
What is Genetic Programming?

One of the central challenges of computer science is to get a computer to do what needs to be

done, without telling it how to do it. Genetic programming addresses this challenge by

providing a method for automatically creating a working computer program from a high-level

problem statement of the problem. Genetic programming achieves this goal of automatic

programming (also sometimes called program synthesis or program induction) by genetically

breeding a population of computer programs using the principles of Darwinian natural

selection and biologically inspired operations. The operations include reproduction, crossover

(sexual recombination), mutation, and architecture-altering operations patterned after gene

duplication and gene deletion in nature.

Genetic programming is a domain-independent method that genetically breeds a population

of computer programs to solve a problem. Specifically, genetic programming iteratively

transforms a population of computer programs into a new generation of programs by

applying analogs of naturally occurring genetic operations. The genetic operations include

crossover (sexual recombination), mutation, reproduction, gene duplication, and gene

deletion.

Preparatory Steps of Genetic Programming

The human user communicates the high-level statement of the problem to the genetic

programming system by performing certain well-defined preparatory steps.

Preparatory Steps of Genetic Programming

Genetic programming starts from a high-level statement of the requirements of a problem and

attempts to produce a computer program that solves the problem.

The human user communicates the high-level statement of the problem to the genetic

programming system by performing certain well-defined preparatory steps.

The five major preparatory steps for the basic version of genetic programming require the

human user to specify

(1) the set of terminals (e.g., the independent variables of the problem, zero-argument

functions, and random constants) for each branch of the to-be-evolved program,

(2) the set of primitive functions for each branch of the to-be-evolved program,

(3) the fitness measure (for explicitly or implicitly measuring the fitness of individuals in the

population),

(4) certain parameters for controlling the run, and

(5) the termination criterion and method for designating the result of the run.

The figure below shows the five major preparatory steps for the basic version of genetic

programming. The preparatory steps (shown at the top of the figure) are the human-supplied

input to the genetic programming system. The computer program (shown at the bottom) is the

output of the genetic programming system.

The first two preparatory steps specify the ingredients that are available to create the

computer programs. A run of genetic programming is a competitive search among a diverse

population of programs composed of the available functions and terminals.

Function Set and Terminal Set

The identification of the function set and terminal set for a particular problem (or category of

problems) is usually a straightforward process. For some problems, the function set may

consist of merely the arithmetic functions of addition, subtraction, multiplication, and

division as well as a conditional branching operator. The terminal set may consist of the

program’s external inputs (independent variables) and numerical constants. This function set

and terminal set is useful for a wide variety of problems (and corresponds to the basic

operations found in virtually every general-purpose digital computer).

For many other problems, the ingredients include specialized functions and terminals. For

example, if the goal is to get genetic programming to automatically program a robot to mop

the entire floor of an obstacle-laden room, the human user must tell genetic programming

what the robot is capable of doing. For example, the robot may be capable of executing

functions such as moving, turning, and swishing the mop.

If the goal is the automatic creation of a controller, the function set may consist of signal-

processing functions that operates on time-domain signals, including integrators,

differentiators, leads, lags, gains, adders, subtractors, and the like. The terminal set may

consist of signals such as the reference signal and plant output. Once the human user has

identified the primitive ingredients for a problem of controller synthesis, the same function

set and terminal set can be used to automatically synthesize a wide variety of different

controllers.

If a complex structure, such an antenna, is to be designed, it may be desirable to use functions

that cause a turtle to draw the complex structure.

If the goal is the automatic synthesis of an analog electrical circuit, the function set may

enable genetic programming to construct circuits from components such as transistors,

capacitors, and resistors. This construction (developmental) process typically starts with a

very simple embryonic structure, such as a single modifiable wire. If, additionally, such a

function set is geographically aware, a circuit’s placement and routing can be synthesized at

the same as its topology and sizing. Click here for information about developmental genetic

programming. Once the human user has identified the primitive ingredients for a problem of

http://www.genetic-programming.com/gpturtle.html
http://www.genetic-programming.com/gpdevelopment.html
http://www.genetic-programming.com/gpdevelopment.html

circuit synthesis, the same function set and terminal set can be used to automatically

synthesize an amplifier, computational circuit, active filter, voltage reference circuit, or any

other circuit composed of these ingredients.

Fitness Measure

The third preparatory step concerns the fitness measure for the problem. The fitness measure

specifies what needs to be done. The fitness measure is the primary mechanism for

communicating the high-level statement of the problem’s requirements to the genetic

programming system. For example, if the goal is to get genetic programming to automatically

synthesize an amplifier, the fitness function is the mechanism for telling genetic

programming to synthesize a circuit that amplifies an incoming signal (as opposed to, say, a

circuit that suppresses the low frequencies of an incoming signal or a circuit that computes

the square root of the incoming signal). The first two preparatory steps define the search

space whereas the fitness measure implicitly specifies the search’s desired goal.

Control Parameters

The fourth and fifth preparatory steps are administrative. The fourth preparatory step entails

specifying the control parameters for the run. The most important control parameter is the

population size. In practice, the user may choose a population size that will produce a

reasonably large number of generations in the amount of computer time we are willing to

devote to a problem (as opposed to, say, analytically choosing the population size by

somehow analyzing a problem’s fitness landscape). Other control parameters include the

probabilities of performing the genetic operations, the maximum size for programs, and other

details of the run.

Termination

The fifth preparatory step consists of specifying the termination criterion and the method of

designating the result of the run. The termination criterion may include a maximum number

of generations to be run as well as a problem-specific success predicate. In practice, one may

manually monitor and manually terminate the run when the values of fitness for numerous

successive best-of-generation individuals appear to have reached a plateau. The single best-

so-far individual is then harvested and designated as the result of the run.

Running Genetic Programming

After the human user has performed the preparatory steps for a problem, the run of genetic

programming can be launched. Once the run is launched, a series of well-defined, problem-

independent executional steps (that is, the flowchart of genetic programming) is executed.

Click here for an example of an illustrative run of genetic programming for a problem of

symbolic regression of a quadratic polynomial.

The above five major preparatory steps for the basic version of genetic programming require

the human user to specify

(1) the set of terminals (e.g., the independent variables of the problem, zero-argument

functions, and random constants) for each branch of the to-be-evolved program,

http://www.genetic-programming.com/gpflowchart.html
http://www.genetic-programming.com/gpquadraticexample.html

(2) the set of primitive functions for each branch of the to-be-evolved program,

(3) the fitness measure (for explicitly or implicitly measuring the fitness of individuals in the

population),

(4) certain parameters for controlling the run, and

(5) the termination criterion and method for designating the result of the run.

Executional Steps of Genetic Programming

Genetic programming typically starts with a population of randomly generated computer

programs composed of the available programmatic ingredients. Genetic programming

iteratively transforms a population of computer programs into a new generation of the

population by applying analogs of naturally occurring genetic operations. These operations

are applied to individual(s) selected from the population. The individuals are probabilistically

selected to participate in the genetic operations based on their fitness (as measured by the

fitness measure provided by the human user in the third preparatory step). The iterative

transformation of the population is executed inside the main generational loop of the run of

genetic programming.

Flowchart (Executional Steps) of Genetic Programming

Genetic programming is problem-independent in the sense that the flowchart specifying the

basic sequence of executional steps is not modified for each new run or each new problem.

There is usually no discretionary human intervention or interaction during a run of genetic

programming (although a human user may exercise judgment as to whether to terminate a

run).

The figure below is a flowchart showing the executional steps of a run of genetic

programming. The flowchart shows the genetic operations of crossover, reproduction, and

mutation as well as the architecture-altering operations. This flowchart shows a two-offspring

version of the crossover operation.

Overview of Flowchart

Genetic programming starts with an initial population of computer programs composed of

functions and terminals appropriate to the problem. The individual programs in the initial

population are typically generated by recursively generating a rooted point-labeled program

tree composed of random choices of the primitive functions and terminals (provided by the

human user as part of the first and second preparatory steps of a run of genetic

programming). The initial individuals are usually generated subject to a pre-established

maximum size (specified by the user as a minor parameter as part of the fourth preparatory

step). In general, the programs in the population are of different size (number of functions

and terminals) and of different shape (the particular graphical arrangement of functions and

terminals in the program tree).

Each individual program in the population is executed. Then, each individual program in the

population is either measured or compared in terms of how well it performs the task at hand

(using the fitness measure provided in the third preparatory step). For many problems

(including all problems in this book), this measurement yields a single explicit numerical

value, called fitness. The fitness of a program may be measured in many different ways,

including, for example, in terms of the amount of error between its output and the desired

output, the amount of time (fuel, money, etc.) required to bring a system to a desired target

state, the accuracy of the program in recognizing patterns or classifying objects into classes,

the payoff that a game-playing program produces, or the compliance of a complex structure

(such as an antenna, circuit, or controller) with user-specified design criteria. The execution

of the program sometimes returns one or more explicit values. Alternatively, the execution of

a program may consist only of side effects on the state of a world (e.g., a robot’s actions).

Alternatively, the execution of a program may produce both return values and side effects.

The fitness measure is, for many practical problems, multiobjective in the sense that it

combines two or more different elements. The different elements of the fitness measure are

often in competition with one another to some degree.

For many problems, each program in the population is executed over a representative sample

of different fitness cases. These fitness cases may represent different values of the program’s

input(s), different initial conditions of a system, or different environments. Sometimes the

fitness cases are constructed probabilistically.

The creation of the initial random population is, in effect, a blind random search of the search

space of the problem. It provides a baseline for judging future search efforts. Typically, the

individual programs in generation 0 all have exceedingly poor fitness. Nonetheless, some

individuals in the population are (usually) more fit than others. The differences in fitness are

then exploited by genetic programming. Genetic programming applies Darwinian selection

and the genetic operations to create a new population of offspring programs from the current

population.

The genetic operations include crossover (sexual recombination), mutation, reproduction, and

the architecture-altering operations. These genetic operations are applied to individual(s) that

are probabilistically selected from the population based on fitness. In this probabilistic

selection process, better individuals are favored over inferior individuals. However, the best

individual in the population is not necessarily selected and the worst individual in the

population is not necessarily passed over.

http://www.genetic-programming.com/gppreparatory.html

After the genetic operations are performed on the current population, the population of

offspring (i.e., the new generation) replaces the current population (i.e., the now-old

generation). This iterative process of measuring fitness and performing the genetic operations

is repeated over many generations.

The run of genetic programming terminates when the termination criterion (as provided by

the fifth preparatory step) is satisfied. The outcome of the run is specified by the method of

result designation. The best individual ever encountered during the run (i.e., the best-so-far

individual) is typically designated as the result of the run.

All programs in the initial random population (generation 0) of a run of genetic programming

are syntactically valid, executable programs. The genetic operations that are performed

during the run (i.e., crossover, mutation, reproduction, and the architecture-altering

operations) are designed to produce offspring that are syntactically valid, executable

programs. Thus, every individual created during a run of genetic programming (including, in

particular, the best-of-run individual) is a syntactically valid, executable program.

There are numerous alternative implementations of genetic programming that vary from the

foregoing brief description.

Creation of Initial Population of Computer Programs

Genetic programming starts with a primordial ooze of thousands of randomly-generated

computer programs. The set of functions that may appear at the internal points of a program

tree may include ordinary arithmetic functions and conditional operators. The set of terminals

appearing at the external points typically include the program's external inputs (such as the

independent variables X and Y) and random constants (such as 3.2 and 0.4). The randomly

created programs typically have different sizes and shapes. Click here for animated

example of random creation of two illustrative computer programs.

Main Generational Loop of Genetic Programming

The main generational loop of a run of genetic programming consists of the fitness

evaluation, Darwinian selection, and the genetic operations. Each individual program in the

population is evaluated to determine how fit it is at solving the problem at hand. Programs are

then probabilistically selected from the population based on their fitness to participate in the

various genetic operations, with reselection allowed. While a more fit program has a better

chance of being selected, even individuals known to be unfit are allocated some trials in a

mathematically principled way. That is, genetic programming is not a purely greedy hill-

climbing algorithm.

The individuals in the initial random population and the offspring produced by each genetic

operation are all syntactically valid executable programs.

After many generations, a program may emerge that solves, or approximately solves, the

problem at hand.

http://www.genetic-programming.com/creation.gif
http://www.genetic-programming.com/creation.gif

Mutation Operation

In the mutation operation, a single parental program is probabilistically selected from the

population based on fitness. A mutation point is randomly chosen, the subtree rooted at that

point is deleted, and a new subtree is grown there using the same random growth process that

was used to generate the initial population. This asexual mutation operation is typically

performed sparingly (with a low probability of, say, 1% during each generation of the run).

Click here for animated example of mutation operation.

Crossover (Sexual Recombination) Operation

In the crossover, or sexual recombination operation, two parental programs are

probabilistically selected from the population based on fitness. The two parents participating

in crossover are usually of different sizes and shapes. A crossover point is randomly chosen

in the first parent and a crossover point is randomly chosen in the second parent. Then the

subtree rooted at the crossover point of the first, or receiving, parent is deleted and replaced

by the subtree from the second, or contributing, parent. Crossover is the predominant

operation in genetic programming (and genetic algorithm) work and is performed with a high

probability (say, 85% to 90%). Click here for animated example of crossover operation.

Reproduction Operation

The reproduction operation copies a single individual, probabilistically selected based on

fitness, into the next generation of the population.

Architecture-Altering Operations

Simple computer programs consist of one main program (called a result-producing branch).

However, more complicated programs contain subroutines (also called automatically defined

functions, ADFs, or function-defining branches), iterations (automatically defined iterations

or ADIs), loops (automatically defined loops or ADLs), recursions (automatically defined

recursions or ADRs), and memory of various dimensionality and size (automatically defined

stores or ADSs). If a human user is trying to solve an engineering problem, he or she might

choose to simply prespecify a reasonable fixed architectural arrangement for all programs in

the population (i.e., the number and types of branches and number of arguments that each

branch possesses). Genetic programming can then be used to evolve the exact sequence of

primitive work-performing steps in each branch.

However, sometimes the size and shape of the solution is the problem (or at least a major part

of it). Genetic programming is capable of making all architectural decisions dynamically

during the run of genetic programming. Genetic programming uses architecture-altering

operations to automatically determine program architecture in a manner that parallels gene

duplication in nature and the related operation of gene deletion in nature. Architecture-

altering operations provide a way, dynamically during the run of genetic programming, to

add and delete subroutines and other types of branches to individual programs to add and

delete arguments possessed by the subroutines and other types of branches. These

architecture-altering operation quickly create an architecturally diverse population containing

programs with different numbers of subroutines, arguments, iterations, loops, recursions, and

memory and, also, different hierarchical arrangements of these elements. Programs with

http://www.genetic-programming.com/mutation.gif
http://www.genetic-programming.com/crossover.gif

architectures that are well-suited to the problem at hand will tend to grow and prosper in the

competitive evolutionary process, while programs with inadequate architectures will tend to

wither away under the relentless selective pressure of the problem's fitness measure. Thus,

the architecture-altering operations relieve the human user of the task of prespecifying

program architecture.

There are several different architecture-altering operations (described below). They are each

applied sparingly during the run (say, with a probability of 1/2% of 1% on each generation).

The subroutine duplication operation duplicates a preexisting subroutine in an individual

program gives a new name to the copy and randomly divides the preexisting calls to the old

subroutine between the two. This operation changes the program architecture by broadening

the hierarchy of subroutines in the overall program. As with gene duplication in nature, this

operation preserves semantics when it first occurs. The two subroutines typically diverge

later, sometimes yielding specialization. Click here for animated example of the

subroutine duplication operation.

The argument duplication operation duplicates one argument of a subroutine, randomly

divides internal references to it, and preserves overall program semantics by adjusting all

calls to the subroutine. This operation enlarges the dimensionality of the subspace on which

the subroutine operates. Click here for animated example of the argument duplication

operation.

The subroutine creation operation can create a new subroutine from part of a main result-

producing branch thereby deepening the hierarchy of references in the overall program, by

creating a hierarchical reference between the main program and the new subroutine. The

subroutine creation operation can also create a new subroutine from part of an existing

subroutine further deepening the hierarchy of references, by creating a hierarchical reference

between a preexisting subroutine and a new subroutine and a deeper and more complex

overall hierarchy. Click here for animated example of the subroutine creation operation.

The architecture-altering operation of subroutine deletion deletes a subroutine from a

program thereby making the hierarchy of subroutines either narrower or shallower. Click

here for animated example of the subroutine deletion operation.

The argument deletion operation deletes an argument from a subroutine thereby reducing the

amount of information available to the subroutine, a process that can be viewed as

generalization. Click here for animated example of the argument deletion operation.

Other architecture-altering operations add and delete automatically defined iterations,

automatically defined loops, automatically defined recursions, and automatically defined

stores (memory).

Click here for an example of an illustrative run of genetic programming for a problem of

symbolic regression of a quadratic polynomial

The executional steps of genetic programming (that is, the flowchart of genetic

programming) are as follows:

http://www.genetic-programming.com/branch-dup2.gif
http://www.genetic-programming.com/branch-dup2.gif
http://www.genetic-programming.com/arg-dup2.gif
http://www.genetic-programming.com/arg-dup2.gif
http://www.genetic-programming.com/branch-create2.gif
http://www.genetic-programming.com/branch-delete.gif
http://www.genetic-programming.com/branch-delete.gif
http://www.genetic-programming.com/arg-delete.gif
http://www.genetic-programming.com/gpquadraticexample.html

(1) Randomly create an initial population (generation 0) of individual computer programs

composed of the available functions and terminals.

(2) Iteratively perform the following sub-steps (called a generation) on the population until

the termination criterion is satisfied:

(a) Execute each program in the population and ascertain its fitness (explicitly or implicitly)

using the problem’s fitness measure.

(b) Select one or two individual program(s) from the population with a probability based on

fitness (with reselection allowed) to participate in the genetic operations in (c).

(c) Create new individual program(s) for the population by applying the following genetic

operations with specified probabilities:

(i) Reproduction: Copy the selected individual program to the new population.

(ii) Crossover: Create new offspring program(s) for the new population by recombining

randomly chosen parts from two selected programs.

(iii) Mutation: Create one new offspring program for the new population by randomly

mutating a randomly chosen part of one selected program.

(iv) Architecture-altering operations: Choose an architecture-altering operation from the

available repertoire of such operations and create one new offspring program for the new

population by applying the chosen architecture-altering operation to one selected program.

(3) After the termination criterion is satisfied, the single best program in the population

produced during the run (the best-so-far individual) is harvested and designated as the result

of the run. If the run is successful, the result may be a solution (or approximate solution) to

the problem.

 For information about the field of genetic programming in general, visit www.genetic-

programming.org

 The home page of John R. Koza at Genetic Programming Inc. (including online versions

of most papers) and the home page of John R. Koza at Stanford University

 Information about the 1992 book Genetic Programming: On the Programming of

Computers by Means of Natural Selection, the 1994 book Genetic Programming II:

Automatic Discovery of Reusable Programs, the 1999 book Genetic Programming III:

Darwinian Invention and Problem Solving, and the 2003 book Genetic Programming IV:

Routine Human-Competitive Machine Intelligence. Click here to read chapter 1 of Genetic

Programming IV book in PDF format.

 For information on 3,198 papers (many on-line) on genetic programming (as of June 27,

2003) by over 900 authors, see William Langdon’s bibliography on genetic programming.

 For information on the Genetic Programming and Evolvable Machines journal

published by Kluwer Academic Publishers

http://www.genetic-programming.org/
http://www.genetic-programming.org/
http://www.genetic-programming.com/johnkoza.html
http://smi.stanford.edu/~koza/
http://www.genetic-programming.org/gpbook1toc.html
http://www.genetic-programming.org/gpbook1toc.html
http://www.genetic-programming.org/gpbook2toc.html
http://www.genetic-programming.org/gpbook2toc.html
http://www.genetic-programming.org/gpbook3toc.html
http://www.genetic-programming.org/gpbook3toc.html
http://www.genetic-programming.org/gpbook4toc.html
http://www.genetic-programming.org/gpbook4toc.html
http://www.genetic-programming.org/gp4chapter1.pdf
http://www.genetic-programming.org/gp4chapter1.pdf
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html
http://www.kluweronline.com/issn/1389-2576

 For information on the Genetic Programming book series from Kluwer Academic

Publishers, see the Call For Book Proposals

 For information about the annual Genetic and Evolutionary Computation (GECCO)

conference (which includes the annual GP conference) to be held on June 26–30, 2004

(Saturday – Wednesday) in Seattle and its sponsoring organization, the International Society

for Genetic and Evolutionary Computation (ISGEC). For information about the annual

NASA/DoD Conference on Evolvable Hardware Conference (EH) to be held on June 24-

26 (Thursday-Saturday), 2004 in Seattle. For information about the annual Euro-Genetic-

Programming Conference to be held on April 5-7, 2004 (Monday – Wednesday) at the

University of Coimbra in Coimbra Portugal.

http://www.genetic-programming.com/gpkluwer.html
http://www-illigal.ge.uiuc.edu:8080/GECCO-2004/
http://www-illigal.ge.uiuc.edu:8080/GECCO-2004/
http://www.isgec.org/
http://ehw.jpl.nasa.gov/events/nasaeh04/
http://evonet.dcs.napier.ac.uk/eurogp2004/
http://evonet.dcs.napier.ac.uk/eurogp2004/

