREQUEST, meaning something
more likePlease give me a list of. . .. Thus what looks on the surface like aQUESTION

can really be aREQUEST.
Similarly, what looks on the surface like aSTATEMENT can really be aQUESTION.

The very commonCHECK question (Carletta et al., 1997b; Labov and Fanshel, 1977),
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is used to ask an interlocutor to confirm something that she has privileged knowledge
about.CHECKShave declarative surface form:

A OPEN-OPTION I was wanting to make some arrangements for a trip that I’m going
to be taking uh to LA uh beginning of the week after next.

B HOLD OK uh let me pull up your profile and I’ll be right with you here.
[pause]

B CHECK And you said you wanted to travel next week?
A ACCEPT Uh yes.

Utterances that use a surface statement to ask a question, ora surface question to
issue a request, are calledindirect speech acts.INDIRECT SPEECH

ACTS

In order to resolve these dialogue act ambiguities we can model dialogue act inter-
pretation as a supervised classification task, with dialogue act labels as hidden classes
to be detected. We train classifiers on a corpus in which each utterance is hand-labeled
for dialogue acts. The features used for dialogue act interpretation derive from the
conversational context and from the act’smicrogrammar (Goodwin, 1996) (its char-MICROGRAMMAR

acteristic lexical, grammatical, and prosodic properties):

1. Words and Collocations:Pleaseor would youis a good cue for aREQUEST, are
youfor YES-NO-QUESTIONS, detected viadialogue-specificN-gram grammars.

2. Prosody: Rising pitch is a good cue for aYES-NO-QUESTION, while declarative
utterances (likeSTATEMENTS) havefinal lowering: a drop in F0 at the end ofFINAL LOWERING

the utterance. Loudness or stress can help distinguish theyeahthat is anAGREE-
MENT from theyeahthat is aBACKCHANNEL. We can extract acoustic correlates
of prosodic features like F0, duration, and energy.

3. Conversational Structure: A yeahfollowing a proposal is probably anAGREE-
MENT; ayeahafter anINFORM is likely a BACKCHANNEL. Drawing on the idea
of adjacency pairs (Schegloff, 1968; Sacks et al., 1974), wecan model conversa-
tional structure as a bigram of dialogue acts

Formally our goal is to find the dialogue actd∗ that has the highest posterior prob-
ability P(d|o) given the observation of a sentence,

d∗ = argmax
d

P(d|o)

= argmax
d

P(d)P(o|d)

P(o)

= argmax
d

P(d)P(o|d)(24.22)

Making some simplifying assumptions (that the prosody of the sentencef and the
word sequenceW are independent, and that the prior of a dialogue act can be modeled
by the conditional given the previous dialogue act) we can estimate the observation
likelihood for a dialogue actd as in (24.23):

P(o|d) = P( f |d)P(W|d)(24.23)

d∗ = argmax
d

P(d|dt−1)P( f |d)P(W|d)(24.24)
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where

P(W|d) =
N

∏
i=2

P(wi |wi−1...wi−N+1,d)(24.25)

Training the prosodic predictor to computeP( f |d) has often been done with a deci-
sion tree. Shriberg et al. (1998), for example, built a CART tree to distinguish the four
dialogue actsSTATEMENT (S), YES-NO QUESTION (QY), DECLARATIVE-QUESTION

like CHECK (QD) andWH-QUESTION(QW) based on acoustic features as the slope of
F0 at the end of the utterance, the average energy at different places in the utterance,
and various normalized duration measures. Fig. 24.19 showsthe decision tree which
gives the posterior probabilityP(d| f ) of a dialogue actd type given a set of acoustic
featuresf . Note that the difference between S and QY toward the right ofthe tree is
based on the featurenorm f0 diff (normalized difference between mean F0 of end
and penultimate regions), while the difference between QW and QD at the bottom left
is based onutt grad , which measures F0 slope across the whole utterance.

Since decision trees produce a posterior probabilityP(d| f ), and equation (24.24)
requires a likelihoodP( f |d), we need to massage the output of the decision tree by
Bayesian inversion (dividing by the priorP(di) to turn it into a likelihood); we saw this
same process with the use of SVMs and MLPs instead of Gaussianclassifiers in speech
recognition in Sec.??. After all our simplifying assumptions the resulting equation for
choosing a dialogue act tag would be:

d∗ = argmax
d

P(d)P( f |d)P(W|d)

= argmax
d

P(d|dt−1)
P(d| f )
P(d)

N

∏
i=2

P(wi |wi−1...wi−N+1,d)(24.26)

24.5.3 Detecting Correction Acts

In addition to general-purpose dialogue act interpretation, we may want to build special-
purpose detectors for particular acts. Let’s consider one such detector, for the recog-
nition of usercorrection of system errors. If a dialogue system misrecognizes anCORRECTION

utterance (usually as a result of ASR errors) the user will generally correct the error by
repeating themselves, or rephrasing the utterance. Dialogue systems need to recognize
that users are doing a correction, and then figure out what theuser is trying to correct,
perhaps by interacting with the user further.

Unfortunately, corrections are actuallyharderto recognize than normal sentences.
Swerts et al. (2000) found that corrections in the TOOT dialogue system were misrec-
ognized about twice as often (in terms of WER) as non-corrections. One reason for this
is that speakers use a very different prosodic style calledhyperarticulation for correc-HYPERARTICULA

TION

tions. In hyperarticulated speech, some part of the utterance has exaggerated energy,
duration, or F0 contours, such asI said BAL-TI-MORE, not Boston(Wade et al., 1992;
Oviatt et al., 1998; Levow, 1998; Hirschberg et al., 2001).
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QD S QY QW 
  0.25 0.25 0.25 0.25

QW 
 0.2561 0.1642 0.2732 0.3065

cont_speech_frames < 196.5

S 
 0.2357 0.4508 0.1957 0.1178

cont_speech_frames >= 196.5

QW 
 0.2327 0.2018 0.1919 0.3735

end_grad < 32.345

QY 
 0.2978 0.09721 0.4181 0.1869

end_grad >= 32.345

S 
 0.276 0.2811 0.1747 0.2683

f0_mean_zcv < 0.76806

QW 
 0.1859 0.116 0.2106 0.4875

f0_mean_zcv >= 0.76806

QW 
 0.2935 0.1768 0.2017 0.328

cont_speech_frames_n < 98.388

S 
 0.2438 0.4729 0.125 0.1583

cont_speech_frames_n >= 98.388

QW 
 0.2044 0.1135 0.1362 0.5459

utt_grad < -36.113

QD 
 0.3316 0.2038 0.2297 0.2349

utt_grad >= -36.113

QW 
 0.3069 0.08995 0.1799 0.4233

stdev_enr_utt < 0.02903

S 
 0.2283 0.5668 0.1115 0.09339

stdev_enr_utt >= 0.02903

S 
 0.2581 0.2984 0.2796 0.164

cont_speech_frames_n < 98.334

S 
 0.2191 0.5637 0.1335 0.08367

cont_speech_frames_n >= 98.334

S 
 0.3089 0.3387 0.1419 0.2105

norm_f0_diff < 0.064562

QY 
 0.1857 0.241 0.4756 0.09772

norm_f0_diff >= 0.064562

S 
 0.3253 0.4315 0.1062 0.137

f0_mean_zcv < 0.76197

QW 
 0.2759 0.1517 0.2138 0.3586

f0_mean_zcv >= 0.76197

Figure 24.19 Decision tree for classifyingDECLARATIVE QUESTIONS(QD), STATEMENT (S),YES-NO QUES-
TIONS (QY), andWH-QUESTIONS(QW), after Shriberg et al. (1998). Each node in the tree shows four probabil-
ities, one for each of the four dialogue acts in the order QD, S, QY, QW; the most likely of the four is shown as
the label for the node. Note that questions are shorter than statements (contspeechframes), that QY’s rise at the
end (endgrad), and that QD’s rise throughout the utterance (uttgrad).

Speakers use various strategies to make corrections; Swerts et al. (2000) categorize
these as repetition (REP), paraphrase (PAR), adding content (ADD), and omitting con-
tent (OMIT), as shown in Fig. 24.20. They found that most corrections were repetitions
and omissions rather than paraphrases.

Various machine learning classifiers have been applied to the problem of detecting
correction acts. Useful features include lexical information (words like “no”, “correc-
tion”, “I don’t”, swear words), prosodic and hyperarticulation features (increases in
F0 range, pause duration, and word duration, generally normalized by the values for
previous sentences), features indicating utterance length, ASR features (confidence,
language model probability), and various dialogue features (Levow, 1998; Hirschberg
et al., 2001; Bulyko et al., 2005).

In addition to correction detection, a conversational agent also needs appropriate
control or update rules in the dialogue manager (Bulyko et al., 2005).

24.5.4 Generating Dialogue Acts: Confirmation and Rejection

Deciding which dialogue acts to generate has received much less attention than dia-
logue act interpretation. Stent (2002) is one recent model of dialogue act generation in
the TRIPS system (Allen et al., 2001), based on ConversationActs (page 32) and the
BDI model to be described in Sec. 24.7. Stent uses a set of update rules for content
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Turn Corr
Type

S On which day of the week do you want to leave?
S Sorry, I didn’t hear anything from you. Please tell me your departure date
U Um tomorrow NA
S You can say the departure date. For example, you can say ’today’ or ’tomorrow’.

Or you can say ’Monday’, ’Tuesday’, ’Wednesday’...
U Tomorrow REP
S You can say the departure date. For example, you can say ’today’ or ’tomorrow’.

Or you can say ’Monday’, ’Tuesday’, ’Wednesday’...
U Saturday PAR
S Do you want to leave on Saturday?
U Yes
S What time do you want to leave?
U Eight o’clock A M
S Do you want to leave around ten oclock p-m
U Eight o’clock OMIT
S Do you want to leave around ten oclock p-m
U No OMIT
S What time do you want to leave?
U Eight o’clock A M ADD

Figure 24.20 Dialogue fragment from the TOOT system labeled for correction type,
from Swerts et al. (2000).

Cue Turn-taking acts signaled
um KEEP-TURN, TAKE-TURN, RELEASE-TURN
<lipsmack>, <click>, so, uh KEEP-TURN, TAKE-TURN
you know, isn’t that so ASSIGN-TURN

Figure 24.21 Language used to perform turn-taking acts, from Stent (2002).

planning. One such rule says that if a user has just released the turn, the system can
perform a TAKE-TURN act. Another rule says that if the systemhas a problem-solving
need to summarize some information for the user, then it should use the ASSERT con-
versation act with that information as the semantic content. The content is then mapped
into words using the standard techniques of natural language generation systems (see
e.g., Reiter and Dale (2000)) After an utterance is generated, the information state
(discourse context) is updated with its words, syntactic structure, semantic form, and
semantic and conversation act structure. We will sketch in Sec. 24.7 some of the issues
in modeling and planning that make generation a tough ongoing research effort.

Stent showed that a crucial issue in dialogue generation that doesn’t occur in mono-
logue text generation is turn-taking acts. Fig. 24.21 showssome example of the turn-
taking function of various linguistic forms, from her labeling of conversation acts in
the Monroe corpus.

A focus of much work on dialogue act generation is the task of of generating the
confirmation andrejection acts discussed in Sec. 24.2.5. Because this task is often
solved by probabilistic methods, we’ll begin this discussion here, but continue it in the
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following section.
For example, while early dialogue systems tended to fix the choice ofexplicit ver-

susimplicit confirmation, recent systems treat the question of how to confirm more like
a dialogue act generation task, in which the confirmation strategy is adaptive, changing
from sentence to sentence.

Various factors can be included in the information-state and then used as features
to a classifier in making this decision:

ASR confidence: Theconfidencethat the ASR system assigns to an utterance can be
used by explicitly confirming low-confidence sentences (Bouwman et al., 1999;
San-Segundo et al., 2001; Litman et al., 1999; Litman and Pan, 2002). Recall
that we briefly defined confidence on page?? as a metric that the speech recog-
nizer can give to a higher-level process (like dialogue) to indicate how confident
the recognizer is that the word string that it returns is a good one. Confidence is
often computed from the acoustic log-likelihood of the utterance (greater prob-
ability means higher confidence), but prosodic features canalso be used in con-
fidence prediction. For example utterances preceded by longer pauses, or with
large F0 excursions, or longer durations are likely to be misrecognized (Litman
et al., 2000).

Error cost: Confirmation is more important if an error would be costly. Thus explicit
confirmation is common before actually booking a flight or moving money in an
account (Kamm, 1994; Cohen et al., 2004).

A system can also choose toreject an utterance when the ASR confidence is so
low, or the best interpretation is so semantically ill-formed, that the system can be
relatively sure that the user’s input was not recognized at all. Systems thus might have
a three-tiered level of confidence; below a certain confidence threshold, an utterance
is rejected. Above the threshold, it is explicitly confirmed. If the confidence is even
higher, the utterance is implicitly confirmed.

Instead of rejecting or confirming entire utterances, it would be nice to be able to
clarify only the parts of the utterance that the system didn’t understand. If a system can
assign confidence at a more fine-grained level than the utterance, it can clarify such
individual elements viaclarification subdialogues.CLARIFICATION

SUBDIALOGUES

Much of the recent work on generating dialogue acts has been within the Markov
Decision Process framework, which we therefore turn to next.

24.6 MARKOV DECISION PROCESSARCHITECTURE

One of the fundamental insights of the information-state approach to dialogue architec-
ture is that the choice of conversational actions is dynamically dependent on the current
information state. The previous section discussed how dialogue systems could change
confirmation and rejection strategies based on context. Forexample if the ASR or NLU
confidence is low, we might choose to do explicit confirmation. If confidence is high,
we might chose implicit confirmation, or even decide not to confirm at all. Using a
dynamic strategy lets us choose the action which maximizes dialogue success, while
minimizing costs. This idea of changing the actions of a dialogue system based on
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optimizing some kinds of rewards or costs is the fundamentalintuition behind model-
ing dialogue as aMarkov decision process. This model extends the information-stateMARKOV DECISION

PROCESS

model by adding a probabilistic way of deciding on the properactions given the current
state.

A Markov decision process orMDP is characterized by a set ofstatesSan agentMDP

can be in, a set ofactions A the agent can take, and areward r(a,s) that the agent
receives for taking an action in a state. Given these factors, we can compute apolicy π
which specifies which actiona the agent should take when in a given states, so as to
receive the best reward. To understand each of these components, we’ll need to look
at a tutorial example in which the state space is extremely reduced. Thus we’ll return
to the simple frame-and-slot world, looking at a pedagogical MDP implementation
taken from Levin et al. (2000). Their tutorial example is a “Day-and-Month” dialogue
system, whose goal is to get correct values of day and month for a two-slot frame via
the shortest possible interaction with the user.

In principle, a state of an MDP could include any possible information about the
dialogue, such as the complete dialogue history so far. Using such a rich model of
state would make the number of possible states extraordinarily large. So a model of
state is usually chosen which encodes a much more limited setof information, such as
the values of the slots in the current frame, the most recent question asked to the user,
the users most recent answer, the ASR confidence, and so on. For the Day-and-Month
example let’s represent the state of the system as the valuesof the two slotsdayand
month. If we assume a special initial statesi and final statesf , there are a total of 411
states (366 states with a day and month (counting leap year),12 states with a month but
no day (d=0, m= 1,2,...12), and 31 states with a day but no month (m=0, d=1,2,...31)).

Actions of a MDP dialogue system might include generating particular speech acts,
or performing a database query to find out information. For the Day-and-Month exam-
ple, Levin et al. (2000) propose the following actions:

• ad: a question asking for the day
• am: a question asking for the month
• adm: a question asking for both the day and the month
• af : a final action submitting the form and terminating the dialogue

Since the goal of the system is to get the correct answer with the shortest interaction,
one possible reward function for the system would integratethree terms:

R= −(wini +wene+wf nf )(24.27)

The termni is the number of interactions with the user,ne is the number of errors,
nf is the number of slots which are filled (0, 1, or 2), and thews are weights.

Finally, a dialogue policyπ specifies which actions to apply in which state. Con-
sider two possible policies: (1) asking for day and month separately, and (2) asking for
them together. These might generate the two dialogues shownin Fig. 24.22.

In policy 1, the action specified for the no-date/no-month state is to ask for a day,
while the action specified for any of the 31 states where we have a day but not a month
is to ask for a month. In policy 2, the action specified for the no-date/no-month state
is to ask an open-ended question (Which date) to get both a day and a month. The two
policies have different advantages; an open prompt can leads to shorter dialogues but
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d=0
m=0

d=D
m=0

d=D
m=M

d=-1
m=-1

d=D
m=M

d=-1
m=-1

d=0
m=0

Which day? Which month?

What date? Goodbye.

Goodbye.

Policy 1 (directive)

Policy 2 (open)

c1 = -3wi + 2pdwe

c2 = -2wi + 2powe

Figure 24.22 Two policies for getting a month and a day. After Levin et al. (2000).

is likely to cause more errors, while a directive prompt is slower but less error-prone.
Thus the optimal policy depends on the values of the weightsw, and also on the error
rates of the ASR component. Let’s callpd the probability of the recognizer making
an error interpreting a month or a day value after a directiveprompt. The (presumably
higher) probability of error interpreting a month or day value after an open prompt
we’ll call po. The reward for the first dialogue in Fig. 24.22 is thus−3×wi +2× pd×
we. The reward for the second dialogue in Fig. 24.22 is−2×wi + 2× po×we. The
directive prompt policy, policy 1, is thus better than policy 2 when the improved error
rate justifies the longer interaction, i.e., whenpd − po >

wi
2we

.
In the example we’ve seen so far, there were only two possibleactions, and hence

only a tiny number of possible policies. In general, the number of possible actions,
states, and policies is quite large, and so the problem of finding the optimal policyπ∗

is much harder.
Markov decision theory together with classical reinforcement learning gives us a

way to think about this problem. First, generalizing from Fig. 24.22, we can think of
any particular dialogue as a trajectory in state space:

s1 →a1,r1 s2 →a2,r2 s3 →a3,r3 · · ·(24.28)

The best policyπ∗ is the one with the greatest expected reward over all trajectories.
What is the expected reward for a given state sequence? The most common way to as-
sign utilities or rewards to sequences is to usediscounted rewards. Here we computeDISCOUNTED

REWARDS

the expected cumulative rewardQ of a sequence as a discounted sum of the utilities of
the individual states:

Q([s0,a0,s1,a1,s2,a2 · · ·]) = R(s0,a0)+ γR(s1,a1)+ γ2R(s2,a2)+ · · · ,(24.29)

The discount factorγ is a number between 0 and 1. This makes the agent care
more about current rewards than future rewards; the more future a reward, the more
discounted its value.

Given this model, it is possible to show that the expected cumulative rewardQ(s,a)
for taking a particular action from a particular state is thefollowing recursive equation
called theBellman equation:BELLMAN EQUATION
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Q(s,a) = R(s,a)+ γ∑
s′

P(s′|s,a)max
a′

Q(s′,a′)(24.30)

What the Bellman equation says is that the expected cumulative reward for a given
state/action pair is the immediate reward for the current state plus the expected dis-
counted utility of all possible next statess′, weighted by the probability of moving to
that states′, and assuming once there we take the optimal actiona′.

Equation (24.30) makes use of two parameters. We need a modelof P(s′|s,a), i.e.
how likely a given state/action pair(s,a) is to lead to a new states′. And we also need
a good estimate ofR(s,a). If we had lots of labeled training data, we could simply
compute both of these from labeled counts. For example, withlabeled dialogues, we
could simply count how many times we were in a given states, and out of that how
many times we took actiona to get to states′, to estimateP(s′|s,a). Similarly, if we
had a hand-labeled reward for each dialogue, we could build amodel ofR(s,a).

Given these parameters, it turns out that there is an iterative algorithm for solving
the Bellman equation and determining proper Q values, thevalue iteration algorithmVALUE ITERATION

(Sutton and Barto, 1998; Bellman, 1957). We won’t present this here, but see Chapter
17 of Russell and Norvig (2002) for the details of the algorithm as well as further
information on Markov Decision Processes.

How do we get enough labeled training data to set these parameters? This is espe-
cially worrisome in any real problem, where the number of statess is extremely large.
Two methods have been applied in the past. The first is to carefully hand-tune the states
and policies so that there are a very small number of states and policies that need to
be set automatically. In this case we can build a dialogue system which explore the
state space by generating random conversations. Probabilities can then be set from this
corpus of conversations. The second is to build a simulated user. The user interacts
with the system millions of times, and the system learns the state transition and reward
probabilities from this corpus.

The first approach, using real users to set parameters in a small state space, was
taken by Singh et al. (2002). They used reinforcement learning to make a small set of
optimal policy decisions. Their NJFun system learned to choose actions which varied
the initiative (system, user, or mixed) and the confirmationstrategy (explicit or none).
The state of the system was specified by values of 7 features including which slot in
the frame is being worked on (1-4), the ASR confidence value (0-5), how many times
a current slot question had been asked, whether a restrictive or non-restrictive gram-
mar was used, and so on. The result of using only 7 features with a small number of
attributes resulted in a small state space (62 states). Eachstate had only 2 possible
actions (system versus user initiative when asking questions, explicit versus no con-
firmation when receiving answers). They ran the system with real users, creating 311
conversations. Each conversation had a very simple binary reward function; 1 if the
user completed the task (finding specified museums, theater,winetasting in the New
Jersey area), 0 if the user did not. The system successful learned a good dialogue pol-
icy (roughly, start with user initiative, then back of to either mixed or system initiative
when reasking for an attribute; confirm only at lower confidence values; both initiative
and confirmation policies, however, are different for different attributes). They showed
that their policy actually was more successful based on various objective measures than
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many hand-designed policies reported in the literature.
The simulated user strategy was taken by Levin et al. (2000),in their MDP model

with reinforcement learning in the ATIS task. Their simulated user was a generative
stochastic model that given the system’s current state and actions, produces a frame-slot
representation of a user response. The parameters of the simulated user were estimated
from a corpus of ATIS dialogues. The simulated user was then used to interact with the
system for tens of thousands of conversations, leading to anoptimal dialogue policy.

While the MDP architecture offers a powerful new way of modeling dialogue be-
havior, it relies on the problematic assumption that the system actually knows what
state it is in. This is of course not true in a number of ways; the system never knows
the true internal state of the user, and even the state in the dialogue may be obscured
by speech recognition errors. Recent attempts to relax thisassumption have relied on
Partially Observable Markov Decision Processes, or POMDPs(sometimes pronounced
‘pom-deepeez’). In a POMDP, we model the user output as an observed signal gen-
erated from yet another hidden variable. There are also problems with MDPs and
POMDPs related to computational complexity and simulations which aren’t reflective
of true user behavior; See the end notes for references.

24.7 ADVANCED: PLAN -BASED DIALOGUE AGENTS

One of the earliest models of conversational agent behavior, and also one of the most
sophisticated, is based on the use of AI planning techniques. For example, the Rochester
TRIPS agent (Allen et al., 2001) simulates helping with emergency management, plan-
ning where and how to supply ambulances or personnel in a simulated emergency sit-
uation. The same planning algorithms that reason how to get an ambulance from point
A to point B can be applied to conversation as well. Since communication and conver-
sation are just special cases of rational action in the world, these actions can be planned
like any other. So an agent seeking to find out some information can come up with the
plan of asking the interlocutor for the information. An agent hearing an utterance can
interpret a speech act by running the planner ‘in reverse’, using inference rules to infer
what plan the interlocutor might have had to cause them to saywhat they said.

Using plans to generate and interpret sentences in this way require that the planner
have good models of itsbeliefs, desires, andintentions (BDI), as well as those of the
interlocutor. Plan-based models of dialogue are thus oftenreferred to asBDI models.BDI

BDI models of dialogue were first introduced by Allen, Cohen,Perrault, and their col-
leagues and students in a number of influential papers showing how speech acts could
be generated (Cohen and Perrault, 1979), and interpreted (Perrault and Allen, 1980;
Allen and Perrault, 1980). At the same time, Wilensky (1983)introduced plan-based
models of understanding as part of the task of interpreting stories. In another related
line of research, Grosz and her colleagues and students showed how using similar no-
tions of intention and plans allowed ideas of discourse structure and coherence to be
applied to dialogue.
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24.7.1 Plan-Inferential Interpretation and Production

Let’s first sketch out the ideas of plan-based comprehensionand production. How
might a plan-based agent act as the human travel agent to understand sentence C2 in
the dialogue repeated below?

C1: I need to travel in May.

A1: And, what day in May did you want to travel?

C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.

The Gricean principle of Relevance can be used to infer that the client’s meeting is
relevant to the flight booking. The system may know that one precondition for having
a meeting (at least before web conferencing) is being at the place where the meeting is
in. One way of being at a place is flying there, and booking a flight is a precondition for
flying there. The system can follow this chain of inference, abducing that user wants
to fly on a date before the 12th.

Next, consider how our plan-based agent could act as the human travel agent to
produce sentence A1 in the dialogue above. The planning agent would reason that in
order to help a client book a flight it must know enough information about the flight to
book it. It reasons that knowing the month (May) is insufficient information to specify
a departure or return date. The simplest way to find out the needed date information is
to ask the client.

In the rest of this section, we’ll flesh out the sketchy outlines of planning for un-
derstanding and generation using Perrault and Allen’s formal definitions of belief and
desire in the predicate calculus. Reasoning about belief isdone with a number of axiom
schemas inspired by Hintikka (1969). We’ll represent “S believes the propositionP”
as the two-place predicateB(S,P), with axiom schemas such asB(A,P)∧B(A,Q) ⇒
B(A,P∧Q). Knowledge is defined as “true belief”;S knows that Pwill be represented
asKNOW(S,P), defined as KNOW(S,P) ≡ P∧B(S,P).

The theory of desire relies on the predicate WANT. If an agentSwantsP to be true,
we sayWANT(S,P), or W(S,P) for short. P can be a state or the execution of some
action. Thus if ACT is the name of an action,W(S,ACT(H)) means thatSwantsH to
do ACT. The logic of WANT relies on its own set of axiom schemasjust like the logic
of belief.

The BDI models also require an axiomatization of actions andplanning; the sim-
plest of these is based on a set ofaction schemas based on the simple AI planningACTION SCHEMA

model STRIPS (Fikes and Nilsson, 1971). Each action schema has a set of parameters
with constraintsabout the type of each variable, and three parts:

• Preconditions:Conditions that must already be true to perform the action.

• Effects:Conditions that become true as a result of performing the action.

• Body:A set of partially ordered goal states that must be achieved in performing
the action.

In the travel domain, for example, the action of agentA booking flightF1 for clientC
might have the following simplified definition:
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BOOK-FLIGHT(A,C,F) :
Constraints: Agent(A)∧ Flight(F)∧ Client(C)
Precondition: Know(A,depart-date(F)) ∧ Know(A,depart-time(F))

∧ Know(A,origin(F)) ∧ Know(A,flight-type(F))
∧ Know(A,destination(F)) ∧ Has-Seats(F) ∧
W(C,(BOOK(A,C,F)))∧ . . .

Effect: Flight-Booked(A,C,F)
Body: Make-Reservation(A,F,C)

This same kind of STRIPS action specification can be used for speech acts. IN-
FORM is the speech act of informing the hearer of some proposition, based on Grice’s
(1957) idea that a speaker informs the hearer of something merely by causing the hearer
to believe that the speaker wants them to know something:

INFORM(S,H,P):
Constraints: Speaker(S)∧ Hearer(H)∧ Proposition(P)
Precondition: Know(S,P)∧ W(S, INFORM(S, H, P))
Effect: Know(H,P)
Body: B(H,W(S,Know(H,P)))

REQUEST is the directive speech act for requesting the hearer to perform some
action:

REQUEST(S,H,ACT):
Constraints: Speaker(S)∧ Hearer(H)∧ ACT(A) ∧ H is agent of ACT
Precondition: W(S,ACT(H))
Effect: W(H,ACT(H))
Body: B(H,W(S,ACT(H)))

Let’s now see how a plan-based dialogue system might interpret the sentence:

C2: I need to be there for a meeting that’s from the 12th to the 15th.

We’ll assume the system has the BOOK-FLIGHT plan mentioned above. In ad-
dition, we’ll need knowledge about meetings and getting to them, in the form of the
MEETING, FLY-TO, and TAKE-FLIGHT plans, sketched broadly below:

MEETING(P,L,T1,T2):
Constraints: Person(P)∧ Location (L)∧ Time (T1)∧ Time (T2)∧ Time (TA)
Precondition: At (P, L, TA)

Before (TA, T1)
Body: ...

FLY-TO(P, L, T):
Constraints: Person(P)∧ Location (L)∧ Time (T)
Effect: At (P, L, T)
Body: TAKE-FLIGHT(P, L, T)
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TAKE-FLIGHT(P, L, T):
Constraints: Person(P)∧ Location (L)∧ Time (T)∧ Flight (F)∧ Agent (A)
Precondition: BOOK-FLIGHT (A, P, F)

Destination-Time(F) = T
Destination-Location(F) = L

Body: ...

Now let’s assume that an NLU module returns a semantics for the client’s utterance
which (among other things) includes the following semanticcontent:

MEETING (P, ?L, T1, T2)
Constraints: P = Client∧ T1 = May 12∧ T2 = May 15

Our plan-based system now has two plans established, one MEETING plan from
this utterance, and one BOOK-FLIGHT plan from the previous utterance. The system
implicitly uses the Gricean Relevance intuition to try to connect them. Since BOOK-
FLIGHT is a precondition for TAKE-FLIGHT, the system may hypothesize (infer) that
the user is planning a TAKE-FLIGHT. Since TAKE-FLIGHT is in the body of FLY-
TO, the system further infers a FLY-TO plan. Finally, since the effect of FLY-TO is
a precondition of the MEETING, the system can unify each of the people, locations,
and times of all of these plans. The result will be that the system knows that the client
wants to arrive at the destination before May 12th.

Let’s turn to the details of our second example:

C1: I need to travel in May.

A1: And, what day in May did you want to travel?

How does a plan-based agent know to ask question A1? This knowledge comes
from the BOOK-FLIGHT plan, whose preconditions were that the agent know a vari-
ety of flight parameters including the departure date and time, origin and destination
cities, and so forth. Utterance C1 contains the origin city and partial information about
the departure date; the agent has to request the rest. A plan-based agent would use an
action schema like REQUEST-INFO to represent a plan for asking information ques-
tions (simplified from Cohen and Perrault (1979)):

REQUEST-INFO(A,C,I) :
Constraints: Agent(A)∧ Client(C)
Precondition: Know(C,I)
Effect: Know(A,I)
Body: B(C,W(A,Know(A,I)))

Because the effects of REQUEST-INFO match each precondition of BOOK-FLIGHT,
the agent can use REQUEST-INFO to achieve the missing information.

24.7.2 The Intentional Structure of Dialogue

In Sec.??we introduced the idea that the segments of a discourse are related bycoher-
ence relationslike Explanation or Elaboration which describe theinformational re-
lation between discourse segments. The BDI approach to utterance interpretation gives
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rise to another view of coherence which is particularly relevant for dialogue, theinten-
tional approach (Grosz and Sidner, 1986). According to this approach, what makes a
dialogue coherent is itsintentional structure , the plan-based intentions of the speakerINTENTIONAL

STRUCTURE

underlying each utterance.
These intentions are instantiated in the model by assuming that each discourse has

an underlying purpose held by the person who initiates it, called thediscourse pur-
pose(DP). Each discourse segment within the discourse has a corresponding purpose,DISCOURSE

PURPOSE

a discourse segment purpose(DSP), which has a role in achieving the overall DP.DISCOURSE
SEGMENT PURPOSE

Possible DPs/DSPs include intending that some agent intendto perform some physical
task, or that some agent believe some fact.

As opposed to the larger sets of coherence relations used in informational accounts
of coherence, Grosz and Sidner propose only two such relations: dominance and
satisfaction-precedence. DSP1 dominates DSP2 if satisfying DSP2 is intended to pro-
vide part of the satisfaction of DSP1. DSP1 satisfaction-precedes DSP2 if DSP1 must
be satisfied before DSP2.

C1: I need to travel in May.
A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A2: And you’re flying into what city?
C3: Seattle.
A3: And what time would you like to leave Pittsburgh?
C4: Uh hmm I don’t think there’s many options for non-stop.
A4: Right. There’s three non-stops today.
C5: What are they?
A5: The first one departs PGH at 10:00am arrives Seattle at 12:05their time. The

second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C6: OK I’ll take the 5ish flight on the night before on the 11th.
A6: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm,U.S. Air flight

115.
C7: OK.

Figure 24.23 A fragment from a telephone conversation between a client (C) and a
travel agent (A) (repeated from Fig. 24.4).

Consider the dialogue between a client (C) and a travel agent(A) that we saw
earlier, repeated here in Fig. 24.23. Collaboratively, thecaller and agent successfully
identify a flight that suits the caller’s needs. Achieving this joint goal requires that
a top-level discourse intention be satisfied, listed as I1 below, in addition to several
intermediate intentions that contributed to the satisfaction of I1, listed as I2-I5:

I1: (Intend C (Intend A (A find a flight for C)))

I2: (Intend A (Intend C (Tell C A departure date)))

I3: (Intend A (Intend C (Tell C A destination city)))

I4: (Intend A (Intend C (Tell C A departure time)))
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I5: (Intend C (Intend A (A find a nonstop flight for C)))

Intentions I2–I5 are all subordinate to intention I1, as they were all adopted to meet pre-
conditions for achieving intention I1. This is reflected in the dominance relationships
below:

I1 dominates I2∧ I1 dominates I3∧ I1 dominates I4∧ I1 dominates I5

Furthermore, intentions I2 and I3 needed to be satisfied before intention I5, since the
agent needed to know the departure date and destination in order to start listing nonstop
flights. This is reflected in the satisfaction-precedence relationships below:

I2 satisfaction-precedes I5∧ I3 satisfaction-precedes I5

The dominance relations give rise to the discourse structure depicted in Figure 24.24.
Each discourse segment is numbered in correspondence with the intention number that
serves as its DP/DSP.

DS1

C1 DS2 DS3 DS4 DS5

A1–C2 A2–C3 A3 C4–C7

Figure 24.24 Discourse Structure of the Flight Reservation Dialogue

Intentions and their relationships give rise to a coherent discourse based on their
role in the overallplan that the caller is inferred to have. We assume that the caller
and agent have the plan BOOK-FLIGHT described on page 43. This plan requires that
the agent know the departure time and date and so on. As we discussed above, the
agent can use the REQUEST-INFO action scheme from page 44 to ask the user for this
information.

Subsidiary discourse segments are also calledsubdialogues; DS2 and DS3 in par-SUBDIALOGUES

ticular areinformation-sharing (Chu-Carroll and Carberry, 1998)knowledge precon-
dition subdialogues (Lochbaum et al., 1990; Lochbaum, 1998), since they are initiated
by the agent to help satisfy preconditions of a higher-levelgoal.

Algorithms for inferring intentional structure in dialogue work similarly to algo-
rithms for inferring dialogue acts, either employing the BDI model (e.g., Litman, 1985;
Grosz and Sidner, 1986; Litman and Allen, 1987; Carberry, 1990; Passonneau and Lit-
man, 1993; Chu-Carroll and Carberry, 1998), or machine learning architectures based
on cue phrases (Reichman, 1985; Grosz and Sidner, 1986; Hirschberg and Litman,
1993), prosody (Hirschberg and Pierrehumbert, 1986; Groszand Hirschberg, 1992;
Pierrehumbert and Hirschberg, 1990; Hirschberg and Nakatani, 1996), and other cues.

24.8 SUMMARY

Conversational agentsare a crucial speech and language processing application that
are already widely used commercially. Research on these agents relies crucially on an
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understanding of human dialogue or conversational practices.

• Dialogue systems generally have 5 components: speech recognition, natural lan-
guage understanding, dialogue management, natural language generation, and
speech synthesis. They may also have a task manager specific to the task do-
main.

• Dialogue architectures for conversational agents includefinite-state systems,frame-
basedproduction systems, and advanced systems such as information-state, Markov
Decision Processes, andBDI (belief-desire-intention) models.

• Turn-taking, grounding, conversational structure, implicature, and initiative are
crucial human dialogue phenomena that must also be dealt with in conversational
agents.

• Speaking in dialogue is a kind of action; these acts are referred to as speech acts
or dialogue acts. Models exist for generating and interpreting these acts.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Early work on speech and language processing had very littleemphasis on the study
of dialogue. The dialogue manager for the simulation of the paranoid agent PARRY
(Colby et al., 1971), was a little more complex. Like ELIZA, it was based on a pro-
duction system, but where ELIZA’s rules were based only on the words in the user’s
previous sentence, PARRY’s rules also rely on global variables indicating its emotional
state. Furthermore, PARRY’s output sometimes makes use of script-like sequences of
statements when the conversation turns to its delusions. For example, if PARRY’s
angervariable is high, he will choose from a set of “hostile” outputs. If the input men-
tions his delusion topic, he will increase the value of hisfear variable and then begin
to express the sequence of statements related to his delusion.

The appearance of more sophisticated dialogue managers awaited the better un-
derstanding of human-human dialogue. Studies of the properties of human-human
dialogue began to accumulate in the 1970’s and 1980’s. The Conversation Analy-
sis community (Sacks et al., 1974; Jefferson, 1984; Schegloff, 1982) began to study
the interactional properties of conversation. Grosz’s (1977) dissertation significantly
influenced the computational study of dialogue with its introduction of the study of
dialogue structure, with its finding that “task-oriented dialogues have a structure that
closely parallels the structure of the task being performed” (p. 27), which led to her
work on intentional and attentional structure with Sidner.Lochbaum et al. (2000) is a
good recent summary of the role of intentional structure in dialogue. The BDI model
integrating earlier AI planning work (Fikes and Nilsson, 1971) with speech act theory
(Austin, 1962; Gordon and Lakoff, 1971; Searle, 1975a) was first worked out by Co-
hen and Perrault (1979), showing how speech acts could be generated, and Perrault and
Allen (1980) and Allen and Perrault (1980), applying the approach to speech-act inter-
pretation. Simultaneous work on a plan-based model of understanding was developed
by Wilensky (1983) in the Schankian tradition.
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Probabilistic models of dialogue act interpretation were informed by linguistic
work which focused on the discourse meaning of prosody (Sag and Liberman, 1975;
Pierrehumbert, 1980), by Conversation Analysis work on microgrammar (e.g. Good-
win, 1996), by work such as Hinkelman and Allen (1989), who showed how lexical and
phrasal cues could be integrated into the BDI model, and thenworked out at a number
of speech and dialogue labs in the 1990’s (Waibel, 1988; Dalyand Zue, 1992; Kompe
et al., 1993; Nagata and Morimoto, 1994; Woszczyna and Waibel, 1994; Reithinger
et al., 1996; Kita et al., 1996; Warnke et al., 1997; Chu-Carroll, 1998; Stolcke et al.,
1998; Taylor et al., 1998; Stolcke et al., 2000).

Modern dialogue systems drew on research at many different labs in the 1980’s
and 1990’s. Models of dialogue as collaborative behavior were introduced in the late
1980’s and 1990’s, including the ideas of common ground (Clark and Marshall, 1981),
reference as a collaborative process (Clark and Wilkes-Gibbs, 1986), and models of
joint intentions (Levesque et al., 1990), andshared plans(Grosz and Sidner, 1980).
Related to this area is the study ofinitiative in dialogue, studying how the dialogue
control shifts between participants (Walker and Whittaker, 1990; Smith and Gordon,
1997; Chu-Carroll and Brown, 1997).

A wide body of dialogue research came out of AT&T and Bell Laboratories around
the turn of the century, including much of the early work on MDP dialogue systems
as well as fundamental work on cue-phrases, prosody, and rejection and confirmation.
Work on dialogue acts and dialogue moves drew from a number ofsources, including
HCRC’s Map Task (Carletta et al., 1997b), and the work of James Allen and his col-
leagues and students, for example Hinkelman and Allen (1989), showing how lexical
and phrasal cues could be integrated into the BDI model of speech acts, and Traum
(2000), Traum and Hinkelman (1992), and from Sadek (1991).

Much recent academic work in dialogue focuses on multimodalapplications (John-
ston et al., 2007; Niekrasz and Purver, 2006, inter alia), onthe information-state model
(Traum and Larsson, 2003, 2000) or on reinforcement learning architectures including
POMDPs (Roy et al., 2000; Young, 2002; Lemon et al., 2006; Williams and Young,
2005, 2000). Work in progress on MDPs and POMDPs focuses on computational com-
plexity (they currently can only be run on quite small domains with limited numbers of
slots), and on improving simulations to make them more reflective of true user behav-
ior. Alternative algorithms include SMDPs (Cuayáhuitl etal., 2007). See Russell and
Norvig (2002) and Sutton and Barto (1998) for a general introduction to reinforcement
learning.

Recent years have seen the widespread commercial use of dialogue systems, often
based on VoiceXML. Some more sophisticated systems have also seen deployment. For
exampleClarissa, the first spoken dialogue system used in space, is a speech-enabledCLARISSA

procedure navigator that was used by astronauts on the International Space Station
(Rayner and Hockey, 2004; Aist et al., 2002). Much research focuses on more mundane
in-vehicle applications in cars Weng et al. (2006,inter alia). Among the important
technical challenges in embedding these dialogue systems in real applications are good
techniques for endpointing (deciding if the speaker is donetalking) (Ferrer et al., 2003)
and for noise robustness.

Good surveys on dialogue systems include Harris (2005), Cohen et al. (2004),
McTear (2002, 2004), Sadek and De Mori (1998), and the dialogue chapter in Allen
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(1995).

EXERCISES

24.1 List the dialogue act misinterpretations in theWho’s On Firstroutine at the
beginning of the chapter.

24.2 Write a finite-state automaton for a dialogue manager for checking your bank
balance and withdrawing money at an automated teller machine.

24.3 Dispreferred responses (for example turning down a request) are usually sig-
naled by surface cues, such as significant silence. Try to notice the next time you
or someone else utters a dispreferred response, and write down the utterance. What
are some other cues in the response that a system might use to detect a dispreferred
response? Consider non-verbal cues like eye-gaze and body gestures.

24.4 When asked a question to which they aren’t sure they know the answer, people
display their lack of confidence via cues that resemble otherdispreferred responses.
Try to notice some unsure answers to questions. What are someof the cues? If you
have trouble doing this, read Smith and Clark (1993) and listen specifically for the cues
they mention.

24.5 Build a VoiceXML dialogue system for giving the current timearound the world.
The system should ask the user for a city and a time format (24 hour, etc) and should
return the current time, properly dealing with time zones.

24.6 Implement a small air-travel help system based on text input. Your system
should get constraints from the user about a particular flight that they want to take,
expressed in natural language, and display possible flightson a screen. Make simpli-
fying assumptions. You may build in a simple flight database or you may use a flight
information system on the web as your backend.

24.7 Augment your previous system to work with speech input via VoiceXML. (or
alternatively, describe the user interface changes you would have to make for it to work
via speech over the phone). What were the major differences?

24.8 Design a simple dialogue system for checking your email overthe telephone.
Implement in VoiceXML.

24.9 Test your email-reading system on some potential users. Choose some of the
metrics described in Sec. 24.4.2 and evaluate your system.
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Möller, S. (2004). Quality of Telephone-Based Spoken Dia-
logue Systems. Springer.

Nagata, M. and Morimoto, T. (1994). First steps toward statisti-
cal modeling of dialogue to predict the speech act type of the
next utterance.Speech Communication, 15, 193–203.

Niekrasz, J. and Purver, M. (2006). A multimodal discourse
ontology for meeting understanding. In Renals, S. and Ben-
gio, S. (Eds.),Machine Learning for Multimodal Interaction:
Second International Workshop MLMI 2005, Revised Selected
Papers, No. 3689 in Lecture Notes in Computer Science, pp.
162–173. Springer-Verlag.

Nielsen, J. (1992). The usability engineering life cycle.IEEE
Computer, 25(3), 12–22.

Norman, D. A. (1988).The Design of Everyday Things. Basic
Books.

Oviatt, S. L., Cohen, P. R., Wang, M. Q., and Gaston, J. (1993).
A simulation-based research strategy for designing complex



DRAFT

Section 24.8. Summary 53

NL sysems. InProceedings DARPA Speech and Natural Lan-
guage Workshop, Princeton, NJ, pp. 370–375. Morgan Kauf-
mann.

Oviatt, S. L., MacEachern, M., and Levow, G.-A. (1998). Pre-
dicting hyperarticulate speech during human-computer error
resolution.Speech Communication, 24, 87–110.

Passonneau, R. and Litman, D. J. (1993). Intention-based seg-
mentation: Human reliability and correlation with linguistic
cues. InProceedings of the 31st ACL, Columbus, Ohio, pp.
148–155.

Perrault, C. R. and Allen, J. (1980). A plan-based analysis of
indirect speech acts.American Journal of Computational Lin-
guistics, 6(3-4), 167–182.

Pieraccini, R., Levin, E., and Lee, C.-H. (1991). Stochastic rep-
resentation of conceptual structure in the ATIS task. InPro-
ceedings DARPA Speech and Natural Language Workshop,
Pacific Grove, CA, pp. 121–124. Morgan Kaufmann.

Pierrehumbert, J. B. and Hirschberg, J. (1990). The meaning
of intonational contours in the interpretation of discourse. In
Cohen, P. R., Morgan, J., and Pollack, M. (Eds.),Intentions in
Communication, pp. 271–311. MIT Press.

Pierrehumbert, J. B. (1980).The Phonology and Phonetics of
English Intonation. Ph.D. thesis, MIT.

Polifroni, J., Hirschman, L., Seneff, S., and Zue, V. W. (1992).
Experiments in evaluating interactive spoken language sys-
tems. InProceedings DARPA Speech and Natural Language
Workshop, Harriman, NY, pp. 28–33. Morgan Kaufmann.

Power, R. (1979). The organization of purposeful dialogs.Lin-
guistics, 17, 105–152.

Rayner, M. and Hockey, B. A. (2003). Transparent combination
of rule-based and data-driven approaches in a speech under-
standing architecture. InEACL-03, Budapest, Hungary.

Rayner, M. and Hockey, B. A. (2004). Side effect free dialogue
management in a voice enabled procedure browser. InICSLP-
04, pp. 2833–2836.

Rayner, M., Hockey, B. A., and Bouillon, P. (2006).Putting
Linguistics into Speech Recognition. CSLI.

Reichman, R. (1985).Getting Computers to Talk Like You and
Me. MIT Press.

Reiter, E. and Dale, R. (2000).Building Natural Language Gen-
eration Systems. Cambridge University Press.

Reithinger, N., Engel, R., Kipp, M., and Klesen, M. (1996).
Predicting dialogue acts for a speech-to-speech translation
system. InICSLP-96, Philadelphia, PA, Vol. 2, pp. 654–657.

Roy, N., Pineau, J., and Thrun, S. (2000). Spoken dialog man-
agement for robots. InACL-00, Hong Kong.

Russell, S. and Norvig, P. (2002).Artificial Intelligence: A
Modern Approach. Prentice Hall. Second edition.

Sacks, H., Schegloff, E. A., and Jefferson, G. (1974). A sim-
plest systematics for the organization of turn-taking for con-
versation.Language, 50(4), 696–735.

Sadek, D. and De Mori, R. (1998). Dialogue systems. In
De Mori, R. (Ed.),Spoken Dialogues With Computers. Aca-
demic Press, London.

Sadek, M. D. (1991). Dialogue acts are rational plans. In
ESCA/ETR Workshop on the Structure of Multimodal Dia-
logue, pp. 19–48.

Sag, I. A. and Liberman, M. Y. (1975). The intonational dis-
ambiguation of indirect speech acts. InCLS-75, pp. 487–498.
University of Chicago.

San-Segundo, R., Montero, J. M., Ferreiros, J., Còrdoba, R.,
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25 MACHINE TRANSLATION

The process of translating comprises in its essence the whole secret
of human understanding and social communication.

Attributed to Hans-Georg Gadamer

What is translation? On a platter
A poet’s pale and glaring head,

A parrot’s screech, a monkey’s chatter,
And profanation of the dead.

Nabokov,On Translating Eugene Onegin

Proper words in proper places
Jonathan Swift

This chapter introduces techniques formachine translation(MT ), the use of com-MACHINE
TRANSLATION

MT puters to automate some or all of the process of translating from one language to an-
other. Translation, in its full generality, is a difficult, fascinating, and intensely human
endeavor, as rich as any other area of human creativity. Consider the following passage
from the end of Chapter 45 of the 18th-century novelThe Story of the Stone, also called
Dream of the Red Chamber, by Cao Xue Qin (Cao, 1792), transcribed in the Mandarin
dialect:

dai yu zi zai chuang shang gan nian bao chai. . . you ting jian chuang wai zhu shao xiang
ye zhe shang, yu sheng xi li, qing han tou mu, bu jue you di xia lei lai.

Fig. 25.1 shows the English translation of this passage by David Hawkes, in sen-
tences labeled E1-E4. For ease of reading, instead of giving the Chinese, we have shown
the English glosses of each Chinese wordIN SMALL CAPS. Wordsin blueare Chinese
words not translated into English, or English words not in the Chinese. We have shown
alignment lines between words that roughly correspond in the two languages.

Consider some of the issues involved in this translation. First, the English and
Chinese texts are very different structurally and lexically. The four English sentences
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Figure 25.1 A Chinese passage fromDream of the Red Chamber, with the Chinese words represented by En-
glish glossesIN SMALL CAPS. Alignment lines are drawn between ‘Chinese’ words and their English translations.
Words in italics are Chinese words not translated into English, or English words not in the original Chinese.

(notice the periods in blue) correspond to one long Chinese sentence. The word order
of the two texts is very different, as we can see by the many crossed alignment lines in
Fig. 25.1. The English has many more words than the Chinese, as we can see by the
large number of English words marked in blue. Many of these differences are caused
by structural differences between the two languages. For example, because Chinese
rarely marks verbal aspect or tense; the English translation has additional words like
as, turned to, andhad begun, and Hawkes had to decide to translate Chinesetou as
penetrated, rather than saywas penetratingor had penetrated. Chinese has less articles
than English, explaining the large number of bluethes. Chinese also uses far fewer
pronouns than English, so Hawkes had to insertsheandher in many places into the
English translation.

Stylistic and cultural differences are another source of difficulty for the transla-
tor. Unlike English names, Chinese names are made up of regular content words with
meanings. Hawkes chose to use transliterations (Daiyu) for the names of the main
characters but to translate names of servants by their meanings (Aroma, Skybright).
To make the image clear for English readers unfamiliar with Chinese bed-curtains,
Hawkes translatedma (‘curtain’) ascurtains of her bed. The phrasebamboo tip plan-
tain leaf, although elegant in Chinese, where such four-character phrases are a hallmark
of literate prose, would be awkward if translated word-for-word into English, and so
Hawkes used simplybamboos and plantains.

Translation of this sort clearly requires a deep and rich understanding of the source
language and the input text, and a sophisticated, poetic, and creative command of the
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target language. The problem of automatically performing high-quality literary trans-
lation between languages as different as Chinese to Englishis thus far too hard to
automate completely.

However, even non-literary translations between such similar languages as English
and French can be difficult. Here is an English sentence from the Hansards corpus of
Canadian parliamentary proceedings, with its French translation:

English: Following a two-year transitional period, the new Foodstuffs Ordinance for Min-
eral Water came into effect on April 1, 1988. Specifically, itcontains more stringent re-
quirements regarding quality consistency and purity guarantees.
French: La nouvelle ordonnance fèdèrale sur les denrées alimentaires concernant entre
autres les eaux minérales, entrée en vigueur le ler avril 1988 aprés une période transitoire
de deux ans. exige surtout une plus grande constance dans la qualité et une garantie de la
pureté.
French gloss: THE NEW ORDINANCE FEDERAL ON THE STUFF FOOD CONCERNING

AMONG OTHERS THE WATERS MINERAL CAME INTO EFFECT THE1ST APRIL 1988
AFTER A PERIOD TRANSITORY OF TWO YEARS REQUIRES ABOVE ALL A LARGER

CONSISTENCY IN THE QUALITY AND A GUARANTEE OF THE PURITY.

Despite the strong structural and vocabulary overlaps between English and French,
such translation, like literary translation, still has to deal with differences in word order
(e.g., the location of thefollowing a two-year transitional periodphrase) and in struc-
ture (e.g., English uses the nounrequirementswhile the French uses the verbexige
‘ REQUIRE’).

Nonetheless, such translations are much easier, and a number of non-literary trans-
lation tasks can be addressed with current computational models of machine transla-
tion, including: (1) tasks for which arough translation is adequate, (2) tasks where
a humanpost-editor is used, and (3) tasks limited to smallsublanguagedomains in
which fully automatic high quality translation (FAHQT) is still achievable.

FULLY AUTOMATIC
HIGH QUALITY
TRANSLATION

Information acquisition on the web is the kind of task where arough translation
may still be useful. Suppose you were at the market this morning and saw some lovely
plátanos(plantains, a kind of banana) at the local Caribbean grocerystore and you
want to know how to cook them. You go to the web, and find the following recipe:

Platano en Naranja Para 6 personas
3 Plátanos maduros 2 cucharadas de mantequilla derretida
1 taza de jugo (zumo) de naranja 5 cucharadas de azúcar morena o blanc
1/8 cucharadita de nuez moscada en polvo 1 cucharada de ralladura de naranja
1 cucharada de canela en polvo (opcional)

Pelar los plátanos, cortarlos por la mitad y, luego, a lo largo. Engrasar una fuente o pirex con
margarina. Colocar los plátanos y bañarlos con la mantequilla derretida. En un recipiente
hondo, mezclar el jugo (zumo) de naranja con el azúcar, jengibre, nuez moscada y ralladura
de naranja. Verter sobre los plátanos y hornear a 325◦ F. Los primeros 15 minutos, dejar los
pátanos cubiertos, hornear 10 o 15 minutos más destapandolos plátanos

An MT engine produces the following translation:
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Platano in Orange For 6 people
3 Bananas mature 2 tablespoon melted butter
1 cup juice (juice) orange 5 tablespoons brown sugar or white
1/8 teaspoon nutmeg powder 1 tablespoon ralladura orange
1 tablespoon cinnamon powder (optional)

Peel bananas, cut in half and then along. Grease a source or pirex with margarine. Put bananas
and showering them with the melted butter. In a deep bowl, mixthe juice (juice) orange with the
sugar, ginger, nutmeg and ralladura orange. Pour over bananas and bake to 350◦ F. The first 15
minutes, leave covered bananas, bake 10 to 15 minutes more uncovering bananas.

While there are still lots of confusions in this translation(is it for bananas or plan-
tains? What exactly is the pot we should use? What isralladura?) it’s probably
enough, perhaps after looking up one or two words, to get a basic idea of something to
try in the kitchen with your new purchase!

An MT system can also be used to speed-up the human translation process, by pro-
ducing a draft translation that is fixed up in apost-editingphase by a human translator.POSTEDITING

Strictly speaking, systems used in this way are doingcomputer-aided human trans-
lation (CAHT or CAT) rather than (fully automatic) machine translation. This model

COMPUTERAIDED
HUMAN

TRANSLATION

of MT usage is effective especially for high volume jobs and those requiring quick
turn-around, such as the translation of software manuals for localization to reach newLOCALIZATION

markets.
Weather forecasting is an example of asublanguagedomain that can be modeledSUBLANGUAGE

completely enough to use raw MT output even without post-editing. Weather fore-
casts consist of phrases likeCloudy with a chance of showers today and Thursday,
or Outlook for Friday: Sunny. This domain has a limited vocabulary and only a few
basic phrase types. Ambiguity is rare, and the senses of ambiguous words are easily
disambiguated based on local context, using word classes and semantic features such
as WEEKDAY, PLACE, or TIME POINT. Other domains that are sublanguage-like in-
clude equipment maintenance manuals, air travel queries, appointment scheduling, and
restaurant recommendations.

Applications for machine translation can also be characterized by the number and
direction of the translations. Localization tasks like translations of computer manuals
require one-to-many translation (from English into many languages). One-to-many
translation is also needed for non-English speakers aroundthe world to access web
information in English. Conversely, many-to-one translation (into English) is relevant
for anglophone readers who need the gist of web content written in other languages.
Many-to-many translation is relevant for environments like the European Union, where
23 official languages (at the time of this writing) need to be intertranslated.

Before we turn to MT systems, we begin in section 25.1 by summarizing key differ-
ences among languages. The three classic models for doing MTare then presented in
Sec. 25.2: thedirect, transfer, andinterlingua approaches. We then investigate in de-
tail modernstatistical MT in Secs. 25.3-25.8, finishing in Sec. 25.9 with a discussion
of evaluation.
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25.1 WHY IS MACHINE TRANSLATION SO HARD?

We began this chapter with some of the issues that made it hardto translateThe Story
of the Stonefrom Chinese to English. In this section we look in more detail about
what makes translation difficult. We’ll discuss what makes languages similar or dif-
ferent, includingsystematicdifferences that we can model in a general way, as well
as idiosyncratic and lexical differences that must be dealt with one by one. These
differences between languages are referred to astranslation divergencesand an un-TRANSLATION

DIVERGENCES

derstanding of what causes them will help us in building models that overcome the
differences (Dorr, 1994).

25.1.1 Typology

When you accidentally pick up a radio program in some foreignlanguage it seems like
chaos, completely unlike the familiar languages of your everyday life. But there are
patterns in this chaos, and indeed, some aspects of human language seem to beuniver-
sal, holding true for every language. Many universals arise from the functional role ofUNIVERSAL

language as a communicative system by humans. Every language, for example, seems
to have words for referring to people, for talking about women, men, and children, eat-
ing and drinking, for being polite or not. Other universals are more subtle; for example
Ch. 5 mentioned that every language seems to have nouns and verbs.

Even when languages differ, these differences often have systematic structure. The
study of systematic cross-linguistic similarities and differences is calledtypology (CroftTYPOLOGY

(1990), Comrie (1989)). This section sketches some typological facts about crosslin-
guistic similarity and difference.

Morphologically , languages are often characterized along two dimensions ofvari-
ation. The first is the number of morphemes per word, ranging from isolating lan-ISOLATING

guages like Vietnamese and Cantonese, in which each word generally has one mor-
pheme, topolysynthetic languages like Siberian Yupik (“Eskimo”), in which a singlePOLYSYNTHETIC

word may have very many morphemes, corresponding to a whole sentence in English.
The second dimension is the degree to which morphemes are segmentable, ranging
from agglutinative languages like Turkish (discussed in Ch. 3), in which morphemesAGGLUTINATIVE

have relatively clean boundaries, tofusion languages like Russian, in which a singleFUSION

affix may conflate multiple morphemes, like-omin the wordstolom, (table-SG-INSTR-
DECL1) which fuses the distinct morphological categories instrumental, singular, and
first declension.

Syntactically, languages are perhaps most saliently different in the basic word or-
der of verbs, subjects, and objects in simple declarative clauses. German, French,
English, and Mandarin, for example, are allSVO (Subject-Verb-Object) languages,SVO

meaning that the verb tends to come between the subject and object. Hindi and Japanese,
by contrast, areSOV languages, meaning that the verb tends to come at the end of basicSOV

clauses, while Irish, Arabic, and Biblical Hebrew areVSO languages. Two languagesVSO

that share their basic word-order type often have other similarities. For exampleSVO
languages generally haveprepositionswhile SOV languages generally havepostposi-
tions.
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For example in the following SVO English sentence, the verbadoresis followed
by its argument VPlistening to music, the verblistening is followed by its argument
PPto music, and the prepositionto is followed by its argumentmusic. By contrast, in
the Japanese example which follows, each of these orderingsis reversed; both verbs
areprecededby their arguments, and the postposition follows its argument.

(25.1) English: He adores listening to music
Japanese:kare

he
ha ongaku

music
wo
to

kiku
listening

no ga daisuki
adores

desu

Another important dimension of typological variation has to do with argument
structure and linking of predicates with their arguments, such as the difference be-
tween head-marking and dependent-marking languages (Nichols, 1986). Head-HEADMARKING

marking languages tend to mark the relation between the headand its dependents on
the head. Dependent-marking languages tend to mark the relation on the non-head.
Hungarian, for example, marks the possessive relation withan affix (A) on the head
noun (H), where English marks it on the (non-head) possessor:

(25.2) English:
Hungarian:

the
az
the

man-A’s
ember
man

Hhouse
Hház-Aa
house-his

Typological variation in linking can also relate to how the conceptual properties of an
event are mapped onto specific words. Talmy (1985) and (1991)noted that languages
can be characterized by whether direction of motion and manner of motion are marked
on the verb or on the “satellites”: particles, prepositional phrases, or adverbial phrases.
For example a bottle floating out of a cave would be described in English with the
direction marked on the particleout, while in Spanish the direction would be marked
on the verb:

(25.3) English: The bottle floated out.
Spanish: La

The
botella
bottle

salió
exited

flotando.
floating.

Verb-framed languages mark the direction of motion on the verb (leaving theVERBFRAMED

satellites to mark the manner of motion), like Spanishacercarse‘approach’,alcan-
zar ‘reach’,entrar ‘enter’, salir ‘exit’. Satellite-framed languages mark the directionSATELLITEFRAMED

of motion on the satellite (leaving the verb to mark the manner of motion), like En-
glishcrawl out, float off, jump down, walk over to, run after. Languages like Japanese,
Tamil, and the many languages in the Romance, Semitic, and Mayan languages fami-
lies, are verb-framed; Chinese as well as non-Romance Indo-European languages like
English, Swedish, Russian, Hindi, and Farsi, are satellite-framed (Talmy, 1991; Slobin,
1996).

Finally, languages vary along a typological dimension related to the things they can
omit. Many languages require that we use an explicit pronounwhen talking about a
referent that is given in the discourse. In other languages,however, we can sometimes
omit pronouns altogether as the following examples from Spanish and Chinese show,
using the/0-notation introduced in Ch. 21:

(25.4) [El jefe]i dio con un libro./0i Mostró a un descifrador ambulante.
[The boss]came upon a book.[He] showed it to a wandering decoder.
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(25.5) CHINESE EXAMPLE

Languages which can omit pronouns in these ways are calledpro-drop languages.PRODROP

Even among the pro-drop languages, their are marked differences in frequencies of
omission. Japanese and Chinese, for example, tend to omit far more than Spanish. We
refer to this dimension asreferential density; languages which tend to use more pro-REFERENTIAL

DENSITY

nouns are more referentially dense than those that use more zeros. Referentially sparse
languages, like Chinese or Japanese, that require the hearer to do more inferential work
to recover antecedents are calledcold languages. Languages that are more explicit andCOLD

make it easier for the hearer are calledhot languages. The termshot andcold are bor-HOT

rowed from Marshall McLuhan’s (1964) distinction between hot media like movies,
which fill in many details for the viewer, versus cold media like comics, which require
the reader to do more inferential work to fill out the representation (Bickel, 2003).

Each typological dimension can cause problems when translating between lan-
guages that differ along them. Obviously translating from SVO languages like English
to SOV languages like Japanese requires huge structural reorderings, since all the con-
stituents are at different places in the sentence. Translating from a satellite-framed to
a verb-framed language, or from a head-marking to a dependent-marking language,
requires changes to sentence structure and constraints on word choice. Languages
with extensive pro-drop, like Chinese or Japanese, cause huge problems for translation
into non-pro-drop languages like English, since each zero has to be identified and the
anaphor recovered.

25.1.2 Other Structural Divergences

Many structural divergences between languages are based ontypological differences.
Others, however, are simply idiosyncratic differences that are characteristic of partic-
ular languages or language pairs. For example in English theunmarked order in a
noun-phrase has adjectives precede nouns, but in French andSpanish adjectives gener-
ally follow nouns.1

(25.6)
Spanish bruja verde French maison bleue

witch green house blue
English “green witch” “blue house”

Chinese relative clauses are structured very differently than English relative clauses,
making translation of long Chinese sentences very complex.

Language-specific constructions abound. English, for example, has an idiosyn-
cratic syntactic construction involving the wordtherethat is often used to introduce a
new scene in a story, as inthere burst into the room three men with guns. To give an
idea of how trivial, yet crucial, these differences can be, think of dates. Dates not only
appear in various formats — typically DD/MM/YY in British English, MM/DD/YY
in American English, and YYMMDD in Japanese—but the calendars themselves may
also differ. Dates in Japanese, for example, are often relative to the start of the current
Emperor’s reign rather than to the start of the Christian Era.

1 As always, there are exceptions to this generalization, such asgalore in English andgros in French;
furthermore in French some adjectives can appear before thenoun with a different meaning;route mauvaise
‘bad road, badly-paved road’ versusmauvaise route‘wrong road’ (Waugh, 1976).
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25.1.3 Lexical Divergences

Lexical divergences also cause huge difficulties in translation. We saw in Ch. 20, for
example, that the English source language wordbasscould appear in Spanish as the
fish lubina or the instrumentbajo. Thus translation often requires solving the exact
same problems as word sense disambiguation, and the two fields are closely linked.

In English the wordbassis homonymous; the two senses of the word are not closely
related semantically, and so it is natural that we would haveto disambiguate in order
to translate. Even in cases of polysemy, however, we often have to disambiguate if
the target language doesn’t have the exact same kind of polysemy. The English word
know, for example, is polysemous; it can refer to knowing of a factor proposition (I
know that snow is white) or familiarity with a person or location (I know Jon Stewart).
It turns out that translating these different senses requires using distinct French verbs,
including the verbsconnâıtre, andsavoir. Savoir is generally used with sentential
complements to indicate knowledge or mental representation of a fact or proposition,
or verbal complements to indicate knowledge of how to do something (e.g., WordNet
3.0 senses #1, #2, #3).Connâıtre is generally used with NP complements to indicate
familiarity or acquaintance with people, entities, or locations (e.g., WordNet 3.0 senses
#4, #7). Similar distinctions occur in German, Chinese, andmany other languages:

(25.7) English: I know he just bought a book.

(25.8) French: Je sais qu’il vient d’acheter un livre.

(25.9) English: I know John.

(25.10) French: Je connais Jean.

Thesavoir/connâıtredistinction corresponds to different groups of WordNet senses.
Sometimes, however, a target language will make a distinction that is not even recog-
nized in fine-grained dictionaries. German, for example, uses two distinct words for
what in English would be called awall: Wandfor walls inside a building, andMauerfor
walls outside a building. Similarly, where English uses theword brother for any male
sibling, both Japanese and Chinese have distinct words forolder brotherandyounger
brother(Chinesegegeanddidi, respectively).

In addition to these distinctions, lexical divergences canbe grammatical. For ex-
ample, a word may translate best to a different part-of-speech in the target language.
Many English sentences involving the verblike must be translated into German using
the adverbialgern; thusshe likes to singmaps tosie singt gerne(SHE SINGS LIK-
INGLY ).

In translation, we can think of sense disambiguation as a kind of specification; we
have to make a vague word likeknowor bassmore specific in the target language. This
kind of specification is also quite common with grammatical differences. Sometimes
one language places more grammatical constraints on word choice than another. French
and Spanish, for example, marks gender on adjectives, so an English translation into
French requires specifying adjective gender. English distinguishes gender in pronouns
where Mandarin does not; thus translating a third-person singular pronountā from
Mandarin to English (he, she, or it) requires deciding who the original referent was. In
Japanese, because there is no single word foris, the translator must choose betweeniru
or aru, based on whether the subject is animate or not.
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The way that languages differ in lexically dividing up conceptual space may be
more complex than this one-to-many translation problem, leading to many-to-many
mappings. For example Fig. 25.2 summarizes some of the complexities discussed by
Hutchins and Somers (1992) in relating Englishleg, foot, andpaw, to the Frenchjambe,
pied, patte, etc.

Figure 25.2 The complex overlap between Englishleg, foot, etc, and various French
translations likepattediscussed by Hutchins and Somers (1992) .

Further, one language may have alexical gap, where no word or phrase, short ofLEXICAL GAP

an explanatory footnote, can express the meaning of a word inthe other language. For
example, Japanese does not have a word forprivacy, and English does not have a word
for Japaneseoyakokoor Chinesexiáo(we make do with the awkward phrasefilial piety
for both).

25.2 CLASSICAL MT & THE VAUQUOIS TRIANGLE

The next few sections introduce the classical pre-statistical architectures for machine
translation. Real systems tend to involve combinations of elements from these three
architectures; thus each is best thought of as a point in an algorithmic design space
rather than as an actual algorithm.

In direct translation, we proceed word-by-word through the source language text,
translating each word as we go. Direct translation uses a large bilingual dictionary,
each of whose entries is a small program with the job of translating one word. In
transfer approaches, we first parse the input text, and then apply rules to transform the
source language parse structure into a target language parse structure. We then gener-
ate the target language sentence from the parse structure. In interlingua approaches,
we analyze the source language text into some abstract meaning representation, called
an interlingua . We then generate into the target language from this interlingual repre-
sentation.

A common way to visualize these three approaches is withVauquois triangleVAUQUOIS TRIANGLE

shown in Fig. 25.3. The triangle shows the increasing depth of analysis required (on
both the analysis and generation end) as we move from the direct approach through
transfer approaches, to interlingual approaches. In addition, it shows the decreasing



DRAFT

10 Chapter 25. Machine Translation

amount of transfer knowledge needed as we move up the triangle, from huge amounts
of transfer at the direct level (almost all knowledge is transfer knowledge for each
word) through transfer (transfer rules only for parse treesor thematic roles) through
interlingua (no specific transfer knowledge).

Figure 25.3 The Vauquois triangle.

In the next sections we’ll see how these algorithms address some of the four trans-
lation examples shown in Fig. 25.4

English Mary didn’t slap the green witch

⇒ Spanish Maria
Mary

no
not

dió
gave

una
a

bofetada
slap

a
to

la
the

bruja
witch

verde
green

English The green witch is at home this week

⇒ German Diese
this

Woche
week

ist
is

die
the

grüne
green

Hexe
witch

zu
at

Hause.
house

English He adores listening to music

⇒ Japanesekare
he

ha ongaku
music

wo
to

kiku
listening

no ga daisuki
adores

desu

Chinese cheng long
Jackie Chan

dao
to

xiang gang
Hong Kong

qu
go

⇒ English Jackie Chan went to Hong Kong

Figure 25.4 Example sentences used throughout the chapter.

25.2.1 Direct Translation

In direct translation , we proceed word-by-word through the source language text,DIRECT
TRANSLATION

translating each word as we go. We make use of no intermediatestructures, except for
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shallow morphological analysis; each source word is directly mapped onto some target
word. Direct translation is thus based on a large bilingual dictionary; each entry in the
dictionary can be viewed as a small program whose job is to translate one word. After
the words are translated, simple reordering rules can apply, for example for moving
adjectives after nouns when translating from English to French.

The guiding intuition of the direct approach is that we translate by incrementally
transforming the source language text into a target language text. While the pure
direct approach is no longer used, this transformational intuition underlies all modern
systems, both statistical and non-statistical.

Figure 25.5 Direct machine translation. The major component, indicated by size here,
is the bilingual dictionary.

Let’s look at a simplified direct system on our first example, translating from En-
glish into Spanish:

(25.11) Mary didn’t slap the green witch

Maria
Mary

no
not

dió
gave

una
a

bofetada
slap

a
to

la
the

bruja
witch

verde
green

The four steps outlined in Fig. 25.5 would proceed as shown inFig. 25.6.
Step 2 presumes that the bilingual dictionary has the phrasedar una bofetada a

as the Spanish translation of Englishslap. The local reordering step 3 would need
to switch the adjective-noun ordering fromgreen witchto bruja verde. And some
combination of ordering rules and the dictionary would dealwith the negation and
past tense in Englishdidn’t. These dictionary entries can be quite complex; a sample
dictionary entry from an early direct English-Russian system is shown in Fig. 25.7.

While the direct approach can deal with our simple Spanish example, and can han-
dle single-word reorderings, it has no parsing component orindeed any knowledge
about phrasing or grammatical structure in the source or target language. It thus cannot
reliably handle longer-distance reorderings, or those involving phrases or larger struc-
tures. This can happen even in languages very similar to English, like German, where
adverbs likeheute(‘today’) occur in different places, and the subject (e.g.,die grüne
Hexe) can occur after the main verb, as shown in Fig. 25.8.

Input: Mary didn’t slap the green witch
After 1: Morphology Mary DO-PAST not slap the green witch
After 2: Lexical Transfer Maria PAST no dar una bofetada a la verde bruja
After 3: Local reordering Maria no dar PAST una bofetada a la bruja verde
After 4: Morphology Maria no dió una bofetada a la bruja verde

Figure 25.6 An example of processing in a direct system
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function DIRECT TRANSLATE MUCH/MANY (word) returns Russian translation

if preceding word ishowreturn skol’ko
else ifpreceding word isasreturn stol’ko zhe
else ifword is much

if preceding word isveryreturn nil
else if following word is a nounreturn mnogo

else /* word is many */
if preceding word is a preposition and following word is a nounreturn mnogii
else return mnogo

Figure 25.7 A procedure for translatingmuchand many into Russian, adapted from
Hutchins’ (1986, pg. 133) discussion of Panov 1960. Note thesimilarity to decision list
algorithms for word sense disambiguation.

Figure 25.8 Complex reorderings necessary when translating from English to German.
German often puts adverbs in initial position that English would more naturally put later.
German tensed verbs often occur in second position in the sentence, causing the subject
and verb to be inverted.

Similar kinds of reorderings happen between Chinese (wheregoal PPs often oc-
cur preverbally) and English (where goal PPs must occur postverbally), as shown in
Fig. 25.9.

Figure 25.9 Chinese goal PPs often occur preverbally, unlike in English
.

Finally, even more complex reorderings occur when we translate from SVO to SOV
languages, as we see in the English-Japanese example from Yamada and Knight (2002):

(25.12) He adores listening to music
kare
he

ha ongaku
music

wo
to

kiku
listening

no ga daisuki
adores

desu

These three examples suggest that the direct approach is toofocused on individual
words, and that in order to deal with real examples we’ll needto add phrasal and
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structural knowledge into our MT models. We’ll flesh out thisintuition in the next
section.

25.2.2 Transfer

As Sec. 25.1 illustrated, languages differ systematicallyin structural ways. One strat-
egy for doing MT is to translate by a process of overcoming these differences, altering
the structure of the input to make it conform to the rules of the target language. This
can be done by applyingcontrastive knowledge, that is, knowledge about the differ-CONTRASTIVE

KNOWLEDGE

ences between the two languages. Systems that use this strategy are said to be based
on thetransfer model.TRANSFER MODEL

The transfer model presupposes a parse of the source language, and is followed
by a generation phase to actually create the output sentence. Thus, on this model,
MT involves three phases:analysis, transfer, andgeneration, where transfer bridges
the gap between the output of the source language parser and the input to the target
language generator.

It is worth noting that a parse for MT may differ from parses required for other pur-
poses. For example, suppose we need to translateJohn saw the girl with the binoculars
into French. The parser does not need to bother to figure out where the prepositional
phrase attaches, because both possibilities lead to the same French sentence.

Once we have parsed the source language, we’ll need rules forsyntactic transfer
andlexical transfer. The syntactic transfer rules will tell us how to modify the source
parse tree to resemble the target parse tree.

Nominal

Adj Noun

⇒ Nominal

Noun Adj

Figure 25.10 A simple transformation that reorders adjectives and nouns

Figure 25.10 gives an intuition for simple cases like adjective-noun reordering; we
transform one parse tree, suitable for describing an English phrase, into another parse
tree, suitable for describing a Spanish sentence. Thesesyntactic transformationsareSYNTACTIC

TRANSFORMATIONS

operations that map from one tree structure to another.
The transfer approach and this rule can be applied to our example Mary did not

slap the green witch. Besides this transformation rule, we’ll need to assume that the
morphological processing figures out thatdidn’t is composed ofdo-PASTplusnot, and
that the parser attaches the PAST feature onto the VP. Lexical transfer, via lookup in
the bilingual dictionary, will then removedo, changenot to no, and turnslap into the
phrasedar una bofetada a, with a slight rearrangement of the parse tree, as suggested
in Fig. 25.11.

For translating from SVO languages like English to SOV languages like Japanese,
we’ll need even more complex transformations, for moving the verb to the end, chang-
ing prepositions into postpositions, and so on. An example of the result of such rules is
shown in Fig. 25.12. An informal sketch of some transfer rules is shown in Fig. 25.13.
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VP[+PAST]

Neg

not

VP

V

slap

NP

DT

the

Nominal

Adj

green

Noun

witch

⇒ VP[+PAST]

Neg

not

VP

V

slap

NP

DT

the

Nominal

Noun

witch

Adj

green

⇒ VP[+PAST]

Neg

no

VP

V

dar

NP

DT

una

NN

bofetada

PP

IN

a

NP

DT

la

Nominal

Noun

bruja

Adj

verde

Figure 25.11 A further sketch of the transfer approach.

VB

PRP

He

VB1

adores

VB2

VB

listening

TO

TO

to

NN

music

⇒ VB

PRP

He

VB2

TO

NN

music

TO

to

VB

listening

VB1

adores

Figure 25.12 The result of syntactic transformations from English order(SVO) to
Japanese order (SOV) for the sentenceHe adores listening to music(kare ha ongaku wo
kiku no ga daisuki desu), after Yamada and Knight (2001). This transform would require
rules for moving verbs after their NP and VP complements, andchanging prepositions to
postpositions.

English to Spanish:

1. NP→ Adjective1 Noun2 ⇒ NP→ Noun2 Adjective1

Chinese to English:

2. VP→ PP[+Goal] V ⇒ VP→ V PP[+Goal]
English to Japanese:

3. VP→ V NP ⇒ VP→ NP V
4. PP→ P NP ⇒ PP→ NP P
5. NP→ NP1 Rel. Clause2 ⇒ NP→ Rel. Clause2 NP1

Figure 25.13 An informal description of some transformations.

Transfer systems can be based on richer structures than justpure syntactic parses.
For example a transfer based system for translating Chineseto English might have rules
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to deal with the fact shown in Fig. 25.9 that in Chinese PPs that fill the semantic role
GOAL (like to the storein I went to the store) tend to appear before the verb, while in
English these goal PPs must appear after the verb. In order tobuild a transformation
to deal with this and related PP ordering differences, the parse of the Chinese must
including thematic structure, so as to distinguishBENEFACTIVE PPs (which must oc-
cur before the verb) fromDIRECTION andLOCATIVE PPs (which preferentially occur
before the verb) fromRECIPIENT PPs (which occur after) (Li and Thompson, 1981).
We discussed how to do this kind of semantic role labeling in Ch. 20. Using semantic
roles in this way is generally calledsemantic transfer; a simple such transformationSEMANTIC

TRANSFER

is shown in Fig. 25.13.
In addition to syntactic transformations, transfer-basedsystems need to have lex-

ical transfer rules. Lexical transfer is generally based ona bilingual dictionary, just
as for direct MT. The dictionary itself can also be used to deal with problems of lex-
ical ambiguity. For example the English wordhomehas many possible translations
in German, includingnach Hause(in the sense ofgoing home) Heim (in the sense of
a home game), Heimat(in the sense ofhomeland, home country, or spiritual home),
andzu Hause(in the sense of beingat home). In this case, the phraseat homeis very
likely to be translatedzu Hause, and so the bilingual dictionary can list this translation
idiomatically.

Many cases of lexical transfer are too complex to deal with via a phrasal dictionary.
In these cases transfer systems can do disambiguation during the source language anal-
ysis, by applying the sense disambiguation techniques of Ch. 20.

25.2.3 Combining direct and tranfer approaches in classic MT

Although the transfer metaphor offers the ability to deal with more complex source
language phenomena than the direct approach, it turns out the simple SVO→ SOV
rules we’ve described above are not sufficient. In practice,we need messy rules which
combine rich lexical knowledge of both languages with syntactic and semantic features.
We briefly saw an example of such a rule for changingslap to dar una bofetada a.

For this reason, commercial MT systems tend to be combinations of the direct
and transfer approaches, using rich bilingual dictionaries, but also using taggers and
parsers. The Systran system, for example, as described in Hutchins and Somers (1992),
Senellart et al. (2001), has three components. First is a shallow analysisstage, includ-
ing:

• morphological analysis and part of speech tagging
• chunking of NPs, PPs, and larger phrases
• shallow dependency parsing (subjects, passives, head-modifiers)

Next is atransfer phase, including:

• translation of idioms,
• word sense disambiguation
• assigning prepositions based on governing verbs

Finally, in thesynthesisstage, the system:

• applies a rich bilingual dictionary to do lexical translation
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• deals with reorderings
• performs morphological generation

Thus like the direct system, the Systran system relies for much of its processing on
the bilingual dictionary, which has lexical, syntactic, and semantic knowledge. Also
like a direct system, Systran does reordering in a post-processing step. But like a
transfer system, many of the steps are informed by syntacticand shallow semantic
processing of the source language.

25.2.4 The Interlingua Idea: Using Meaning

One problem with the transfer model is that it requires a distinct set of transfer rules
for each pair of languages. This is clearly suboptimal for translation systems employed
in many-to-many multilingual environments like the European Union.

This suggests a different perspective on the nature of translation. Instead of directly
transforming the words of the source language sentence intothe target language, the
interlingua intuition is to treat translation as a process of extracting the meaning of
the input and then expressing that meaning in the target language. If this could be
done, an MT system could do without contrastive knowledge, merely relying on the
same syntactic and semantic rules used by a standard interpreter and generator for the
language. The amount of knowledge needed would then be proportional to the number
of languages the system handles, rather than to the square.

This scheme presupposes the existence of a meaning representation, orinterlingua ,INTERLINGUA

in a language-independent canonical form, like the semantic representations we saw in
Ch. 17. The idea is for the interlingua to represent all sentences that mean the “same”
thing in the same way, regardless of the language they happento be in. Translation in
this model proceeds by performing a deep semantic analysis on the input from language
X into the interlingual representation and generating fromthe interlingua to language
Y.

What kind of representation scheme can we use as an interlingua? The predicate
calculus, or a variant such as minimal recursion semantics,is one possibility. Semantic
decomposition into some kind of atomic semantic primitivesis another. We will illus-
trate a third common approach, a simple event-based representation, in which events
are linked to their arguments via a small fixed set of thematicroles. Whether we use
logics or other representations of events, we’ll need to specify temporal and aspectual
properties of the events, and we’ll also need to represent non-eventive relationships
between entities, such as thehas-colorrelation betweengreenandwitch. Fig. 25.14
shows a possible interlingual representation forMary did not slap the green witchas a
unification-style feature structure.

We can create these interlingual representation from the source language text using
thesemantic analyzertechniques of Ch. 18 and Ch. 20; using a semantic role labeler
to discover theAGENT relation betweenMaryand theslapevent, or theTHEME relation
between thewitch and theslapevent. We would also need to do disambiguation of the
noun-modifier relation to recognize that the relationship betweengreenandwitch is
thehas-colorrelation, and we’ll need to discover that this event has negative polarity
(from the worddidn’t). The interlingua thus requires more analysis work than the
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Figure 25.14 Interlingual representation ofMary did not slap the green witch.

transfer model, which only required syntactic parsing (or at most shallow thematic role
labeling). But generation can now proceed directly from theinterlingua with no need
for syntactic transformations.

In addition to doing without syntactic transformations, the interlingual system does
without lexical transfer rules. Recall our earlier problemof whether to translateknow
into French assavoir or connâıtre. Most of the processing involved in making this
decision is not specific to the goal of translating into French; German, Spanish, and
Chinese all make similar distinctions, and furthermore thedisambiguation ofknowinto
concepts such asHAVE-A-PROPOSITION-IN-MEMORY and BE-ACQUAINTED-WITH-
ENTITY is also important for other NLU applications that require word-senses. Thus
by using such concepts in an interlingua, a larger part of thetranslation process can
be done with general language processing techniques and modules, and the processing
specific to the English-to-French translation task can be eliminated or at least reduced,
as suggested in Fig. 25.3.

The interlingual model has its own problems. For example, inorder to trans-
late from Japanese to Chinese the universal interlingua must include concepts such
asELDER-BROTHER andYOUNGER-BROTHER. Using these same concepts translat-
ing from German-to-English would then require large amounts of unnecessary disam-
biguation. Furthermore, doing the extra work involved by the interlingua commitment
requires exhaustive analysis of the semantics of the domainand formalization into
an ontology. Generally this is only possible in relatively simple domains based on a
database model, as in the air travel, hotel reservation, or restaurant recommendation do-
mains, where the database definition determines the possible entities and relations. For
these reasons, interlingual systems are generally only used in sublanguage domains.

25.3 STATISTICAL MT

The three classic architectures for MT (direct, transfer, and interlingua) all provide
answers to the questions of what representations to use and what steps to perform to
translate. But there is another way to approach the problem of translation: to focus on
the result, not the process. Taking this perspective, let’sconsider what it means for a
sentence to be a translation of some other sentence.
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This is an issue to which philosophers of translation have given a lot of thought.
The consensus seems to be, sadly, that it is impossible for a sentence in one language to
be a translation of a sentence in other, strictly speaking. For example, one cannot really
translate Hebrewadonai roi(‘the Lord is my shepherd’) into the language of a culture
that has no sheep. On the one hand, we can write something thatis clear in the target
language, at some cost in fidelity to the original, somethinglike the Lord will look after
me. On the other hand, we can be faithful to the original, at the cost of producing
something obscure to the target language readers, perhaps like the Lord is for me like
somebody who looks after animals with cotton-like hair. As another example, if we
translate the Japanese phrasefukaku hansei shite orimasu, aswe apologize, we are not
being faithful to the meaning of the original, but if we producewe are deeply reflecting
(on our past behavior, and what we did wrong, and how to avoid the problem next
time), then our output is unclear or awkward. Problems such as these arise not only for
culture-specific concepts, but whenever one language uses ametaphor, a construction,
a word, or a tense without an exact parallel in the other language.

So, true translation, which is both faithful to the source language and natural as
an utterance in the target language, is sometimes impossible. If you are going to go
ahead and produce a translation anyway, you have to compromise. This is exactly
what translators do in practice: they produce translationsthat do tolerably well on both
criteria.

This provides us with a hint for how to do MT. We can model the goal of translation
as the production of an output that maximizes some value function that represents the
importance of both faithfulness and fluency. Statistical MTis the name for a class
of approaches that do just this, by building probabilistic models of faithfulness and
fluency, and then combining these models to choose the most probable translation. If
we chose the product of faithfulness and fluency as our quality metric, we could model
the translation from a source language sentenceS to a target language sentenceT̂ as:

best-translation̂T = argmaxT faithfulness(T,S) fluency(T)

This intuitive equation clearly resembles the Bayesiannoisy channel modelwe’ve
seen in Ch. 5 for spelling and Ch. 9 for speech. Let’s make the analogy perfect and
formalize the noisy channel model for statistical machine translation.

First of all, for the rest of this chapter, we’ll assume we aretranslating from a
foreign language sentenceF = f1, f2, ..., fm to English. For some examples we’ll use
French as the foreign language, and for others Spanish. But in each case we are trans-
lating into English (although of course the statistical model also works for translating
out of English). In a probabilistic model, the best English sentenceÊ = e1,e2, ...,el

is the one whose probabilityP(E|F) is the highest. As is usual in the noisy channel
model, we can rewrite this via Bayes rule:

Ê = argmaxEP(E|F)

= argmaxE
P(F|E)P(E)

P(F)

= argmaxEP(F|E)P(E)(25.13)

We can ignore the denominatorP(F) inside the argmax since we are choosing the best
English sentence for a fixed foreign sentenceF , and henceP(F) is a constant. The
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resulting noisy channel equation shows that we need two components: atranslation
model P(F|E), and alanguage modelP(E).TRANSLATION

MODEL

LANGUAGE MODEL

Ê = argmax
E∈English

translation model
︷ ︸︸ ︷

P(F |E)

language model
︷ ︸︸ ︷

P(E)(25.14)

Notice that applying the noisy channel model to machine translation requires that
we think of things backwards, as shown in Fig. 25.15. We pretend that the foreign
(source language) inputF we must translate is a corrupted version of some English
(target language) sentenceE, and that our task is to discover the hidden (target lan-
guage) sentenceE that generated our observation sentenceF.

noisy sentence

source sentence

noisy channel

decoder

Mary did not slap...
Harry did not wrap...
...

Larry did not nap...

guess at source:
noisy 1

noisy 2
noisy N

Mary did not slap

the green witch.

Mary did not slap

the green witch

Maria no dió una bofetada 

a la bruja verde

Language Model P(E) x Translation Model P(F|E)

Figure 25.15 The noisy channel model of statistical MT. If we are translating a source
language French to a target language English, we have to think of ’sources’ and ’targets’
backwards. We build a model of the generation process from anEnglish sentence through
a channel to a French sentence. Now given a French sentence totranslate, we pretend it is
the output of an English sentence going through the noisy channel, and search for the best
possible ‘source’ English sentence.

The noisy channel model of statistical MT thus requires three components to trans-
late from a French sentenceF to an English sentenceE:

• A language modelto computeP(E)

• A translation model to computeP(F |E)

• A decoder, which is givenF and produces the most probableE

Of these three components, we have already introduced the language modelP(E) in
Ch. 4. Statistical MT systems are based on the sameN-gram language models as speech
recognition and other applications. The language model component is monolingual,
and so acquiring training data is relatively easy.

The next few sections will therefore concentrate on the other two components, the
translation model and the decoding algorithm.
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25.4 P(F |E): THE PHRASE-BASED TRANSLATION MODEL

The job of the translation model, given an English sentenceE and a foreign sentence
F , is to assign a probability thatE generatesF . While we can estimate these probabil-
ities by thinking about how each individual word is translated, modern statistical MT
is based on the intuition that a better way to compute these probabilities is by consid-
ering the behavior ofphrases. As we see in Fig. 25.16, repeated from page 12, entire
phrases often need to be translated and moved as a unit. The intuition of phrase-basedPHRASEBASED

statistical MT is to use phrases (sequences of words) as wellas single words as the
fundamental units of translation.

Figure 25.16 Phrasal reorderings necessary when generating German fromEnglish;
repeated from Fig. 25.8.

There are a wide variety of phrase-based models; in this section we will sketch
the model of Koehn et al. (2003). We’ll use a Spanish example,seeing how the
phrase-based model computes the probability P(Maria no dió una bofetada a la bruja
verde|Mary did not slap the green witch).

The generative story of phrase-based translation has threesteps. First we group the
English source words into phrases ¯e1, ē2...ēI . Next we translate each English phrase ¯ei

into a Spanish phrasēf j . Finally each of the Spanish phrases is (optionally) reordered.
The probability model for phrase-based translation relieson atranslation proba-

bility and adistortion probability . The factorφ( f̄ j |ēi) is the translation probability
of generating Spanish phrasēf j from English phrase ¯ei . The reordering of the Spanish
phrases is done by thedistortion probabilityd. Distortion in statistical machine trans-DISTORTION

lation refers to a word having a different (‘distorted’) position in the Spanish sentence
than it had in the English sentence; it is thus a measure of thedistancebetween the
positions of a phrase in the two languages. The distortion probability in phrase-based
MT means the probability of two consecutive English phrasesbeing separated in Span-
ish by a span (of Spanish words) of a particular length. More formally, the distortion
is parameterized byd(ai−bi−1), whereai is the start position of the foreign (Spanish)
phrase generated by theith English phrase ¯ei , andbi−1 is the end position of the for-
eign (Spanish) phrase generated by thei−1th English phrase ¯ei−1. We can use a very
simple distortion probability, in which we simply raise some small constantα to the
distortion.d(ai−bi−1) = α|ai−bi−1−1|. This distortion model penalizes large distortions
by giving lower and lower probability the larger the distortion.

The final translation model for phrase-based MT is:



DRAFT

Section 25.4. P(F |E): the Phrase-Based Translation Model 21

P(F |E) =
I

∏
i=1

φ( f̄i , ēi)d(ai−bi−1)(25.15)

Let’s consider the following particular set of phrases for our example sentences:2

Position 1 2 3 4 5
English Mary did not slap the green witch
Spanish Maria no dió una bofetada a la bruja verde

Since each phrase follows directly in order (nothing moves around in this example,
unlike the German example in (25.16)) the distortions are all 1, and the probability
P(F |E) can be computed as:

P(F|E) = P(Maria,Mary)×d(1)×P(no|did not)×d(1)×

P(dió una bofetada|slap)×d(1)×P(a la|the)×d(1)×

P(bruja verde|green witch)×d(1)(25.16)

In order to use the phrase-based model, we need two more things. We need a
model ofdecoding, so we can go from a surface Spanish string to a hidden English
string. And we need a model oftraining , so we can learn parameters. We’ll introduce
the decoding algorithm in Sec. 25.8. Let’s turn first to training.

How do we learn the simple phrase-based translation probability model in (25.15)?
The main set of parameters that needs to be trained is the set of phrase translation
probabilitiesφ( f̄i , ēi).

These parameters, as well as the distortion constantα, could be set if only we had a
large bilingual training set, in which each Spanish sentence was paired with an English
sentence, and if furthermore we knew exactly which phrase inthe Spanish sentence
was translated by which phrase in the English sentence. We call such a mapping a
phrase alignment.PHRASE ALIGNMENT

The table of phrases above showed an implicit alignment of the phrases for this sen-
tence, for examplegreen witchaligned withbruja verde. If we had a large training set
with each pair of sentences labeled with such a phrase alignment, we could just count
the number of times each phrase-pair occurred, and normalize to get probabilities:

φ( f̄ , ē) =
count( f̄ , ē)

∑ f̄ count( f̄ , ē)
(25.17)

We could store each phrase pair( f̄ , ē), together with its probabilityφ( f̄ , ē), in a
largephrase translation table.PHRASE

TRANSLATION TABLE

Alas, we don’t have large hand-labeled phrase-aligned training sets. But it turns
that we can extract phrases from another kind of alignment called aword alignment.WORD ALIGNMENT

A word alignment is different than a phrase alignment, because it shows exactly which

2 Exactly which phrases we use depends on which phrases are discovered in the training process, as de-
scribed in Sec. 25.7; thus for example if we don’t see the phrasegreen witchin our training data, we would
have to translategreenandwitch independently.
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Spanish word aligns to which English word inside each phrase. We can visualize a
word alignment in various ways. Fig. 25.17 and Fig. 25.18 show a graphical model
and an alignment matrix, respectively, for a word alignment.

Figure 25.17 A graphical model representation of a word alignment between the En-
glish and Spanish sentences. We will see later how to extractphrases.

.

Figure 25.18 An alignment matrix representation of a word alignment between the
English and Spanish sentences. We will see later how to extract phrases.

.

The next section introduces a few algorithms for deriving word alignments. We
then show in Sec. 25.7 how we can extract a phrase table from word alignments, and
finally in Sec. 25.8 how the phrase table can be used in decoding.

25.5 ALIGNMENT IN MT

All statistical translation models are based on the idea of aword alignment. A wordWORD ALIGNMENT

alignment is a mapping between the source words and the target words in a set of
parallel sentences.

Fig. 25.19 shows a visualization of an alignment between theEnglish sentenceAnd
the program has been implementedand the French sentenceLe programme áet́e mis en
application. For now, we assume that we already know which sentences in the English
text aligns with which sentences in the French text.

In principle, we can have arbitrary alignment relationships between the English
and French word. But the word alignment models we will present (IBM Models 1
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Figure 25.19 An alignment between an English and a French sentence, afterBrown
et al. (1993). Each French word aligns to a single English word.

and 3 and the HMM model) make a more stringent requirement, which is that each
French word comes from exactly one English word; this is consistent with Fig. 25.19.
One advantage of this assumption is that we can represent an alignment by giving the
index number of the English word that the French word comes from. We can thus
represent the alignment shown in Fig. 25.19 asA = 2,3,4,5,6,6,6. This is a very
likely alignment. A very unlikely alignment, by contrast, might beA= 3,3,3,3,3,3,3.

We will make one addition to this basic alignment idea, whichis to allow words to
appear in the foreign sentence that don’t align to any word inthe English sentence. We
model these words by assuming the existence of a NULL Englishword e0 at position
0. Words in the foreign sentence that are not in the English sentence, calledspurious
words, may be generated bye0. Fig. 25.20 shows the alignment of spurious SpanishaSPURIOUS WORDS

to English NULL.3

Figure 25.20 The alignment of thespuriousSpanish worda to the English NULL word
e0.

While the simplified model of alignment above disallows many-to-one or many-
to-many alignments, we will discuss more powerful translation models that allow such
alignments. Here are two such sample alignments; in Fig. 25.21 we see an alignment
which is many-to-one; each French word does not align to a single English word, al-
though each English word does align to a single French word.

Fig. 25.22 shows an even more complex example, in which multiple English words
don’t have any moneyjointly align to the French wordssont d́emunis. Suchphrasal
alignments will be necessary for phrasal MT, but it turns out they can’t be directly
generated by the IBM Model 1, Model 3, or HMM word alignment algorithms.

3 While this particulara might instead be aligned to Englishslap, there are many cases of spurious words
which have no other possible alignment site.
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Figure 25.21 An alignment between an English and a French sentence, in which each
French word does not align to a single English word, but each English word aligns to one
French word. Adapted from Brown et al. (1993).

Figure 25.22 An alignment between an English and a French sentence, in which there
is a many-to-many alignment between English and French words. Adapted from Brown
et al. (1993).

25.5.1 IBM Model 1

We’ll describe two alignment models in this section: IBM Model 1 and the HMM
model (we’ll also sketch the fertility-based IBM Model 3 in the advanced section).
Both arestatistical alignmentalgorithms. For phrase-based statistical MT, we use the
alignment algorithms just to find the best alignment for a sentence pair(F,E), in order
to help extract a set of phrases. But it is also possible to usethese word alignment
algorithms as a translation modelP(F,E) as well. As we will see, the relationship
between alignment and translation can be expressed as follows:

P(F |E) = ∑
A

P(F,A|E)

We’ll start with IBM Model 1, so-called because it is the firstand simplest of five
models proposed by IBM researchers in a seminal paper (Brownet al., 1993).

Here’s the general IBM Model 1 generative story for how we generate a Spanish
sentence from an English sentenceE = e1,e2, ...,eI of lengthI :

1. Choose a lengthK for the Spanish sentence, henceforthF = f1, f2, ..., fK .
2. Now choose an alignmentA = a1,a2, ...,aJ between the English and Spanish

sentences.
3. Now for each positionj in the Spanish sentence, chose a Spanish wordf j by

translating the English word that is aligned to it.

Fig. 25.23 shows a visualization of this generative process.
Let’s see how this generative story assigns a probabilityP(F|E) of generating the

Spanish sentenceF from the English sentenceE. We’ll use this terminology:

• ea j is the English word that is aligned to the Spanish wordf j .
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Figure 25.23 The three steps of IBM Model 1 generating a Spanish sentence and align-
ment from an English sentence.

• t( fx,ey) is the probability of translatingey by fx (i.e. P( fx|ey)

We’ll work our way backwards from step 3. So suppose we already knew the length
J and the alignmentA, as well as the English sourceE. The probability of the Spanish
sentence would be:

P(F|E,A) =
J

∏
j=1

t( f j |ea j )(25.18)

Now let’s formalize steps 1 and 2 of the generative story. This is the probability
P(A|E) of an alignmentA (of lengthJ) given the English sentenceE. IBM Model 1
makes the (very) simplifying assumption that each alignment is equally likely. How
many possible alignments are there between an English sentence of lengthI and a
Spanish sentence of lengthJ? Again assuming that each Spanish word must come
from one of theI English words (or the 1 NULL word), there are(I + 1)J possible
alignments. Model 1 also assumes that the probability of choosing lengthJ is some
small constantε. The combined probability of choosing a lengthJ and then choosing
any particular one of the(I +1)J possible alignments is:

P(A|E) =
ε

(I +1)J(25.19)

We can combine these probabilities as follows:

P(F,A|E) = P(F |E,A)×P(A|E)

=
ε

(I +1)J

J

∏
j=1

t( f j |ea j )(25.20)

This probability,P(F,A|E), is the probability of generating a Spanish sentenceF
via a particular alignment. In order to compute the total probability P(F |E) of gener-
atingF , we just sum over all possible alignments:
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P(F |E) = ∑
A

P(F,A|E)

= ∑
A

ε
(I +1)J

J

∏
j=1

t( f j |ea j )(25.21)

Equation (25.21) shows the generative probability model for Model 1, as it assigns
a probability to each possible Spanish sentence.

In order to find the best alignment between a pair of sentencesF andE, we need a
way todecodeusing this probabilistic model. It turns out there is a very simple poly-
nomial algorithm for computing the best (Viterbi) alignment with Model 1, because the
best alignment for each word is independent of the decision about best alignments of
the surrounding words:

Â = argmax
A

P(F,A|E)

= argmax
A

ε
(I +1)J

J

∏
j=1

t( f j |ea j )

= argmax
a j

t( f j |ea j ) 1 < j < J(25.22)

Training for Model 1 is done by the EM algorithm, which we willcover in Sec. 25.6.

25.5.2 HMM Alignment

Now that we’ve seen Model 1, it should be clear that it makes some really appalling
simplifying assumptions. One of the most egregious is the assumption that all align-
ments are equally likely. One way in which this is a bad assumption is that align-
ments tend to preservelocality; neighboring words in English are often aligned with
neighboring words in Spanish. If we look back at the Spanish/English alignment in
Fig. 25.17, for example, we can see that this locality in the neighboring alignments.
The HMM alignment model captures this kind of locality by conditioning each align-
ment decision on previous decisions. Let’s see how this works.

The HMM alignment model is based on the familiar HMM model we’ve now seen
in many chapters. As with IBM Model 1, we are trying to computeP(F,A|E). The
HMM model is based on a restructuring of this probability using the chain rule as
follows:

P( f J
1 ,aJ

1|e
I
1) = P(J|eI

1)×
J

∏
j=1

P( f j ,a j | f
j−1

1 ,a j−1
1 ,eI

1)

= P(J|eI
1)×

J

∏
j−1

P(a j | f
j−1

1 ,a j−1
1 ,eI

1)×P( f j | f
j−1

1 ,a j
1,e

I
1)(25.23)
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Via this restructuring, we can think ofP(F,A|E) as being computable from proba-
bilities of three types: a length probabilityP(J|eI

1), an alignment probabilityP(a j | f
j−1

1 ,a j−1
1 ,eI

1),

and a lexicon probabilityP( f j | f
j−1

1 ,a j
1,e

I
1).

We next make some standard Markov simplifying assumptions.We’ll assume that
the probability of a particular alignmenta j for Spanish wordj is only dependent on
the previous aligned positiona j−1. We’ll also assume that the probability of a Spanish
word f j is dependent only on the aligned English wordea j at positiona j :

P(a j | f
j−1

1 ,a j−1
1 ,eI

1) = P(a j |a j−1, I)(25.24)

P( f j | f
j−1

1 ,a j
1,e

I
1) = P( f j |ea j )(25.25)

Finally, we’ll assume that the length probability can be approximated just asP(J|I).
Thus the probabilistic model for HMM alignment is:

P( f J
1 ,aJ

1|e
I
1) = P(J|I)×

J

∏
j=1

P(a j |a j−1, I)P( f j |ea j )(25.26)

To get the total probability of the Spanish sentenceP( f J
1 |e

I
1) we need to sum over

all alignments:

P( f J
1 |e

I
1) = P(J|I)×∑

A

J

∏
j=1

P(a j |a j−1, I)P( f j |ea j )(25.27)

As we suggested at the beginning of the section, we’ve conditioned the alignment
probabilityP(a j |a j−1, I) on the previous aligned word, to capture the locality of align-
ments. Let’s rephrase this probability for a moment asP(i|i′, I), wherei will stand for
the absolute positions in the English sentence of consecutive aligned states in the Span-
ish sentence. We’d like to make these probabilities dependent not on the absolute word
positionsi andi′, but rather on thejump width between words; the jump width is theJUMP WIDTH

distance between their positionsi′− i. This is because our goal is to capture the fact that
‘the English words that generate neighboring Spanish wordsare likely to be nearby’.
We thus don’t want to be keeping separate probabilities for each absolute word position
like P(7|6,15) andP(8|7,15). Instead, we compute alignment probabilities by using a
non-negative function of the jump width:

P(i|i′, I) =
c(i− i′)

∑I
i′′=1c(i′′− i′)

(25.28)

Let’s see how this HMM model gives the probability of a particular alignment of
our English-Spanish sentences; we’ve simplified the sentence slightly.

Thus the probabilityP(F,A|E) for this particular alignment of our simplified sen-
tenceMaria dió una bofetada a la bruja verdeis the product of:

P(F,A|E) = P(J|I)×P(Maria|Mary)×P(2|1,5)×

t(dió|slapped)×P(2|2,5)×T(una|slapped)×P(2|2,5)× . . .(25.29)
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Figure 25.24 The HMM alignment model generating fromMary slappped the green
witch, showing the alignment and lexicon components of the probability P(F,A|E) for this
particular alignment.

There are also more sophisticated augmentations to the basic HMM alignment
model. These include adding NULL words in the English sourcewhich can be used to
align with Spanish words that don’t align with English words, or conditioning the align-
ment onC(ea j−1), the word class of the preceding target word:P(a j |a j−1, I ,C(ea j−1))
(Och and Ney, 2003; Toutanova et al., 2002).

The main advantage of the HMM alignment model is that there are well-understood
algorithms both for decoding and for training. For decoding, we can use the Viterbi al-
gorithm introduced in Ch. 5 and Ch. 6 to find the best (Viterbi)alignment for a sentence
pair (F,E). For training, we can use the Baum-Welch algorithm, as summarized in the
next section.

25.6 TRAINING ALIGNMENT MODELS

All statistical translation models are trained using a large parallel corpus. A parallel
corpus, parallel text, orbitext is a text that is available in two languages. For example,PARALLEL CORPUS

BITEXT the proceedings of the Canadian parliament are kept in both French and English. Each
sentence spoken in parliament is translated, producing a volume with running text in
both languages. These volumes are calledHansards, after the publisher of the BritishHANSARDS

parliamentary proceedings. Similarly, theHong Kong Hansardscorpus contains theHONG KONG
HANSARDS

proceedings of the Hong Kong SAR Legislative Council in bothEnglish and Chinese.
Both of these corpora contain tens to hundreds of millions ofwords. Other parallel
corpora have been made available by the United Nations. It ispossible to make parallel
corpora out of literary translations, but this is less common for MT purposes, partly
because it is difficult to acquire the legal rights to fiction,but mainly because, as we
saw at the beginning of the chapter, translating fiction is very difficult and translations
are not very literal. Thus statistical systems tend to be trained on very literal translations
such as Hansards.

The first step in training is to segment the corpus into sentences. This task is called
sentence segmentationor sentence alignment. The simplest methods align sentencesSENTENCE

SEGMENTATION

SENTENCE
ALIGNMENT

based purely on their length in words or characters, withoutlooking at the contents of
the words in the sentences. The intuition is that if we see a long sentence in roughly
the same position in each language of the parallel text, we might suspect these sen-
tences are translations. This intuition can be implementedby a dynamic programming
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algorithm. More sophisticated algorithms also make use of information about word
alignments. Sentence alignment algorithms are run on a parallel corpus before training
MT models. Sentences which don’t align to anything are thrown out, and the remaining
aligned sentences can be used as a training set. See the end ofthe chapter for pointers
to more details on sentence segmentation.

Once we have done sentence alignment, the input to our training algorithm is a
corpus consisting ofS sentence pairs{(Fs,Es) : s = 1. . .S}. For each sentence pair
(Fs,Es) the goal is to learn an alignmentA = aJ

1 and the component probabilities (t for
Model 1, and the lexicon and alignment probabilities for theHMM model).

25.6.1 EM for Training Alignment Models

If each sentence pair(Fs,Es) was already hand-labeled with a perfect alignment, learn-
ing the Model 1 or HMM parameters would be trivial. For example, to get a maximum
likelihood estimates in Model 1 for the translation probability t(verde,green), we would
just count the number of timesgreenis aligned toverde, and normalize by the total
count ofgreen.

But of course we don’t know the alignments in advance; all we have are theprob-
abilities of each alignment. Recall that Eq˙ 25.20 showed that if we already had
good estimates for the Model 1t parameter, we could use this to compute probabil-
ities P(F,A|E) for alignments. GivenP(F,A|E), we can generate the probability of an
alignment just by normalizing:

P(A|E,F) =
P(A,F |E)

∑AP(A,F |E)

So, if we had a rough estimate of the Model 1t parameters, we could compute the
probability for each alignment. Then instead of estimatingthet probabilities from the
(unknown) perfect alignment, we would estimate them from each possible alignment,
and combine these estimates weighted by the probability of each alignment. For exam-
ple if there were two possible alignments, one of probability .9 and one of probability
.1, we would estimate thet parameters separately from the two alignments and mix
these two estimates with weights of .9 and .1.

Thus if we had model 1 parameters already, we couldre-estimatethe parameters,
by using the parameters to compute the probability of each possible alignment, and
then using the weighted sum of alignments to re-estimate themodel 1 parameters. This
idea of iteratively improving our estimates of probabilities is a special case of theEM
algorithm that we introduced in Ch. 6, and that we saw again for speech recognition
in Ch. 9. Recall that we use the EM algorithm when we have a variable that we can’t
optimize directly because it ishidden. In this case the hidden variable is the alignment.
But we can use the EM algorithm to estimate the parameters, compute alignments from
these estimates, use the alignments to re-estimate the parameters, and so on!

Let’s walk through an example inspired by Knight (1999b), using a simplified ver-
sion of Model 1, in which we ignore the NULL word, and we only consider a subset of
the alignments (ignoring alignments for which an English word aligns with no Spanish
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word). Hence we compute the simplified probabilityP(A,F |E) as follows:

P(A,F|E) =
J

∏
j=1

t( f j |ea j )(25.30)

The goal of this example is just to give an intuition of EM applied to this task; the
actual details of Model 1 training would be somewhat different.

The intuition of EM training is that in the E-step, we computeexpected counts
for thet parameter based on summing over the hidden variable (the alignment), while
in the M-step, we compute the maximum likelihood estimate ofthet probability from
these counts.

Let’s see a few stages of EM training of this parameter on a a corpus of two sen-
tences:

green house the house
casa verde la casa

The vocabularies for the two languages areE = {green,house,the}andS= {casa,la,verde}.
We’ll start with uniform probabilities:

t(casa|green) = 1
3 t(verde|green) = 1

3 t(la|green) = 1
3

t(casa|house) = 1
3 t(verde|house) = 1

3 t(la|house) = 1
3

t(casa|the) = 1
3 t(verde|the) = 1

3 t(la|the) = 1
3

Now let’s walk through the steps of EM:

E-step 1: Compute the expected countsE[count(t( f ,e))] for all word pairs( f j ,ea j )

E-step 1a: We first need to computeP(a, f |e), by multiplying all thet probabilities, following
Eq. 25.30

green house green house the house the house

casa verde casa verde la casa la casa
P(a, f |e) = t(casa,green) P(a, f |e) = t(verde,green) P(a, f |e) = t(la,the) P(a, f |e) = t(casa,the)
× t(verde,house) × t(casa,house) × t(casa,house) × t(la,house)

= 1
3 ×

1
3 = 1

9 = 1
3 ×

1
3 = 1

9 = 1
3 ×

1
3 = 1

9 = 1
3 ×

1
3 = 1

9

E-step 1b: NormalizeP(a, f |e) to getP(a|e, f ), using the following:

P(a|e, f ) =
P(a, f |e)

∑aP(a, f |e)

The resulting values ofP(a| f ,e) for each alignment are as follows:

green house green house the house the house

casa verde casa verde la casa la casa
P(a| f ,e) = 1/9

2/9 = 1
2 P(a| f ,e) = 1/9

2/9 = 1
2 P(a| f ,e) = 1/9

2/9 = 1
2 P(a| f ,e) = 1/9

2/9 = 1
2

E-step 1c: Compute expected (fractional) counts, by weighting each count byP(a|e, f )
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tcount(casa|green) = 1
2 tcount(verde|green) = 1

2 tcount(la|green) = 0 total(green) = 1

tcount(casa|house) = 1
2 + 1

2 tcount(verde|house) = 1
2 tcount(la|house) = 1

2 total(house) = 2

tcount(casa|the) = 1
2 tcount(verde|the) = 0 tcount(la|the) = 1

2 total(the) = 1

M-step 1: Compute the MLE probability parameters by normalizing the tcounts to sum to one.

t(casa|green) = 1/2
1 = 1

2 t(verde|green) = 1/2
1 = 1

2 t(la|green) = 0
1 = 0

t(casa|house) = 1
2 = 1

2 t(verde|house) = 1/2
2 = 1

4 t(la|house) = 1/2
2 = 1

4

t(casa|the) = 1/2
1 = 1

2 t(verde|the) = 0
1 = 0 t(la|the) = 1/2

1 = 1
2

Note that each of the correct translations have increased inprobability from the ini-
tial assignment; for example the translationcasafor househas increased in probability
from 1

3 to 1
2.

E-step 2a: We re-computeP(a, f |e), again by multiplying all thet probabilities, following
Eq. 25.30

green house green house the house the house

casa verde casa verde la casa la casa
P(a, f |e) = t(casa,green) P(a, f |e) = t(verde,green) P(a, f |e) = t(la,the) P(a, f |e) = t(casa,the)
× t(verde,house) × t(casa,house) × t(casa,house) × t(la,house)

= 1
2 ×

1
4 = 1

8 = 1
2 ×

1
2 = 1

4 = 1
2 ×

1
2 = 1

4 = 1
2 ×

1
4 = 1

8

Note that the two correct alignments are now higher in probability than the two
incorrect alignments. Performing the second and further round of E-steps and M-steps
is left as Exercise 25.6 for the reader.

We have shown that EM can be used to learn the parameters for a simplified version
of Model 1. Our intuitive algorithm, however, requires thatwe enumerate all possible
alignments. For a long sentence, enumerating every possible alignment would be very
inefficient. Luckily in practice there is a very efficient version of EM for Model 1 that
efficiently and implicitly sums over all alignments.

We also use EM, in the form of the Baum-Welch algorithm, for learning the param-
eters of the HMM model.

25.7 SYMMETRIZING ALIGNMENTS FORPHRASE-BASED MT

The reason why we needed Model 1 or HMM alignments was to buildword alignments
on the training set, so that we could extract aligned pairs ofphrases.

Unfortunately, HMM (or Model 1) alignments are insufficientfor extracting pair-
ings of Spanish phrases with English phrases. This is because in the HMM model,
each Spanish word must be generated from a single English word; we cannot gen-
erate a Spanish phrase from multiple English words. The HMM model thus cannot
align a multiword phrase in the source language with a multiword phrase in the target
language.
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We can, however, extend the HMM model to produce phrase-to-phrase alignments
for a pair of sentences(F,E), via a method that’s often calledsymmetrizing. First,SYMMETRIZING

we train two separate HMM aligners, an English-to-Spanish aligner and a Spanish-to-
English aligner. We then align (F,E) using both aligners. We can then combine these
alignments in clever ways to get an alignment that maps phrases to phrases.

To combine the alignments, we start by taking theintersection of the two align-INTERSECTION

ments, as shown in Fig. 25.25. The intersection will containonly places where the
two alignments agree, hence the high-precision aligned words. We can also separately
compute theunion of these two alignments. The union will have lots of less accurately
aligned words. We can then build a classifier to select words from the union, which we
incrementally add back in to this minimal intersective alignment.

Figure 25.25 Intersection of English-to-Spanish and Spanish-to-English alignments to
produce a high-precision alignment. Alignment can then be expanded with points from
both alignments to produce an alignment like that shown in Fig. 25.26. After Koehn
(2003b).

Fig. 25.26 shows an example of the resulting word alignment.Note that it does
allow many-to-one alignments in both directions. We can nowharvest all phrase pairs
that are consistent with this word alignment. A consistent phrase pair is one in which
all the words are aligned only with each other, and not to any external words. Fig. 25.26
also shows some phrases consistent with the alignment.

Once we collect all the aligned phrases pairs from the entiretraining corpus, we
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(Maria, Mary), (no, did not),
(slap, dió una bofetada), (verde, green),
(a la, the), (bruja, witch),
(Maria no, Mary did not),
(no dió una bofetada, did not slap),
(dió una bofetada a la, slap the),
(bruja verde, green witch),
(a la bruja verde, the green witch),. . .

Figure 25.26 A better phrasal alignment for thegreen witchsentence, computed by
starting with the intersection alignment in Fig. 25.25 and adding points from the union
alignment, using the algorithm of Och and Ney (2003). On the right, some of the phrases
consistent with this alignment, after Koehn (2003b).

can compute the maximum likelihood estimate for the phrase translation probability of
a particular pair as follows:

φ( f̄ , ē) =
count( f̄ , ē)

∑ f̄ count( f̄ , ē)
(25.31)

We can now store each phrase( f̄ , ē), together with its probabilityφ( f̄ , ē), in a large
phrase translation table. The decoding algorithm discussed in the next section canPHRASE

TRANSLATION TABLE

use this phrase translation table to compute the translation probability.

25.8 DECODING FORPHRASE-BASED STATISTICAL MT

The remaining component of a statistical MT system is the decoder. Recall that the
job of the decoder is to take a foreign (Spanish) source sentenceF and produce the
best (English) translationE according to the product of the translation and language
models:

Ê = argmax
E∈English

translation model
︷ ︸︸ ︷

P(F |E)

language model
︷ ︸︸ ︷

P(E)(25.32)

Finding the sentence which maximizes the translation and language model proba-
bilities is asearchproblem, and decoding is thus a kind of search. Decoders in MTare
based onbest-first search, a kind ofheuristic or informed search; these are search
algorithms that are informed by knowledge from the problem domain. Best-first search
algorithms select a noden in the search space to explore based on an evaluation function
f (n). MT decoders are variants of a specific kind of best-first search calledA∗ search.
A∗ search was first implemented for machine translation by IBM (Brown et al., 1995),
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based on IBM’s earlier work on A∗ search for speech recognition (Jelinek, 1969). As
we discussed in Sec.??, for historical reasons A∗ search and its variants are commonly
calledstack decodingin speech recognition and sometimes also in machine transla-STACK DECODING

tion.
Let’s begin in Fig. 25.27 with a generic version of stack decoding for machine

translation. The basic intuition is to maintain apriority queue (traditionally referred
to as astack) with all the partial translation hypotheses, together with their scores.

function STACK DECODING(source sentence)returns target sentence

initialize stack with a null hypothesis
loop do

pop best hypothesish off of stack
if h is a complete sentence,return h
for each possible expansionh′ of h

assign a score toh′

pushh′ onto stack

Figure 25.27 Generic version of stack or A∗ decoding for machine translation. A hy-
pothesis is expanded by choosing a single word or phrase to translate. We’ll see a more
fleshed-out version of the algorithm in Fig. 25.30.

Let’s now describe stack decoding in more detail. While the original IBM statistical
decoding algorithms were for word-based statistical MT, wewill describe the applica-
tion to phrase-based decoding in the publicly available MT decoderPharaoh (Koehn,
2004).

In order to limit the search space in decoding, we don’t want to search through
the space of all English sentences; we only want to consider the ones that are possible
translations forF . To help reduce the search space, we only want to consider sentences
that include words or phrases which are possible translations of words or phrases in the
Spanish sentenceF . We do this by searching thephrase translation tabledescribed
in the previous section, for all possible English translations for all possible phrases in
F .

A sample lattice of possible translation options is shown inFig. 25.28 drawn from
Koehn (2003a, 2004). Each of these options consists of a Spanish word or phrase,
the English translation, and the phrase translation probability φ. We’ll need to search
through combinations of these to find the best translation string.

Now let’s walk informally through the stack decoding example in Fig. 25.29, pro-
ducing an English translation ofMary dió una bofetada a la bruja verdeleft to right.
For the moment we’ll make the simplifying assumption that there is a single stack, and
that there is no pruning.

We start with the null hypothesis as the initialsearch state, in which we have
selected no Spanish words and produced no English translation words. We nowexpand
this hypothesis by choosing each possible source word or phrase which could generate
an English sentence-initial phrase. Fig. 25.29a shows thisfirst ply of the search. For
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verdelaabofetadaunadiónoMaria bruja

Mary not

did not

no

did not give

give a slap to greenthe witch

a slap to green witch

slap to the

to

the

slap the witch

Figure 25.28 The lattice of possible English translations for words and phrases in a
particular sentenceF , taken from the entire aligned training set. After Koehn (2003a)

Figure 25.29 Three stages in stack decoding ofMaria no dió una bofetada a la bruja verde(simplified by
assuming a single stack and no pruning). The nodes in blue, onthe fringe of the search space, are all on the stack,
and areopennodes still involved in the search. Nodes in gray areclosednodes which have been popped off the
stack.

example the top state represents the hypothesis that the English sentence starts with
Mary, and the Spanish wordMaria has been covered (the asterisk for the first word is
marked with an M). Each state is also associated with a cost, discussed below. Another
state at this ply represents the hypothesis that the Englishtranslation starts with the
word No, and that Spanishno has been covered. This turns out to be the lowest-cost
node on the queue, so we pop it off the queue and push all its expansions back on the
queue. Now the stateMary is the lowest cost, so we expand it;Mary did not is now
the lowest cost translation so far, so will be the next to be expanded. We can then
continue to expand the search space until we have states (hypotheses) that cover the
entire Spanish sentence, and we can just read off an English translation from this state.
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We mentioned that each state is associated with a cost which,as we’ll see below,
is used to guide the search, The cost combines thecurrent cost with an estimate of
the future cost. Thecurrent cost is the total probability of the phrases that have been
translated so far in the hypothesis, i.e. the product of the translation, distortion, and
language model probabilities. For the set of partially translated phrasesS= (F,E), this
probability would be:

cost(E,F) = ∏
i∈S

φ( f̄i , ēi)d(ai−bi−1)P(E)(25.33)

The future cost is our estimate of the cost of translating theremainingwords in the
Spanish sentence. By combining these two factors, the statecost gives an estimate of
the total probability of the search path for the eventual complete translation sentence
E passing through the current node. A search algorithm based only on the current cost
would tend to select translations that had a few high-probability words at the beginning,
at the expense of translations with a higher overall probability. 4 For the future cost,
it turns out to be far too expensive to compute the true minimum probability for all
possible translations. Instead, we approximate this cost by ignoring the distortion cost
and just finding the sequence of English phrases which has theminimum product of
the language model and translation model costs, which can beeasily computed by the
Viterbi algorithm.

This sketch of the decoding process suggests that we search the entire state space of
possible English translations. But we can’t possibly afford to expand the entire search
space, because there are far too many states; unlike in speech recognition, the need
for distortion in MT means there is (at least) a distinct hypothesis for every possible
ordering of the English words!5

For this reason MT decoders, like decoders for speech recognition, all require some
sort of pruning. Pharaoh and similar decoders use a version of beam-search pruning,BEAMSEARCH

PRUNING

just as we saw in decoding for speech recognition and probabilistic parsing. Recall
that in beam-search pruning, at every iteration we keep onlythe most promising states,
and prune away unlikely (high-cost) states (those ‘outsidethe search beam’). We could
modify the search sequence depicted in Fig. 25.29, by pruning away all bad (high-cost)
states at every ply of the search, and expanding only the beststate. In fact, in Pharaoh,
instead of expanding only the best state, we expand all states within the beam; thus
Pharaoh is technicallybeam searchrather thanbest-first searchor A∗ search.

More formally, at each ply of the search we keep around a stack(priority queue) of
states. The stack only fitsn entries. At every ply of the search, we expand all the states
on the stack, push them onto the stack, order them by cost, keep the bestn entries and
delete the rest.

We’ll need one final modification. While in speech we just usedone stack for stack
decoding, in MT we’ll use multiple stacks, because we can’t easily compare the cost
of hypotheses that translate different numbers of foreign words. So we’ll usem stacks,
where stacksm includes all hypotheses that coverm foreign words. When we expand a

4 We saw this same kind of cost function for A∗ search in speech recognition, where we used the A∗

evaluation function:f ∗(p) = g(p)+h∗(p).
5 Indeed, as Knight (1999a) shows, decoding even in IBM Model 1with a bigram language model is
equivalent to the difficult class of problems known asNP-complete.
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hypothesis by choosing a phrase to translate, we’ll insert the new state into the correct
stack for the number of foreign words covered. Then we’ll usebeam-search inside each
of these stacks, keep onlyn hypotheses for each of them stacks. The final multi-stack
version of beam search stack decoding is shown in Fig. 25.30.

function BEAM SEARCH STACK DECODER(source sentence)returns target sentence

initialize hypothesisStack[0..nf]
push initial null hypothesis on hypothesisStack[0]
for i←0 tonf-1

for each hyp in hypothesisStack[i]
for eachnew hypthat can be derived fromhyp

nf[new hyp]←number of foreign words covered bynew hyp
addnew hyp to hypothesisStack[nf[newhyp]]
prune hypothesisStack[nf[newhyp]]

find best hypothesisbesthyp in hypothesisStack[nf]
return best path that leads tobesthypvia backtrace

Figure 25.30 Pharaoh beam search multi-stack decoding algorithm, adapted from
(Koehn, 2003a, 2004). For efficiency, most decoders don’t store the entire foreign and
English sentence in each state, requiring that we backtraceto find the state path from the
initial to the final state so we can generate the entire English target sentence.

There are a number of additional issues in decoding that mustbe dealt with. All
decoders attempt to limit somewhat the exponential explosion in the search space by
recombining hypotheses. . We saw hypothesis recombination in theExact N-BestRECOMBINING

HYPOTHESES

algorithm of Sec.??. In MT, we can merge any two hypotheses that are sufficiently
similar (cover the same foreign words, have the same last-two English words, and have
the same end of the last foreign phrase covered).

In addition, it turns out that decoders for phrasal MT optimize a slightly different
function than the one we presented in Eq. 25.32. In practice,it turns out that we need
to add another factor, which serves to penalize sentences which are too short. Thus the
decoder is actually choosing the sentence which maximizes:

Ê = argmax
E∈English

translation model
︷ ︸︸ ︷

P(F |E)

language model
︷ ︸︸ ︷

P(E)

short sentence penalty
︷ ︸︸ ︷

ωlength(E)(25.34)

This final equation is extremely similar to the use of the wordinsertion penalty in
speech recognition in Eq.??.
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25.9 MT EVALUATION

Evaluating the quality of a translation is an extremely subjective task, and disagree-
ments about evaluation methodology are rampant. Nevertheless, evaluation is essen-
tial, and research on evaluation methodology has played an important role from the
earliest days of MT (Miller and Beebe-Center, 1958) to the present. Broadly speaking,
we attempt to evaluate translations along two dimensions, corresponding to thefidelity
andfluencydiscussed in Sec. 25.3.

25.9.1 Using Human Raters

The most accurate evaluations use human raters to evaluate each translation along each
dimension. For example, along the dimension offluency, we can ask how intelligible,
how clear, how readable, or how natural is the MT output (the target translated text).
There are two broad ways to use human raters to answer these questions. One method
is to give the raters a scale, for example from 1 (totally unintelligible) to 5 (totally
intelligible), and ask them to rate each sentence or paragraph of the MT output. We
can use distinct scales for any of the aspects of fluency, suchasclarity , naturalness,
or style. The second class of methods relies less on the conscious decisions of the
participants. For example, we can measure the time it takes for the raters to read each
output sentence or paragraph. Clearer or more fluent sentences should be faster or
easier to read. We can also measure fluency with theclozetask (Taylor, 1953, 1957).CLOZE

The cloze task is a metric used often in psychological studies of reading. The rater
sees an output sentence with a word replaced by a space (for example, every 8th word
might be deleted). Raters have to guess the identity of the missing word. Accuracy at
the cloze task, i.e. average success of raters at guessing the missing words, generally
correlates with how intelligible or natural the MT output is.

A similar variety of metrics can be used to judge the second dimension,fidelity .
Two common aspects of fidelity which are measured areadequacyandinformative-
ness. Theadequacyof a translation is whether it contains the information thatexistedADEQUACY

in the original. We measure adequacy by using raters to assign scores on a scale. If we
have bilingual raters, we can give them the source sentence and a proposed target sen-
tence, and rate, perhaps on a 5-point scale, how much of the information in the source
was preserved in the target. If we only have monolingual raters, but we have a good
human translation of the source text, we can give the monolingual raters the human
reference translation and a target machine translation, and again rate how much infor-
mation is preserved. Theinformativenessof a translation is a task-based evaluationINFORMATIVENESS

of whether there is sufficient information in the MT output toperform some task. For
example we can give raters multiple-choice questions aboutthe content of the material
in the source sentence or text. The raters answer these questions based only on the MT
output. The percentage of correct answers is an informativeness score.

Another set of metrics attempt to judge the overall quality of a translation, combin-
ing fluency and fidelity. For example, the typical evaluationmetric for MT output to be
post-edited is theedit costof post-editing the MT output into a good translation. ForEDIT COST

POSTEDITING example, we can measure the number of words, the amount of time, or the number of
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keystrokes required for a human to correct the output to an acceptable level.

25.9.2 Automatic Evaluation: Bleu

While humans produce the best evaluations of machine translation output, running
a human evaluation can be very time-consuming, taking days or even weeks. It is
useful to have an automatic metric that can be run relativelyfrequently to quickly
evaluate potential system improvements. In order to have such convenience, we would
be willing for the metric to be much worse than human evaluation, as long as there was
some correlation with human judgments.

In fact there are a number of such heuristic methods, such asBleu, NIST, TER,
Precision and Recall, andMETEOR (see references at the end of the chapter). The
intuition of these automatic metrics derives from Miller and Beebe-Center (1958), who
pointed out that a good MT output is one which is very similar to a human translation.
For each of these metrics, we assume that we already have one or more human trans-
lations of the relevant sentences. Now given an MT output sentence, we compute the
translation closeness between the MT output and the human sentences. An MT output
is ranked as better if on average it is closer to the human translations. The metrics differ
on what counts as ‘translation closeness’.

In the field of automatic speech recognition, the metric for ‘transcription closeness’
is word error rate, which is the minimum edit distance to a human transcript. But
in translation, we can’t use the same word error rate metric,because there are many
possible translations of a source sentence; a very good MT output might look like one
human translation, but very unlike another one. For this reason, most of the metrics
judge an MT output by comparing it to multiple human translations.

Each of these metrics thus require that we get human translations in advance for a
number of test sentences. This may seem time-consuming, butthe hope is that we can
reuse this translated test set over and over again to evaluate new ideas.

For the rest of this section, let’s walk through one of these metrics, theBleu metric,
following closely the original presentation in Papineni etal. (2002). In Bleu we rank
each MT output by a weighted average of the number ofN-gram overlaps with the
human translations.

Fig. 25.31 shows an intuition, from two candidate translations of a Chinese source
sentence (Papineni et al., 2002), shown with three reference human translations of the
source sentence. Note that Candidate 1 shares many more words (shown in blue) with
the reference translations than Candidate 2.

Let’s look at how the Bleu score is computed, starting with just unigrams. Bleu is
based on precision. A basic unigram precision metric would be to count the number
of words in the candidate translation (MT output) that occurin some reference transla-
tion, and divide by the total number of words in the candidatetranslation. If a candidate
translation had 10 words, and 6 of them occurred in at least one of the reference trans-
lations, we would have a precision of 6/10= 0.6. Alas, there is a flaw in using simple
precision: it rewards candidates that have extra repeated words. Fig. 25.32 shows an
example of a pathological candidate sentence composed of multiple instances of the
single wordthe. Since each of the 7 (identical) words in the candidate occurin one of
the reference translations, the unigram precision would be7/7!
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Figure 25.31 Intuition for Bleu: one of two candidate translations of a Chinese source sentence shares more
words with the reference human translations.

Figure 25.32 A pathological example showing why Bleu uses a modified precision
metric. Unigram precision would be unreasonably high (7/7). Modified unigram precision
is appropriately low (2/7).

In order to avoid this problem, Bleu uses amodified N-gram precisionmetric. WeMODIFIED NGRAM
PRECISION

first count the maximum number of times a word is used in any single reference trans-
lation. The count of eachcandidateword is then clipped by this maximumreference
count. Thus the modified unigram precision in the example in Fig. 25.32 would be
2/7, since Reference 1 has a maximum of 2thes. Going back to Chinese example in
Fig. 25.32, Candidate 1 has a modified unigram precision of 17/18, while Candidate 2
has one of 8/14.

We compute the modified precision similarly for higher orderN-grams as well. The
modified bigram precision for Candidate 1 is 10/17, and for Candidate 2 is 1/13. The
reader should check these numbers for themselves on Fig. 25.31.

To compute a score over the whole testset, Bleu first computestheN-gram matches
for each sentence, and add together the clipped counts over all the candidates sentences,
and divide by the total number of candidateN-grams in the testset. The modified
precision score is thus:

pn =

∑
C∈{Candidates}

∑
n-gram∈C

Countclip(n-gram)

∑
C′∈{Candidates}

∑
n-gram’∈C′

Count(n-gram’)
(25.35)

Bleu uses unigram, bigrams, trigrams, and often quadrigrams; it combines these
modifiedN-gram precisions together by taking their geometric mean.

In addition, Bleu adds a further penalty to penalize candidate translations that are



DRAFT

Section 25.10. Advanced: Syntactic Models for MT 41

too short. Consider the candidate translationof the, compared with References 1-3
in Fig. 25.31 above. Because this candidate is so short, and all its words appear in
some translation, its modified unigram precision is inflatedto 2/2. Normally we deal
with these problems by combining precision withrecall. But as we discussed above,
we can’t use recall over multiple human translations, sincerecall would require (in-
correctly) that a good translation must contain contains lots of N-grams fromevery
translation. Instead, Bleu includes a brevity penalty overthe whole corpus. Letc be
the total length of the candidate translation corpus. We compute theeffective refer-
ence lengthr for that corpus by summing, for each candidate sentence, thelengths of
the best matches. The brevity penalty is then an exponentialin r/c. In summary:

BP =

{

1 if c > r
e(1−r/c) if c≤ r

Bleu = BP×exp

(

1
N

N

∑
n=1

logpn

)

(25.36)

While automatic metrics like Bleu (or NIST, METEOR, etc) have been very useful
in quickly evaluating potential system improvements, and match human judgments in
many cases, they have certain limitations that are important to consider. First, many of
them focus on very local information. Consider slightly moving a phrase in Fig. 25.31
slightly to produce a candidate like:Ensures that the military it is a guide to action
which always obeys the commands of the party. This sentence would have an identical
Bleu score to Candidate 1, although a human rater would give it a lower score.

Furthermore, the automatic metrics probably do poorly at comparing systems that
have radically different architectures. Thus Bleu, for example, is known to perform
poorly (i.e. not agree with human judgments of translation quality) when evaluating the
output of commercial systems like Systran againstN-gram-based statistical systems, or
even when evaluating human-aided translation against machine translation (Callison-
Burch et al., 2006).

We can conclude that automatic metrics are most appropriatewhen evaluating in-
cremental changes to a single system, or comparing systems with very similar archi-
tectures.

25.10 ADVANCED: SYNTACTIC MODELS FORMT

The earliest statistical MT systems (like IBM Models 1, 2 and3) were based on words
as the elementary units. The phrase-based systems that we described in earlier sections
improved on these word-based systems by using larger units,thus capturing larger
contexts and providing a more natural unit for representinglanguage divergences.

Recent work in MT has focused on ways to move even further up the Vauquois
hierarchy, from simple phrases to larger and hierarchical syntactic structures.

It turns out that it doesn’t work just to constrain each phrase to match the syntactic
boundaries assigned by traditional parsers (Yamada and Knight, 2001). Instead, mod-
ern approaches attempt to assign a parallel syntactic tree structure to a pair of sentences
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in different languages, with the goal of translating the sentences by applying reordering
operations on the trees. The mathematical model for these parallel structures is known
as atransduction grammar. These transduction grammars can be viewed as an ex-TRANSDUCTION

GRAMMAR

plicit implementation of thesyntactic transfer systems that we introduced on page 14,
but based on a modern statistical foundation.

A transduction grammar (also called asynchronous grammar) describes a struc-SYNCHRONOUS
GRAMMAR

turally correlated pair of languages. From a generative perspective, we can view a
transduction grammar as generating pairs of aligned sentences in two languages. For-
mally, a transduction grammar is a generalization of the finite-state transducers we saw
in Ch. 3. There are a number of transduction grammars and formalisms used for MT,
most of which are generalizations of context-free grammarsto the two-language situ-
ation. Let’s consider one of the most widely used such modelsfor MT, the inversion
transduction grammar (ITG).

INVERSION
TRANSDUCTION

GRAMMAR

In an ITG grammar, each non-terminal generates two separatestrings. There are
three types of these rules. A lexical rule like the following:

N→ witch/bruja

generates the wordwitchon one stream, andbrujaon the second stream. A nonterminal
rule in square brackets like:

S→ [NP VP]

generates two separate streams, each ofNP VP. A non-terminal in angle brackets, like

Nominal→ 〈Adj N〉

generates two separate streams, withdifferent orderings: Adj N in one stream, andN
Adj in the other stream.

Fig. 25.33 shows a sample grammar with some simple rules. Note that each lexical
rule derives distinct English and Spanish word strings, that rules in square brackets
([]) generate two identical non-terminal right-hand sides, and that the one rule in angle
brackets (〈〉) generates different orderings in Spanish from English.

Thus an ITG parse tree is a single joint structure which spansover the two observed
sentences:

(25.37) (a) [S [NP Mary] [VP didn’t [VP slap [PP [NP the [Nom green witch]]]]]]
(b) [S [NP Marı́a] [VP no [VP dió una bofetada [PPa [NP la [Nom bruja verde]]]]]]

Each non-terminal in the parse derives two strings, one for each language. Thus
we could visualize the two sentences in a single parse, wherethe angle brackets mean
that the order of theAdj N constituentsgreen witchandbruja verdeare generated in
opposite order in the two languages:

[S [NP Mary/Marı́a] [VP didn’t/no [VP slap/dió una bofetada [PPε/a [NP the/la〈Nom witch/bruja green/verde〉]]]]]

There are a number of related kinds of synchronous grammars,including syn-
chronous context-free grammars (Chiang, 2005), multitextgrammars (Melamed, 2003),
lexicalized ITGs (Melamed, 2003; Zhang and Gildea, 2005), and synchronous tree-
adjoining and tree-insertion grammars (Shieber and Schabes, 1992; Shieber, 1994;
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S → [NP VP]
NP → [Det Nominal] | Maria/Marı́a

Nominal → 〈Adj Noun〉
VP → [V PP] | [Negation VP]

Negation→ didn’t/no
V → slap/dió una bofetada

PP → [P NP]
P → ε/a | from/de

Det → the/la | the/le
Adj → green/verde

N → witch/bruja

Figure 25.33 A mini Inversion Transduction Grammar grammar for thegreen witch
sentence.

Nesson et al., 2006). The synchronous CFG system of Chiang (2005), for example,
learns hierarchical pairs of rules that capture the fact that Chinese relative clauses ap-
pear to the left of their head, while English relative clauses appear to the right of their
head:

<① de②, the② that①>

Other models for translation by aligning parallel parse trees including (Wu, 2000;
Yamada and Knight, 2001; Eisner, 2003; Melamed, 2003; Galley et al., 2004; Quirk
et al., 2005; Wu and Fung, 2005).

25.11 ADVANCED: IBM M ODEL 3 FOR FERTILITY-BASED ALIGN-
MENT

The seminal IBM paper that began work on statistical MT proposed five models for
MT. We saw IBM’s Model 1 in Sec. 25.5.1. Models 3, 4 and 5 all usethe important
concept offertility . We’ll introduce Model 3 in this section; our description here is
influenced by Kevin Knight’s nice tutorial (Knight, 1999b).Model 3 has a more com-
plex generative model than Model 1. The generative model from an English sentence
E = e1,e2, ...,eI has 5 steps:

1. For each English wordei , we choose afertility φi .6 The fertility is the numberFERTILITY

of (zero or more) Spanish words that will be generated fromei , and is dependent
only onei .

2. We also need to generate Spanish words from the NULL English word. Recall
that we defined these earlier asspurious words. Instead of having a fertility forSPURIOUS WORDS

NULL, we’ll generate spurious words differently. Every time we generate an

6 This φ is not related to theφ that was used in phrase-based translation.
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English word, we consider (with some probability) generating a spurious word
(from NULL).

3. We now know how many Spanish words to generate from each English word.
So now for each of these Spanish potential words, generate itby translating its
aligned English word. As with Model 1, the translation will be based only on
the English word. Spurious Spanish words will be generated by translating the
NULL word into Spanish.

4. Move all the non-spurious words into their final positionsin the Spanish sen-
tence.

5. Insert the spurious Spanish words in the remaining open positions in the Spanish
sentence.

Fig. 25.34 shows a visualization of the Model 3 generative process

Figure 25.34 The five steps of IBM Model 3 generating a Spanish sentence andalign-
ment from an English sentence.

Model 3 has more parameters than Model 1. The most important are then, t, d,N

T

D

and p1 probabilities. The fertility probabilityφi of a wordei is represented by the

P1

parametern. So we will usen(1|green) to represent the probability that Englishgreen
will produce one Spanish word,n(2|green) is the probability that Englishgreenwill
produce two Spanish words,n(0|did) is the probability that Englishdid will produce
no Spanish words, and so on. Like IBM Model 1, Model 3 has a translation probability
t( f j |ei). Next, the probability that expresses the word position that English words end
up in in the Spanish sentence is thedistortion probability, which is conditioned on theDISTORTION
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English and Spanish sentence lengths. The distortion probability d(1,3,6,7) expresses
the probability that the English worde1 will align to Spanish wordf3, given that the
English sentence has length 6, and the Spanish sentence is oflength 7.

As we suggested above, Model 3 does not use fertility probabilities liken(1|NULL),
or n(3|NULL) to decide how many spurious foreign words to generate from English
NULL. Instead, each time Model 3 generates a real word, it generates a spurious word
for the target sentence with probabilityp1. This way, longer source sentences will nat-
urally generate more spurious words. Fig. 25.35 shows a slightly more detailed version
of the 5 steps of the Model 3 generative story using these parameters.

1. for eachEnglish wordei , 1 < i < I , we choose a fertilityφi with probabilityn(φi |ei)
2. Using these fertilities andp1, determineφ0, the number of spurious Spanish words, and
hencem.
3. for each i, 0 < i < I

for each k, 1 < k < φi
Choose a Spanish wordτik with probabilityt(τik,ei)

4. for each i, 1 < i < I
for each k, 1 < k < φi

Choose a target Spanish positionπik with probabilityd(πik, i, I ,J)
5. for each k, 1 < k < φ0

Choose a target Spanish positionπ0k from one of the available Spanish slots, for a
total probability of 1

φ0!

Figure 25.35 The Model 3 generative story for generating a Spanish sentence from an
English sentence. Remember that we are not translating fromEnglish to Spanish; this is
just the generative component of the noisy channel model. Adapted from Knight (1999b).

Switching for a moment to the task of French to English translation, Fig. 25.36
shows some of thet and φ parameters learned for French-English translation from
Brown et al. (1993). Note thatthe in general translates to a French article likele, but
sometimes it has a fertility of 0, indicating that English uses an article where French
does not. Conversely, note thatfarmersprefers a fertility of 2, and the most likely
translations areagriculteursandles, indicating that here French tends to use an article
where English does not.

Now that we have seen the generative story for Model 3, let’s build the equation
for the probability assigned by the model. The model needs toassigns a probability
P(F |E) of generating the Spanish sentenceF from the English sentenceE. As we did
with Model 1, we’ll start by showing how the model gives the probability P(F,A|E),
the probability of generating sentenceF via a particular alignmentA. Then we’ll sum
over all alignments to get the totalP(F|E).

In order to computeP(F,A|E), we’ll need to multiply the main three factorsn, t,
andd, for generating words, translating them into Spanish, and moving them around.
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the farmers not
f t( f |e) φ n(φ|e) f t( f |e) φ n(φ|e) f t( f |e) φ n(φ|e)
le 0.497 1 0.746 agriculteurs 0.442 2 0.731 ne 0.497 2 0.735
la 0.207 0 0.254 les 0.418 1 0.228 pas 0.442 0 0.154
les 0.155 cultivateurs 0.046 0 0.039 non 0.029 1 0.107
l’ 0.086 producteurs 0.021 rien 0.011
ce 0.018
cette 0.011

Figure 25.36 Examples of Model 3 parameters from the Brown et al. (1993) French-
English translation system, for three English words. Note that bothfarmersandnot are
likely to have fertilities of 2.

So a first pass atP(F,A|E) would be:

I

∏
i=1

n(φi |ei)×
J

∏
j=1

t( f j |ea j )×
J

∏
j=1

d( j|a j , I ,J)(25.38)

But (25.38) isn’t sufficient as it stands; we need to add factors for generating spu-
rious words, for inserting them into the available slots, and a factor having to do with
the number of ways (permutations) a word can align with multiple words. Equation
(25.39) gives the true final equation for IBM Model 3, in Knight’s modification of the
original formula. We won’t give the details of these additional factors, but encourage
the interested reader to see the original presentation in Brown et al. (1993) and the very
clear explanation of the equation in Knight (1999b).

P(F,A|E) =

generate spurious
︷ ︸︸ ︷

(

J−φ0

φ0

)

pJ−2φ0
0 pφ0

1 ×

insert spurious
︷︸︸︷

1
φ0!

×

multi-align permutations
︷ ︸︸ ︷

I

∏
i=0

φi !

×
I

∏
i=1

n(φi |ei)×
J

∏
j=1

t( f j |ea j )×
J

∏
j :a j 6=0

d( j|a j , I ,J)(25.39)

Once again, in order to get the total probability of the Spanish sentence we’ll need
to sum over all possible alignments:

P(F |E) = ∑
A

P(F,A|E)

We can also make it more explicit exactly how we sum over alignments (and also
emphasize the incredibly large number of possible alignments) by expressing this for-
mula as follows, where we specify an alignment by specifyingthe aligned Englisha j

for each of theJ words in the foreign sentence:

P(F |E) =
J

∑
a1=0

J

∑
a2=0

· · ·
I

∑
aJ=0

P(F,A|E)
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25.11.1 Training for Model 3

Given a parallel corpus, training the translation model forIBM Model 3 means setting
values for then, d, t, andp1 parameters.

As we noted for Model 1 and HMM models, if the training-corpuswas hand-labeled
with perfect alignments, getting maximum likelihood estimates would be simple. Con-
sider the probabilityn(0|did) that a word likedid would have a zero fertility. We could
estimate this from an aligned corpus just by counting the number of timesdid aligned
to nothing, and normalize by the total count ofdid. We can do similar things for the
t translation probabilities. To train the distortion probability d(1,3,6,7), we similarly
count the number of times in the corpus that English worde1 maps to Spanish wordf3
in English sentences of length 6 that are aligned to Spanish sentences of length 7. Let’s
call this counting function dcount. We’ll again need a normalization factor;

d(1,3,6,7) =
dcount(1,3,6,7)

∑I
i=1dcount(i,3,6,7)

(25.40)

Finally, we need to estimatep1. Again, we look at all the aligned sentences in
the corpus; let’s assume that in the Spanish sentences thereare a total ofN words.
From the alignments for each sentence, we determine that a total of S Spanish words
are spurious, i.e. aligned to English NULL. ThusN−S of the words in the Spanish
sentences were generated by real English words. AfterSof theseN−SSpanish words,
we generate a spurious word. The probabilityp1 is thusS/(N−S).

Of course, we don’t have hand-alignments for Model 3. We’ll need to use EM
to learn the alignments and the probability model simultaneously. With Model 1 and
the HMM model, there were efficient ways to do training without explicitly summing
over all alignments. Unfortunately, this is not true for Model 3; we actually would
need to compute all possible alignments. For a real pair of sentences, with 20 English
words and 20 Spanish words, and allowing NULL and allowing fertilities, there are a
very large number of possible alignments (determining the exact number of possible
alignments is left as Exercise 25.7). Instead, we approximate by only considering
the best few alignments. In order to find the best alignments without looking at all
alignments, we can use an iterative or bootstrapping approach. In the first step, we
train the simpler IBM Model 1 or 2 as discussed above. Then we use these Model 2
parameters to evaluateP(A|E,F), giving a way to find the best alignments to bootstrap
Model 3. See Brown et al. (1993) and Knight (1999b) for details.

25.12 ADVANCED: LOG-LINEAR MODELS FORMT

While statistical MT was first based on the noisy channel model, much recent work
combines the language and translation models via a log-linear model in which we di-
rectly search for the sentence with the highest posterior probability:

Ê = argmax
E

P(E|F)(25.41)
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This is done by modelingP(E|F) via a set ofM feature functionshm(E,F), each of
which has a parameterλm. The translation probability is then:

P(E|F) =
exp[∑M

m=1 λmhm(E,F)]

∑E′ exp[∑M
m=1 λmhm(E′,F)]

(25.42)

The best sentence is thus:

Ê = argmax
E

P(E|F)

= argmax
E

exp[
M

∑
m=1

λmhm(E,F)](25.43)

In practice, the noisy channel model factors (the language modelP(E) and trans-
lation modelP(F|E)), are still the most important feature functions in the log-linear
model, but the architecture has the advantage of allowing for arbitrary other features as
well; a common set of features would include:

• the language modelP(E)

• the translation modelP(F |E)

• thereverse translation modelP(E|F),
REVERSE

TRANSLATION
MODEL

• lexicalized versions of both translation models,
• aword penalty,WORD PENALTY

• aphrase penaltyPHRASE PENALTY

• anunknown word penalty.UNKNOWN WORD
PENALTY

See Foster (2000), Och and Ney (2002, 2004) for more details.
Log-linear models for MT could be trained using the standardmaximum mutual

information criterion.
In practice, however, log-linear models are instead trained to directly optimize eval-

uation metrics like Bleu in a method known asMinimum Error Rate Training , orMINIMUM ERROR
RATE TRAINING

MERT (Och, 2003; Chou et al., 1993).MERT

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Work on models of the process and goals of translation goes back at least to Saint
Jerome in the fourth century (Kelley, 1979). The development of logical languages,
free of the imperfections of human languages, for reasoningcorrectly and for com-
municating truths and thereby also for translation, has been pursued at least since the
1600s (Hutchins, 1986).

By the late 1940s, scant years after the birth of the electronic computer, the idea
of MT was raised seriously (Weaver, 1955). In 1954 the first public demonstration of
a MT system prototype (Dostert, 1955) led to great excitement in the press (Hutchins,
1997). The next decade saw a great flowering of ideas, prefiguring most subsequent
developments. But this work was ahead of its time — implementations were limited
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by, for example, the fact that pending the development of disks there was no good way
to store dictionary information.

As high quality MT proved elusive (Bar-Hillel, 1960), a growing consensus on the
need for better evaluation and more basic research in the newfields of formal and com-
putational linguistics, culminating in the famous ALPAC (Automatic Language Pro-
cessing Advisory Committee) report of 1966 (Pierce et al., 1966), led in the mid 1960s
to a dramatic cut in funding for MT. As MT research lost academic respectability, the
Association for Machine Translation and Computational Linguistics dropped MT from
its name. Some MT developers, however, persevered, slowly and steadily improving
their systems, and slowly garnering more customers. Systran in particular, developed
initially by Peter Toma, has been continuously improved over 40 years. Its earliest
uses were for information acquisition, for example by the U.S. Air Force for Rus-
sian documents; and in 1976 an English-French edition was adopted by the European
Community for creating rough and post-editable translations of various administrative
documents. Another early successful MT system was Météo,which translated weather
forecasts from English to French; incidentally, its original implementation (1976), used
“Q-systems”, an early unification model.

The late 1970s saw the birth of another wave of academic interest in MT. One
strand attempted to apply meaning-based techniques developed for story understand-
ing and knowledge engineering (Carbonell et al., 1981). There were wide discussions
of interlingual ideas through the late 1980s and early 1990s(Tsujii, 1986; Nirenburg
et al., 1992; Ward, 1994; Carbonell et al., 1992). MeanwhileMT usage was increasing,
fueled by globalization, government policies requiring the translation of all documents
into multiple official languages, and the proliferation of word processors and then per-
sonal computers.

Modern statistical methods began to be applied in the early 1990s, enabled by the
development of large bilingual corpora and the growth of theweb. Early on, a num-
ber of researchers showed that it was possible to extract pairs of aligned sentences
from bilingual corpora (Kay and Röscheisen, 1988, 1993; Warwick and Russell, 1990;
Brown et al., 1991; Gale and Church, 1991, 1993). The earliest algorithms made use
of the words of the sentence as part of the alignment model, while others relied solely
on other cues like sentence length in words or characters.

At the same time, the IBM group, drawing directly on algorithms for speech recog-
nition (many of which had themselves been developed originally at IBM!) proposed
theCandide system, based on the IBM statistical models we have described (BrownCANDIDE

et al., 1990, 1993). These papers described the probabilistic model and the param-
eter estimation procedure. The decoding algorithm was never published, but it was
described in a patent filing (Brown et al., 1995). The IBM workhad a huge impact
on the research community, and by the turn of this century, much or most academic
research on machine translation was statistical. Progresswas made hugely easier by
the development of publicly-available toolkits, particularly tools extended from the
EGYPT toolkit developed by the Statistical Machine Translation team in during theEGYPT

summer 1999 research workshop at the Center for Language andSpeech Processing at
the Johns Hopkins University. These include theGIZA++ aligner, developed by FranzGIZA++

Josef Och by extending the GIZA toolkit (Och and Ney, 2003), which implements IBM
models 1-5 as well as the HMM alignment model.
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Initially most research implementations focused on IBM Model 3, but very quickly
researchers moved to phrase-based models. While the earliest phrase-based translation
model was IBM Model 4 (Brown et al., 1993), modern models derive from Och’s
(1998) work onalignment templates. Key phrase-based translation models include
Marcu and Wong (2002), Zens et al. (2002). Venugopal et al. (2003), Koehn et al.
(2003), Tillmann (2003) Och and Ney (2004), Deng and Byrne (2005), and Kumar and
Byrne (2005),

Other work on MT decoding includes theA∗ decoders of Wang and Waibel (1997)
and Germann et al. (2001), and the polynomial-time decoder for binary-branching
stochastic transduction grammar of Wu (1996).

The most recent open-source MT toolkit is the phrase-basedMOSESsystem (KoehnMOSES

et al., 2006; Koehn and Hoang, 2007; Zens and Ney, 2007). MOSES developed out of
thePHARAOH publicly available phrase-based stack decoder, developedby PhilippPHARAOH

Koehn (Koehn, 2004, 2003b), which extended theA∗ decoders of (Och et al., 2001)
and Brown et al. (1995) and extended the EGYPT tools discussed above.

Modern research continues on sentence and word alignment aswell; more recent
algorithms include Moore (2002, 2005), Fraser and Marcu (2005), Callison-Burch et al.
(2005), Liu et al. (2005).

Research on evaluation of machine translation began quite early. Miller and Beebe-
Center (1958) proposed a number of methods drawing on work inpsycholinguistics.
These included the use of cloze and Shannon tasks to measure intelligibility, as well
as a metric of edit distance from a human translation, the intuition that underlies all
modern automatic evaluation metrics like Bleu. The ALPAC report included an early
evaluation study conducted by John Carroll that was extremely influential (Pierce et al.,
1966, Appendix 10). Carroll proposed distinct measures forfidelity and intelligibility,
and had specially trained human raters score them subjectively on 9-point scales. More
recent work on evaluation has focused on coming up with automatic metrics, include
the work on Bleu discussed in Sec. 25.9.2 (Papineni et al., 2002), as well as related mea-
sures likeNIST (Doddington, 2002),TER (Translation Error Rate) (Snover et al.,
2006),Precision and Recall(Turian et al., 2003), andMETEOR (Banerjee and Lavie,
2005).

Good surveys of the early history of MT are Hutchins (1986) and (1997). The
textbook by Hutchins and Somers (1992) includes a wealth of examples of language
phenomena that make translation difficult, and extensive descriptions of some histori-
cally significant MT systems. Nirenburg et al. (2002) is a comprehensive collection of
classic readings in MT. (Knight, 1999b) is an excellent tutorial introduction to Statisti-
cal MT.

Academic papers on machine translation appear in standard NLP journals and con-
ferences, as well as in the journalMachine Translationand in the proceedings of vari-
ous conferences, including MT Summit, organized by the International Association for
Machine Translation, the individual conferences of its three regional divisions, (Asso-
ciation for MT in the Americas – AMTA, European Association for MT – EAMT, and
Asia-Pacific Association for MT – AAMT), and the Conference on Theoretical and
Methodological Issue in Machine Translation (TMI).
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EXERCISES

25.1 Select at random a paragraph of Ch. 12 which describes a fact about English
syntax. a) Describe and illustrate how your favorite foreign language differs in this
respect. b) Explain how a MT system could deal with this difference.

25.2 Choose a foreign language novel in a language you know. Copy down the short-
est sentence on the first page. Now look up the rendition of that sentence in an English
translation of the novel. a) For both original and translation, draw parse trees. b) For
both original and translation, draw dependency structures. c) Draw a case structure
representation of the meaning which the original and translation share. d) What does
this exercise suggest to you regarding intermediate representations for MT?

25.3 Version 1 (for native English speakers): Consider the following sentence:

These lies are like their father that begets them; gross as a mountain, open, pal-
pable.

Henry IV, Part 1, act 2, scene 2

Translate this sentence into some dialect of modern vernacular English. For exam-
ple, you might translate it into the style of a New York Times editorial or an Economist
opinion piece, or into the style of your favorite televisiontalk-show host.

Version 2 (for native speakers of other languages): Translate the following sentence
into your native language.

One night my friend Tom, who had just moved into a new apartment, saw a
cockroach scurrying about in the kitchen.

For either version, now:
a) Describe how you did the translation: What steps did you perform? In what order

did you do them? Which steps took the most time? b) Could you write a program that
would translate using the same methods that you did? Why or why not? c) What
aspects were hardest for you? Would they be hard for a MT system? d) What aspects
would be hardest for a MT system? are they hard for people too?e) Which models
are best for describing various aspects of your process (direct, transfer, interlingua
or statistical)? f) Now compare your translation with thoseproduced by friends or
classmates. What is different? Why were the translations different?

25.4 Type a sentence into a MT system (perhaps a free demo on the web) and see
what it outputs. a) List the problems with the translation. b) Rank these problems
in order of severity. c) For the two most severe problems, suggest the probable root
cause.

25.5 Build a very simple direct MT system for translating from some language you
know at least somewhat into English (or into a language in which you are relatively
fluent), as follows. First, find some good test sentences in the source language. Reserve
half of these as a development test set, and half as an unseen test set. Next, acquire a
bilingual dictionary for these two languages (for many languages, limited dictionaries
can be found on the web that will be sufficient for this exercise). Your program should
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translate each word by looking up its translation in your dictionary. You may need
to implement some stemming or simple morphological analysis. Next, examine your
output, and do a preliminary error analysis on the development test set. What are
the major sources of error? Write some general rules for correcting the translation
mistakes. You will probably want to run a part-of-speech tagger on the English output,
if you have one. Then see how well your system runs on the test set.

25.6 Continue the calculations for the EM example on page 30, performing the sec-
ond and third round of E-steps and M-steps.

25.7 (Derived from Knight (1999b)) How many possible Model 3 alignments are
there between a 20-word English sentence and a 20-word Spanish sentence, allowing
for NULL and fertilities?
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