
Prof. Pier Luca Lanzi 

���
	

Genetic Programming���
Genetic Algorithms and Other Evolutionary Approaches	




Prof. Pier Luca Lanzi 

References	


• Wolfgang Banzhaf et al. Eds. Genetic 
Programming. An Introduction.: An 
Introduction (The Morgan Kaufmann 
Series in Artificial Intelligence)	


	


•  CS 5320 “Introduction to Evolutionary 
Computation” Prof. Martin Pelikan, 
University of Missouri, St. Louis, MO 	


2	




Prof. Pier Luca Lanzi 

3	
Outline	


•  Introduction	

•  Representation	


•  Examples	

•  Generation	


•  Variation	


•  Summary	




Prof. Pier Luca Lanzi 

4	
Motivation of John Koza	


Challenge 
How can computers learn to solve problems without being explicitly 
programmed? In other words, how can computers be made to do what is 
needed to be done, without being told exactly how to do it? 
Arthur Samuel (1959) 

Criterion of success 
The aim [is] ... to get machines to exhibit behavior, which if done by humans, 
would be assumed to involve the use of intelligence. 
Arthur Samuel (1983) 



Prof. Pier Luca Lanzi 

5	
Early intuitions	


Alan Mathison Turing, English mathematician, logician, and 
cryptographer. Often considered to be the father of 
modern computer science. 	


“There is the genetical or evolutionary search by which a 
combination of genes is looked for, the criterion being the 
survival value.” 
Alan M. Turing, Intelligent Machinery, 1948  



Prof. Pier Luca Lanzi 

6	
Early intuitions	


	


“We cannot expect to find a good child-machine at the first attempt. One 
must experiment with teaching one such machine and see how well it 
learns. One can then try another and see if it is better or worse. There is 
an obvious connection between this process and evolution, by the 
identifications 
 
“Structure of the child machine = Hereditary material 
“Changes of the child machine = Mutations 
“Natural selection = Judgment of the experimenter” 
 
Alan M. Turing, “Computing Machinery and Intelligence” 1950. 



Prof. Pier Luca Lanzi 

7	
Genetic Programming���
	


•  John R. Koza, Genetic Programming: On the Programming of 
Computers by Means of Natural Selection. MIT Press	


John R. Koza 



Prof. Pier Luca Lanzi 

8	
Genetic Programming	


Input 
•  Syntactic rules for your programs 
•  Semantics of solutions 
•  Fitness function 
 
Output 
•  Best performing program code 

Make the computer program itself 



Prof. Pier Luca Lanzi 

9	
Big Questions & Basic Approach	


•  How to represent syntactic rules?	

•  How to represent programs?	


•  How to deal with the semantics?	

•  How to define the fitness function?	


•  How to get the best program?	


•  Basic Approach	


§ Modify genetic algorithm to work with program codes.	

§ Represent program codes as labeled trees.	


§ Implement fitness function to evaluate program codes.	

§ Implement crossover + mutation for program trees.	




Prof. Pier Luca Lanzi 

10	
Syntactic Rules���
	


•  Two parts	

§ Terminals: constants, variables, ���

functions with no arguments	


§ Functions: functions with one or more arguments	


•  Valid programs	

§ Only the specified terminals and functions are used.	


§ All functions have necessary parameters.	




Prof. Pier Luca Lanzi 

11	
Example: Arithmetic Expressions	


•  Terminals: Real-valued constants, variables.	

•  Functions with one parameter: sin, cos, tan, log, sqrt.	

•  Functions with two parameters: +, -, *, /,ˆ .	


	


(x*4)*(1+x)	
 1 + ((x > 0)? 3 : 4) 



Prof. Pier Luca Lanzi 

12	
Example: Programs���
	


•  Terminals	

§ Same as for arithmetic expressions.	


•  More Functions	


§ ← assignment of a variable.	


§ while(c,b): while loops with condition c and body b	

§ if(c,a1,a2): if-then-else statements with condition c, ���

then-statement a1, and else-statement a2	

§ >, ≤, ≥, <, =: compare real numbers	


§ progn(a1, . . . , an): execute a sequence of statements from a1 
to an,	


§ returning the output value of the last statement (an).	




Prof. Pier Luca Lanzi 

13	
Example: Factorial n!	




Prof. Pier Luca Lanzi 

14	
Semantics	


•  Functions	

§ Define how each function processes arguments.	


§ Each function returns a value.	

§ Return value and input parameters should work with all 

types.	


§ Functions should be foolproof (work properly for any 
parameter values). Example: For division x/y, we would 
return some value even if y = 0.	


•  Terminals	

§ Define a function that initializes a terminal.	


§ Either randomly generate (e.g. numbers).	

§ Or set to some fixed value (e.g. π).	




Prof. Pier Luca Lanzi 

15	
Fitness Function	


•  Fitness function	

§ Depends on the problem...	


•  Examples	


§ Symbolic regression.	


§ Classification.	

§ Game playing.	


§ Decision making in agents.	




Prof. Pier Luca Lanzi 

16	
Symbolic Regression	


•  Input	

§ Number of parameters: n.	


§ Database of N input-output pairs (xi,1, ..., xi,n)→yi	

§ i ∈{1, 2, . . . ,N} 	


§ xi,j are real numbers	


§ yi are real numbers	

	


•  Task	

§ Find the function that represents the input-output pairs 

most accurately.	




Prof. Pier Luca Lanzi 

17	
Symbolic Regression	


•  Representation	

§ Use standard functions for arithmetic expressions or a 

subset of them.	


§ Allow terminals for real numbers.	

§ Allow terminals for n input parameters: x1, x2, ..., xn.	


§ All functions return a real value.	


•  Fitness function (one possibility)	

§ Minimize the sum of square differences:	




Prof. Pier Luca Lanzi 

18	
Symbolic Regression	


n = 1, N = 17, fitness 0.057 (sum of square differences)	




Prof. Pier Luca Lanzi 

19	
Classification	


•  Input	

§ Similar to symbolic regression	


§ Number of parameters: n	

§ Number of classes: c	


§ Database of N input-output pairs (xi,1, ..., xi,n)→yi	


§ i ∈{1, 2, . . . ,N} 	

§ xi,j are parameters of any type	


§ yi are integers from 1 to c	


•  Task	

§ Create a function that correctly classifies as many input-

output pairs as possible. 	




Prof. Pier Luca Lanzi 

20	
Classification	


•  Representation	

§ Functions allow tests on variables of different types.	


§ Arithmetic expressions allowed as well.	

§ Terminals contain n input parameters: x1, x2, . . . , xn.	


§ Terminals contain c values for different classes: ���
cl1, cl2, ..., clc 	


§ Return value would ideally be a class (if it works).	


•  Fitness function	


§ Maximize the number of correctly classified input pairs 
(values from 0 to N, N being the best).	




Prof. Pier Luca Lanzi 

21	
Example: Restaurant Selection	


•  Solution	

§ Fitness is 6 (number of correct classifications)	




Prof. Pier Luca Lanzi 

22	
Game Playing	


•  Input	

§ Current percepts.	


•  Example	


§ Chess—positions of the pieces of you and your opponent.	


§ Poker—cards on your hand, number of cards exchanged, 
bets.	


•  Task	


§ Decide on the next move (action).	




Prof. Pier Luca Lanzi 

23	
Game Playing	


•  Representation	

§ Depends on the problem, but similar to classification.	


•  Fitness function	


§ Let each candidate solution play against other solution in 
the populations.	


§ Fitness will be the number of games won minus the number 
of games lost (ties do not count).	


§ We want to maximize the fitness.	




Prof. Pier Luca Lanzi 

24	
Coevolution���
	


•  No explicit fitness function that gives a solution its fitness.	


•  Solutions are somehow compared with each other and the 
results are somehow processed to produce fitness.	


•  Useful in game playing.	


•  Useful also in simulations of adaptive and complex systems.	




Prof. Pier Luca Lanzi 

25	
Example: Santa Fe Ant Trial	


•  Goal	

§  Create a “brain” of an agent whose task is to collect food distributed on a 2D 

map.	


•  Input	

§  2D grid map (can move from square to square).	

§  Some squares contain food.	

§  Some squares are empty.	


•  Task	

§  Create an agent that can discover the food but must decide only based on the 

information about the adjacent square.	




Prof. Pier Luca Lanzi 

26	
Example: Santa Fe Ant Trial	


•  Representation for Santa Fe ant trail	

§ move: move ant one step forward	

§  left: turn left	

§  right: turn right	

§  if-food-ahead(a1, a2): if food lies in front of the ant perform a1, otherwise 

perform a2	

§  progn2(a1, a2): first perform a1, then perform a2	


•  Fitness for Santa Fe ant	

§  Let the ant proceed for sufficiently many steps to pick up all the food (+ some 

extra).	


§  Fitness is the number of food pieces collected along the way.	

§  Smarter ants find more food and win.	




Prof. Pier Luca Lanzi 

27	
Example: Santa Fe Ant Trial	


32 × 32, 89 pieces of food	

Green squares denote food, the rest is empty.	




Prof. Pier Luca Lanzi 

28	
What Now?	


• What we know	

§ How to design syntactic rules.	


§ How to deal with the semantics.	

§ How to design fitness functions (examples).	


•  Remaining components of GP	

§ How to generate random programs trees?	


§ How to perform crossover of two programs trees?	

§ How to perform mutation of a program tree?	




Prof. Pier Luca Lanzi 

29	
Generation	


•  Approach 1: Grow a tree	

§  Start in the root.	

§  Randomly generate a function or terminal.	

§  If we generated terminal, terminate generation.	

§  If we generated function, recursively generate its arguments.	

§  Trees will vary in depth and structure.	


•  Approach 2: Generate full tree	

§  Choose desired depth for terminal nodes.	

§  Generate randomly like before.	

§  But make sure all terminals are at the same depth.	

§  Any traversal from root to leaf has the same length.	

§  Structure still not fixed, but much more regular.	




Prof. Pier Luca Lanzi 

30	
Generation: Ramped Half-And-Half	


•  Ramped half-and-half	

§ Generate half of the population by grow method.	


§ Set a range of depths to use: dmin to dmax	

§ Split the other half of the population into equal parts, one 

for each depth between dmin and dmax 	


§ Each of the parts uses full generation with the 
corresponding depth	


§ Creates a range of individuals with fixed and variable 
structure, and different overall depths	


§ Koza and lots of others use this method	




Prof. Pier Luca Lanzi 

31	
Crossover	


•  Two steps	

§ Randomly select one subtree in each of the two trees.	


§ Swap the selected subtrees.	




Prof. Pier Luca Lanzi 

32	
Crossover ���
Step 1: Select subtrees to swap	




Prof. Pier Luca Lanzi 

33	
Crossover ���
Step 2: Swap subtrees	




Prof. Pier Luca Lanzi 

34	
Mutation	


•  Two steps	

§ Randomly select a subtree.	


§ Replace the subtree by a randomly generated tree.	




Prof. Pier Luca Lanzi 

35	
Mutation: Example	




Prof. Pier Luca Lanzi 

36	
Automatic Function Definition	


•  Problems have structure.	


•  Similar computations repeated in a program.	


•  Discover general functions; use multiple times.	


•  Efficiency: discover once, use often.	


•  Depends on problem hierarchy and iterated structure: 
decomposition (again).	




Prof. Pier Luca Lanzi 

37	
Benefits of Automatic Function 
Definition	


•  Lower structural complexity	

•  Lower computational costs	


•  Better scalability w.r.t. problem size	

•  Acceleration of learning	


	




Prof. Pier Luca Lanzi 

38	
Bloat	


•  Bloat = “survival of the fattest”	


•  The tree sizes in the population are increasing over time	


•  Ongoing research and debate about the reasons 	


•  Countermeasures	


§ Prohibiting variation operators ���
that would deliver “too big” offspring	


§ Parsimony pressure: penalty for being oversized	




Prof. Pier Luca Lanzi 

39	
Questions	


•  How much sense does it make to...	

§ ...take a subtree out of it context?	


§ ...exchange subtrees between two trees?	

§ ...replace a subtree with a randomly generated one?	


•  Answer...	

§ The above questions are very difficult to answer despite 

that it seems to be easy at the first sight.	

§ Depends on the problem too.	


§ GP proved to work very well in a number of applications.	


§ GP provided several important results, including patentable 
inventions!	


§ But most of these applications used a LOT of computational 
power.	




Prof. Pier Luca Lanzi 

40	
���
	


Human-Competitive Result 
 

Result of comparable or better quality  
than was achieved by a human. 

 
Automatic programming procedure  

beats the human expert. 
 

Human-competitive results make GP  
an automatic invention machine. 

 
What criteria to use for human competitiveness? 



Prof. Pier Luca Lanzi 

41	
Criteria for Human-Competitive 
Results���
	
A. The result was patented as an invention in the past, is an 

improvement over a patented invention, or would qualify today 
as a patentable new invention.	


B. The result is equal to or better than a result that was accepted 
as a new scientific result at the time when it was published in a 
peer-reviewed scientific journal.	


C. The result is equal to or better than a result that was placed 
into a database or archive of results maintained by an 
internationally recognized panel of scientific experts.	


D. The result is publishable in its own right as a new scientific 
result, independent of the fact that the result was mechanically 
created.	




Prof. Pier Luca Lanzi 

42	
Criteria for Human-Competitive 
Results	


E. The result is equal to or better than the most recent human-
created solution to a long-standing problem for which there 
has been a succession of increasingly better human-created 
solutions.	


F. The result is equal to or better than a result that was 
considered an achievement in its field at the time it was first 
discovered.	


G. The result solves a problem of indisputable difficulty in its 
field.	


H. The result holds its own or wins a regulated competition 
involving human contestants (in the form of either live human 
players or human-written computer programs).	




Prof. Pier Luca Lanzi 

43	
Human-Competitive Results	


•  36 human-competitive results	


•  Source: http://www.genetic-programming.com/	


•  There is an annual competition at Genetic and Evolutionary 
Computation Conference for human-competitive results in GP.	




Prof. Pier Luca Lanzi 

44	
Human-Competitive Results	


•  Synthesis of a tunable integrated active filter���
A���
Section 15.4.6 of Genetic Programming IV	


•  Creation of PID tuning rules that outperform the Ziegler-
Nichols and strm-Hgglund tuning rules���
A, B, D, E, F, G ���
Chapter 12 of Genetic Programming IV	


•  Creation of three non-PID controllers that outperform a PID 
controller using the Ziegler-Nichols or strm-Hgglund tuning 
rules���
A, B, D, E, F, G ���
Chapter 13 of Genetic Programming IV	




Prof. Pier Luca Lanzi 

45	
Human-Competitive Results	


•  Synthesis of a high-current load circuit���
A���
Section 15.4.3 of Genetic Programming IV	


•  Synthesis of a voltage-current conversion circuit���
A���
Section 15.4.4 of Genetic Programming IV	


•  Synthesis of a cubic function generator���
A���
Section 15.4.5 of Genetic Programming IV	




Prof. Pier Luca Lanzi 

46	
Human-Competitive Results	


•  Rediscovery of negative feedback���
A, E, F, G ���
Chapter 14 of Genetic Programming IV	


•  Synthesis of a low-voltage balun circuit���
A���
Section 15.4.1 of Genetic Programming IV	


•  Synthesis of a mixed analog-digital variable capacitor circuit���
A���
Section 15.4.2 of Genetic Programming IV	




Prof. Pier Luca Lanzi 

47	
Human-Competitive Results	


•  Synthesis of a NAND circuit���
A, F ���
Section 4.4 of Genetic Programming IV	


•  Simultaneous synthesis of topology, sizing, placement, and 
routing of analog electrical circuits���
A. F, G ���
Chapter 5 of Genetic Programming IV	


•  Synthesis of topology for a PID (proportional, integrative, and 
derivative) controller���
A, F ���
Section 9.2 of Genetic Programming IV	




Prof. Pier Luca Lanzi 

48	
Summary	


•  GP is a GA with labeled trees instead of binary strings.	


•  Labeled trees can represent programs, arithmetic expressions, classifiers, and all 
kinds of other things.	


•  Must define:	

§  Syntax.	

§  Semantics (relates to syntax).	

§  Fitness function (relates to syntax and semantics).	


•  What differs from GAs?	

§  Initialization (random generation).	

§  Crossover.	

§ Mutation.	


•  GP enables computers program themselves. But it’s not so simple.	



